

SPECIFICATIONS OF LCD MODULE

1. General Specification

Interface With Parallel MPU

Driving IC: ST7565P

Display Dot Matrix: 128*64

Display Mode: Positive/Transflective/FSTN Type

Viewing Angle: 6 O'Clock

Display Duty: 1/64, Driving Bias: 1/9, LCD Driving Voltage: 9.8V

Power Supply: +3.3V DC

LED Backlight: Sidelight, Yellow-green Color, V_F=4.2V and I_F=60mA

Mechanical Characteristics (Unit: mm)

External Dimension: 72.0*46.0*6.5

View Area: 66.0*32.7

Dots Size: 0.45*0.45

Dots Pitch: 0.48*0.48

Temperature Range

Operation Temperature: -20℃~70℃

Storage Temperature:-30 $^\circ\!\mathrm{C}\!\sim\!80\,^\circ\!\mathrm{C}$

External Dimension

PIN Assignment

Pin No	Symbol	I/O				Functi	on		
1	P/S	Ι	P/S="H" :Par	allel data inp	out, P/S="L	":serial data	input		
2	C86	Ι	C86="H" :68 C86="L" :808	00 series MF 80 series MP	PU interface U interface				
3	VSS		Ground						
4	V0		LCD driver s impedance-co	supply volta	ge. The volt	tage determinitiver or an op	ned by LCD eration ampl	cell is cell for	
5	V1		When the on-chip operating power circuit is on, the following are give						
6	V2	Power Supply	by the set LC.	D bias comn V1	nand. V2	V3	V4		
7	V3		1/5BIAS 1/6 BIAS	4/5V0 5/6V0 6/7 V0	3/5V0 4/6 V0 5/7 V0	2/5V0 2/6 V0 2/7 V0	1/5V0 1/6 V0 1/7 V0		
8	V4		1/8 BIAS 1/9 BIAS	7/8 V0 8/9 V0	6/8 V0 7/9 V0	2/8 V0 2/9 V0	1/8 V0 1/9 V0		

9	C2-	0	Capacitor2- for internal DC/DC voltage converter			
10	C2+	0	Capacitor2+ for internal DC/DC voltage converter			
11	C1-	0	Capacitor1- for internal DC/DC voltage converter			
12	C1+	0	Capacitor1+ for internal DC/DC voltage converter			
13	NC	0				
14	C3+	0	Capacitor3+ for internal DC/DC voltage converter			
15	VOUT	0	DC/DC voltage converter output			
16	VSS	Power	Ground			
17	VDD	Supply	Power supply for logic			
18	D7					
19	D6		This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit			
20	20 D5		standard MPU data bus.			
21	D4	L/O	When the serial interface is selected, then D7 serves as the serial data			
22	D3	1/0	input terminal and D6 serves as the serial clock input terminal. At this			
23	D2		time,D0-D5 are set to high impedance.			
24	D1		When the chip select is inactive,D0 to D7 are set to high impedance.			
25	D0					
26	/RD(E)	Ι	Operation (data read/write) enable signal.			
27	/R/W	Ι	Read/write select signal.			
28	4.0	I	A0 = "H": Indicates that D0 to D7 are display data.			
20	AU	1	A0 = "L": Indicates that D0 to D7 are control data.			
29	RST	I	When RST is set to "L", the setting are initialized			
	101		The RST operation is performed by the RST signal level			
30	CS1B	Ι	This is the chip select signal .When CS1B="L" and CS2B="H", then			
		-	the chip select becomes active, and data/command I/O is enabled			

Backlight

Optical Electronic Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	\mathbf{V}_{F}	To- 25°C I -60m A	-	4.2	-	V
Luminous	_	$1a - 23 C, I_F = 60 \text{mA}$	100	_	_	Cd/m ²

Absolute Maximum Ratings

Item	Symbol	Condition	Min	Max	Unit
Power supply voltage	V_{DD}		0.3	+5.0	V
Input voltage	Vin		-0.3	V _{DD} +0.3	V
DC Supply Voltage	V ₀ ,V _{OUT}		0.3	+18.0	V
Operating temperature	T _{OP}		-20	70	°C
Storage temperature	T _{ST}		-30	80	°C

Electrical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Power supply voltage	V _{DD}		1.8	-	3.3	V
Current consumption	I _{DD}	Ta=25℃	-	1.0	-	mA

DC Characteristics

Unless otherwise specified, Vss = 0 V, Vob = 3.0 V ± 10%, Ta = -40 to 85°C

14.	7862	Cumbal	C-	and it is an		Rating	1	Unite	Applicable
Ite	em	Symbol	- CC	ondition	Min.	Тур.	Max.	Units	Pin
Operating	Voltage (1)	VDD			1.8	-	3.3	v	Vss*1
Operating	Voltage (2)	VDD2	(Relative	to Vss)	2.4	-	3.3	v	Vss
High-level Ir	nput Voltage	Vінс			0.8 x Vod		Voo	V	*3
Low-level Ir	nput Voltage	VILC				-	0.2 x Vod	V	*3
High-level O	utput Voltage	Vонс	юн = -0.5	он =0.5 mA 0		_	Voo	V	*4
Low-level Or	utput Voltage	Volc	ioL = 0.5 mA		Vss	-	0.2 x Vod	٧	*4
Input leaka	age current	lu	VIN = VDD OF VSS		-1.0	-	1.0	μA	*5
Output leak	age current	ILO	VIN = VDD OF VSS		-3.0	-	3.0	μA	*6
Liquid Cryst	al Driver ON		Ta = 25°C V₀ = 13.0 V		_	2.0	3.5	KO	SEGn
Resis	stance	RON	(Relative To VDD)	Vo = 8.0 V	-	3.2	5.4	KΩ	COMn *7
Static Consur	mption Current	Issa	Vo = 13.0) V(Relative To		0.01	2	μA	VDD, VDD2
Output Leak	kage Current	lsq	VDD)			0.01	10	μA	VO
Input Termina	al Capacitance	CIN	Ta = 25°C	C, f=1 MHz	-	5.0	8.0	pF	
	Internal Oscillator	fosc	1/65 duty	T- 25%0	17	20	24	kHz	*8
Oscillator	External Input	fcL	1/33 duty	1a = 25°C	17	20	24	kHz	CL
Frequency	Internal Oscillator	fosc	1/49 duty	To - 2590	25	30	35	kHz	*8
	External Input	fcL	1/55 duty 1/55 duty	1a = 25 C	25	30	35	kHz	CL

Timing Characteristics

System bus read/write characteristics 1 (8080 Series MPU)

System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)

T 11 01	
Table 74	

2		Tuble L		(VDD = 3	25°C)	
ltem	Signal	Symbol	Condition	Rat	ting	Unite
	Signal	Symbol	Contaition	Min.	Max.	onnes
Address hold time		taнa		0		
Address setup time	A0 t	tawa		0	-	1
System cycle time		toyos		240		
Enable L pulse width (WRITE)	WR ·	tccLw		80	-	
Enable H pulse width (WRITE)		tccнw		80	100	
Enable L pulse width (READ)	BD	tcclr		140	-	Ns
Enable H pulse width (READ)	ND	tcchr		80		
WRITE Data setup time		tosa		40	+	
WRITE Address hold time	D0 to D7	tона		0	(15)	
READ access time		tacca	CL = 100 pF	-	70	
READ Output disable time		tона	CL = 100 pF	5	50	

Itom	Giamal	Cumbel	Condition	Rating		Linite
item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tана		0		
Address setup time	A0 ta	tawa		0	1.000	1
System cycle time		toyos		400		
Enable L pulse width (WRITE)	- WR	tccLw		220	1000	
Enable H pulse width (WRITE)		tсснw		180	-	
Enable L pulse width (READ)		tcclr		220	100	ns
Enable H pulse width (READ)	- KD	tссня		180	-	
WRITE Data setup time		tosa		40	-	
WRITE Address hold time	D0 40 D7	tона		0	100	
READ access time		tacca	CL = 100 pF	-	140	
READ Output disable time	1	tонв	CL = 100 pF	10	100	
					-	

Table 26

Itom	Cignal	Cumbal	Condition	Rat	ting	Unite
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tанв		0		
Address setup time	AD	tawa		0	1.000	
System cycle time		toyos		640	1444	
Enable L pulse width (WRITE)	- wr t	tcclw		360	1,000	ns
Enable H pulse width (WRITE)		tсснw		280	1444	
Enable L pulse width (READ)		tcclr		360	200	
Enable H pulse width (READ)	- KD	tcchr		280		
WRITE Data setup time		tosa		80	ात्म् ।	
WRITE Address hold time	D0 to D7	toнa		0	-	
READ access time		tacca	CL = 100 pF	-	240	
READ Output disable time	1 1	tонв	CL = 100 pF	10	200	

*1 The input signal rise time and fall time (tr, tr) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tr) ≤ (tcrcs - tccLw - tccHw) for (tr + tr) ≤ (tcrcs - tccLR - tccHR) are specified. *2 All timing is specified using 20% and 80% of Vpp as the reference.

*3 toolw and toolk are specified as the overlap between /CS1 being "L" (CS2 = "H") and /WR and /RD being at the "L" level.

System bus read/write characteristics 2 (6800 Series MPU)

Item	Signal	Symbol	Condition	Rating		Unite
item	Signal	Symbol	condition	Min.	Max.	Onto
Address hold time		tah6		0	. S i →2	
Address setup time	A0 1	taw6		0		
System cycle time		tcyc6		240	-	
Enable L pulse width (WRITE)	WR	tewlw		80		
Enable H pulse width (WRITE)		tewнw		80	-	
Enable L pulse width (READ)		tewlr		80	:	ns
Enable H pulse width (READ)		tewhr		140		
WRITE Data setup time		tose		40		
WRITE Address hold time		tоне		0		
READ access time		tacc6	CL = 100 pF) — ·	70	
READ Output disable time	1 1	tоне	CL = 100 pF	5	50	1

literes	Cimel	Cumbal	Condition	Rat	Unite	
nem	Signai	Symbol	Condition	Min.	Max.	Units
Address hold time	1	tah6		0	-	1
Address setup time	A0 t	taw6		0	1997)	1
System cycle time		tcycs		400		
Enable L pulse width (WRITE)	WR	tewlw		220	1000	
Enable H pulse width (WRITE)		tewнw		180		
Enable L pulse width (READ)	PD	tewlr		220	1000	ns
Enable H pulse width (READ)	KD	tewhr		180		
WRITE Data setup time		tose		40	1	
WRITE Address hold time	D0 to D7	toнs		0	1 <u>2.5</u> 5	
READ access time		tacc6	CL = 100 pF	-	140	
READ Output disable time		tоне	CL = 100 pF	10	100	
				_	-	

Table 29

	36 1	<u>e</u>		(Vop =1.8	3V, Tal=2 tinca	5°C)
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tah6		0		
Address setup time	AO	taw6		0	। संस्थ	
System cycle time	[]	tcyce		640		
Enable L pulse width (WRITE)	34/0	tewlw		360	(तर्म्स)	
Enable H pulse width (WRITE)	WR	tewнw		280		
Enable L pulse width (READ)	PD	tewlr		360	1000	ns
Enable H pulse width (READ)		tewhr		280		
WRITE Data setup time		tose		80	3 3513 5	1
WRITE Address hold time	D0 to D7	toнs		0	944	
READ access time		tacc6	CL = 100 pF	-	240	1
READ Output disable time		tоне	CL = 100 pF	10	200	

*1 The input signal rise time and fall time (tr, tr) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tr) ≤ (tcycs - tewuw - tewnw) for (tr + tr) ≤ (tcycs - tewur - tewnw) are specified.

*2 All timing is specified using 20% and 80% of Voo as the reference.

*3 tewLw and tewLR are specified as the overlap between CS1 being "L" (CS2 = "H") and E.

IC Specification

The ST7565R identify the data bus signals by a combination of A0, /RD (E), /WR(R/W) signals. Command

interpretation and execution does not depend on the external clock, but rather is performed through internal

timing only, and thus the processing is fast enough that normally a busy check is not required.

In the 8080 MPU interface, commands are launched by inputting a low pulse to the RD terminal for reading,

and inputting a low pulse to the /WR terminal for writing. In the 6800 Series MPU interface, the interface is

placed in a read mode when an "H" signal is input to the R/W terminal and placed in a write mode when a "L"

signal is input to the R/W terminal and then the command is launched by inputting a high pulse to the E

terminal. Consequently, the 6800 Series MPU interface is different than the 80x86 Series MPU interface in that V: A 8/26 Aug.20, 2009

in the explanation of commands and the display commands the status read and display data read /RD (E)

becomes "1(H)". In the explanations below the commands are explained using the 8080 Series MPU interface

as the example.

When the serial interface is selected, the data is input in sequence starting with D7.

Instruction Table

0				Cor	nma	ind C	ode					E
Command	A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0	LCD display ON/OFF 0: OFF, 1: ON
(2) Display start line set	0	1	0	0	1	Di	spla	iy sta	art a	ddre	:55	Sets the display RAM display start line address
(3) Page address set	0	1	0	1	0	1	1	Pa	ge a	addre	ess	Sets the display RAM page
(4) Column address set	0	1	0	0	0	0	1	Mos	st si	gnifi	cant	Sets the most significant 4 bits of
Column address set lower bit	0	1	0	0	0	0	0	Lea	ist s umn	ignif add	icant ress	Sets the least significant 4 bits of the display RAM column address.
(5) Status read	0	0	1		St	atus		0	0	0	0	Reads the status data
(6) Display data write	1	1	0			1	Nrit	e dat	ta			Writes to the display RAM
(7) Display data read	1	0	1			F	Rea	d dat	ta			Reads from the display RAM
(8) ADC select	0	1	O	1	0	1	0	0	0	0	0 1	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9) Display normal/ reverse	0	1	0	1	0	1	0	0	1	1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10) Display all points ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	Display all points 0: normal display 1: all points ON
(11) LCD bias set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio 0: 1/9 bias, 1: 1/7 bias (ST7565P)
(12) Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
(13) End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write
(14) Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
(15) Common output mode select	0	1	o	1	1	0	0	0 1	*	*	*	Select COM output scan direction 0: normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0	1	0	1	Op	berat	ting	Select internal power supply operating mode
(17) Vo voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	0	Re	esiste atio	or	Select internal resistor ratio(Rb/Ra) mode
(18) Electronic volume mode set Electronic volume register set	0	1	O	1 0	0 0	0 Ele	0 ctro	0 nic v	0 olur	0 ne v	1 alue	Set the V₀ output voltage electronic volume register
(19) Static indicator ON/OFF			0	1	0	1	0	1	1	0	0	0: OFF, 1: ON
Static indicator register set	0	E.		0	0	0	0	0	0	0	Mode	Set the flashing mode
(20) Booster ratio set	0	1	0	1 0	1 0	1 0	1 0	1 0	0	0 ste va	0 p-up lue	select booster ratio 00: 2x,3x,4x 01: 5x 11: 6x
(21) Power saver												Display OFF and display all points ON compound command
(22) NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation
(23) Test	0	1	0	1	1	1	1	*	*	*	*	Command for IC test. Do not use this command

Instruction Description

1. Display ON/OFF

This command turns the display ON and OFF.

	Е	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	DO	Setting
0	1	0	1	0	1	0	1	1	1	1	Display ON
										0	Display OFF

When the display OFF command is executed when in the display all points ON mode, power saver mode is entered. See the section on the power saver for details.

2. Display Start Line Set

This command is used to specify the display start line address of the display data RAM shown in Figure 4. For further details see the explanation of this function in "The Line Address Circuit".

	E	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Line address
0	1	0	0	1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 1	0 1 0	0 1 2
			<i>.</i>		1 1	1 1	1	1	1 1	0 1	62 63

3. Page Address Set

This command specifies the page address corresponding to the low address when the MPU accesses the display data RAM (see Figure 4). Specifying the page address and column address enables to access a desired bit of the display data RAM. Changing the page address does not accompany a change in the status display.

	E	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Page address
0	1	0	1	0	1	1	0	0	0	0	0
			(C-5)(1				0	0	0	1	1
							0	0	1	0	2
								-			4
							0	1	1	1	7
							1	0	0	0	8

4. Column Address

This command specifies the column address of the display data RAM shown in Figure 4. The column address is split into two sections (the higher 4 bits and the lower 4 bits) when it is set (fundamentally, set continuously). Each time the display data RAM is accessed, the column address automatically increments (+1), making it possible for the MPU to continuously read from/write to the display data. The column address increment is topped at 83H. This does not change the page address continuously. See the function explanation in "The Column Address Circuit," for details.

		Е	R/W	1																Calumn
	A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	A7	A6	A5	A4	A3	A2	A1	A0	address
High bits \rightarrow	0	1	0	0	0	0	1	A7	A6	A5	A4	0	0	0	0	0	0	0	0	0
Low bits \rightarrow							0	A3	A2	A1	AO	0	0	0	0	0	0	0	1	1
												0	0	0	0	0	0	1	0	2
												222	~			*	~	22		*
												1	0	0	0	0	0	1	1	130

5. Status Read

A0	E /RI	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
0	0	1	BUSY	ADC	ON/OFF	RESET	0	0	0	0			
BUS	ŝΥ	BUSY = 1: it BUSY = 0: A fo	indicates t new comn r BUSY co	hat eith nand ca nditions	er process n be accep	ing is oc oted . if th	currir ne cy	ng inf cle ti	terna me c	illy or a can be s	eset cor atisfied,	ndition is in pr there is no ne	rocess. ed to check
ADO	C	This shows th 0: Norr 1: Rev (The A	ne relations mal (colum erse (colur .DC comm	ship bet in addre nin addi and swi	ween the o ss n ↔ SE ress 131-n tches the p	olumn ao EG n) ⇔ SEG polarity.)	ldres n)	is an	d the	e segm	nt driver		
ON/O	FF	ON/OFF: indi 0: Disp 1: Disp (This c	cates the o blay ON blay OFF lisplay ON	display	ON/OFF st	ate. witches th	ie po	larity	r.)				
RES	ET	This indicates reset comma 0: Ope 1: Res	s that the cl nd. rating state et in progre	hip is in e ess	the proces	s of initia	lizati	on ei	ither	becaus	e of a /R	ES signal or b	ecause of a

6. Display Data Write

This command writes 8-bit data to the specified display data RAM address. Since the column address is automatically incremented by "1" after the write, the MPU can write the display data.

	E	R/W	
A0	/RD	/WR	D7 D6 D5 D4 D3 D2 D1 D0
1	1	0	Write data

7. Display Data Read

This command reads 8-bit data from the specified display data RAM address. Since the column address is automatically incremented by "1" after the read, the CPU can continuously read multiple-word data. One dummy read is required immediately after the column address has been set. See the function explanation in "Display Data RAM" for the explanation of accessing the internal registers. When the serial interface is used, reading of the display data becomes unavailable.

	Е	R/W	î
A0	/RD	/WR	D7 D6 D5 D4 D3 D2 D1 D0
1	0	1	Read data

8. ADC Select (Segment Driver Direction Select)

This command can reverse the correspondence between the display RAM data column address and the segment driver output. Thus, sequence of the segment driver output pins may be reversed by the command. See the column address circuit for the detail. Increment of the column address (by *1") accompanying the reading or writing the display data is done according to the column address indicated in Figure 4.

	Е	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	0	0	0 1	Normal Reverse

9. Display Normal/Reverse

This command can reverse the lit and unlit display without overwriting the contents of the display data RAM. When this is done the display data RAM contents are maintained.

	Е	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	1	0	RAM Data "H" LCD ON voltage (normal)
										1	RAM Data "L* LCD ON voltage (reverse)

10. Display All Points ON/OFF

This command makes it possible to force all display points ON regardless of the content of the display data RAM. The contents of the display data RAM are maintained when this is done. This command takes priority over the display normal/reverse command.

	Е	R/W									·
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	0	0 1	Normal display mode Display all points ON

When the display is in an OFF mode, executing the display all points ON command will place the display in power save mode. For details, see the Power Save section.

11. LCD Bias Set

This command selects the voltage bias ratio required for the liquid crystal display.

	Е	R/W									Select Status						
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	1/65duty	1/49duty	1/33duty	1/55duty	1/53duty		
			1	0	1	0	0	0	1	0	1/9 bias	1/8 bias	1/6 bias	1/8 bias	1/8 bias		
U) 1 0								1	1/7 bias	1/6 bias	1/5 bias	1/6 bias	1/6 bias			

12. Read/Modify/Write

This command is used paired with the "END" command. Once this command has been input, the display data read command does not change the column address, but only the display data write command increments (+1) the column address. This mode is maintained until the END command is input. When the END command is input, the column address returns to the address it was at when the read/modify/write command was entered. This function makes it possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as when there is a blanking cursor.

	Ε	R/W								
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	- 1	1	81	0	0	0	0	0

* Even in read/modify/write mode, other commands aside from display data read/write commands can also be used.

13. End

This command releases the read/modify/write mode, and returns the column address to the address it was at when the mode was entered.

	E	R/W								
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	1	1	1	0

14. Reset

This command initializes the display start line, the column address, the page address, the common output mode, the Vo voltage regulator internal resistor ratio, the electronic volume, and the static indicator are reset, and the read/modify/write mode and test mode are released. There is no impact on the display data RAM. See the function explanation in "Reset" for details. The reset operation is performed after the reset command is entered.

	Е	R/W								
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

The initialization when the power supply is applied must be done through applying a reset signal to the /RES terminal. The reset command must not be used instead.

15. Common Output Mode Select

This command can select the scan direction of the COM output terminal. For details, see the function explanation in "Common Output Mode Select Circuit."

	Е	R/W	D7 D6 D5 D4 D3 D2 D1										Sele	cted Mode		
A0	/RD	/WR D7 D6 D5 D4 D3 D2 D1				D0		1/65duty	1/49duty	1/33duty	1/55duty	1/53duty				
0	1	0	1	1	0	0	0	*	*	*	Normal Reverse	COMD→COM63 COM63→COMD	COM0→COM47 COM47→COM0	COMD→COM31 COM31→COMD	COMD→COM53 COM53→COMD	COM0→COM51 COM51→COM0

16. Power Controller Set

This command sets the power supply circuit functions. See the function explanation in "The Power Supply Circuit," for details

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Selected Mode
			0	0	1	0	1	0			Booster circuit: OFF Booster circuit: ON
0	1	0							0		Voltage regulator circuit: OFF Voltage regulator circuit: ON
			-							0 1	Voltage follower circuit: OFF Voltage follower circuit: ON

17. V0 Voltage Regulator Internal Resistor Ratio Set

This command sets the Vo voltage regulator internal resistor ratio. For details, see the function explanation is "The Voltage Regulator circuit " and table 11 .

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Rb/Ra Ratio
			0	0	1	0	0	0	0	0	Smali
			100					0	0	1	
0	2040	0						0	1	0	
U .	83.5	0							4	850	4
								1	1	1	
								1	1	1	Large

18. The Electronic Volume (Double Byte Command)

This command makes it possible to adjust the brightness of the liquid crystal display by controlling the LCD drive voltage V0 through the output from the voltage regulator circuits of the internal liquid crystal power supply. This command is a two byte command used as a pair with the electronic volume mode set command and the electronic volume register set command, and both commands must be issued one after the other.

19. The Electronic Volume Mode Set

When this command is input, the electronic volume register set command becomes enabled. Once the electronic volume mode has been set, no other command except for the electronic volume register command can be used. Once the electronic volume register set command has been used to set data into the register, then the electronic volume mode is released.

	Е	R/W								
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	0	0	0	1

20. Electronic Volume Register Set

By using this command to set six bits of data to the electronic volume register, the liquid crystal drive voltage Vo assumes one of the 64 voltage levels.

When this command is input, the electronic volume mode is released after the electronic volume register has been set.

	Е	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Vo
			*	*	0	0	0	0	0	1	Small
			*		0	0	0	0	1	0	
•			*	*	0	0	0	0	1	1	
U	10	U						6			4
			*	*	1	1	1	1	1	0	2015
			*	*	1	1	1	1	1	1	Large

* Inactive bit (set "0")

When the electronic volume function is not used, set this to (1, 0, 0, 0, 0, 0)

21. The Electronic Volume Register Set Sequence

22. Static Indicator (Double Byte Command)

This command controls the static drive system indicator display. The static indicator display is controlled by this command only, and is independent of other display control commands.

This is used when one of the static indicator liquid crystal drive electrodes is connected to the FR terminal, and the other is connected to the FRS terminal. A different pattern is recommended for the static indicator electrodes than for the dynamic drive electrodes. If the pattern is too close, it can result in deterioration of the liquid crystal and of the electrodes. The static indicator CN command is a double byte command naired with the static indicator register set command, and thus

The static indicator ON command is a double byte command paired with the static indicator register set command, and thus one must execute one after the other. (The static indicator OFF command is a single byte command.)

23. Static Indicator ON/OFF

When the static indicator ON command is entered, the static indicator register set command is enabled. Once the static indicator ON command has been entered, no other command aside from the static indicator register set command can be used. This mode is cleared when data is set in the register by the static indicator register set command.

	E	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Static Indicator
0	1	0	1	0	1	0	1	1	0	0	OFF

24. Static Indicator Register Set

This command sets two bits of data into the static indicator register, and is used to set the static indicator into a blinking mode.

	E	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Indicator Display State
			*	*	*	*	*	*	0	0	OFF
									0	1	ON (blinking at approximately one second intervals)
U	1	0							1	0	ON (blinking at approximately 0.5 second intervals)
			~						1	1	ON (constantly on)

* Disabled bit (set "U")

25. Static Indicator Register Set Sequence

26. Power Save (Compound Command)

When the display all points ON is performed while the display is in the OFF mode, the power saver mode is entered, thus greatly reducing power consumption. The power saver mode has two different modes: the sleep mode and the standby mode. When the static indicator is OFF, it is the sleep mode that is entered. When the static indicator is ON, it is the standby mode that is entered. In the sleep mode and in the standby mode, the display data is saved as is the operating mode that was in effect before the power saver mode was initiated, and the MPU is still able to access the display data RAM Refer to figure 28 for power save off sequence. Static indicator ON Static indicator OFF **Display OFF Display OFF** Display all point ON Display all point ON Standby mode Sleep mode Power save OFF Power save OFF (Display all point OFF) Display all point OFF Static indicator ON (2 bytes) Standby mode cancel Sleep mode cancel

27. Sleep Mode

This stops all operations in the LCD display system, and as long as there are no accesses from the MPU, the consumption current is reduced to a value near the static current. The internal modes during sleep mode are as follows: 1. The oscillator circuit and the LCD power supply circuit are halted.

2. All liquid crystal drive circuits are halted, and the segment in common drive outputs output a Vss level.

28. Standby Mode

The duty LCD display system operations are halted and only the static drive system for the indicator continues to operate, providing the minimum required consumption current for the static drive. The internal modes are in the following states during standby mode.

1 The LCD power supply circuits are halted. The oscillator circuit continues to operate.

2 The duty drive system liquid crystal drive circuits are halted and the segment and common driver outputs output a Vss level. The static drive system does not operate.

When a reset command is performed while in standby mode, the system enters sleep mode.

- * When an external power supply is used, it is recommended that the functions of the external power supply circuit be stopped when the power saver mode is started. For example, when the various levels of liquid crystal drive voltage are provided by external resistive voltage dividers, it is recommended that a circuit be added in order to cut the electrical current flowing through the resistive voltage divider circuit when the power saver mode is in effect. The ST7565P series chips have a liquid crystal display blanking control terminal /DOF. This terminal enters an "L" state when the power saver mode is launched. Using the output of /DOF, it is possible to stop the function of an external power supply circuit.
- * When the master is turned on, the oscillator circuit is operable immediately after the powering on.

29. The Booster Ratio (Double Byte Command)

This command makes it possible to select step-up ratio. It is used when the power control set have turn on the internal booster circuit. This command is a two byte command used as a pair with the booster ratio select mode set command and the booster ratio register set command, and both commands must be issued one after the other.

30. Booster Ratio Select Mode Set

This command makes it possible to select step-up ratio. It is used when the power control set have turn on the internal booster circuit. This command is a two byte command used as a pair with the booster ratio select mode set command and the booster ratio register set command, and both commands must be issued one after the other.

Booster Ratio Select Mode Set

When this command is input, the Booster ratio register set command becomes enabled. Once the booster ratio select mode has been set, no other command except for the booster ratio register command can be used. Once the booster ratio register set command has been used to set data into the register, then the booster ratio select mode is released.

	Е	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	
0	1	0	1	1	1	1	1	0	0	0	

31. Booset Ratio Register Set

By using this command to set two bits of data to the booster ratio register, it can be select what kind of the booster ratio can be used.

When this command is input, the booster ratio select mode is released after the booster ratio register has been set.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Booster ratio select
			*	×	*	¥	*	*	0	0	2x,3x,4x
0	1	0	*	×	*	*	*	*	0	1	5x
			*	*	*	*	*	*	1	1	6x

* Inactive bit (set "0")

When the booster ratio select function is not used, set this to (0, 0) 2x,3x,4x step-up mode

32. The booster ratio Register Set Sequence

33. NOP

Non-Operation Command

	E	R/W								
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	1

Quality Specifications

Cosmetic Inspection

The inspection should be performed in using $20W \ge 2$ fluorescent lamps. Distance between LCM and fluorescent lamps should be 100 cm or more. Distance between LCM and inspector eyes should be 25 cm or more. Viewing direction for inspection is 35° from vertical against LCM.

Definition of zone:

A Zone: Active display area (minimum viewing area).

B Zone: Non-active display area (outside viewing area).

AQL Level

Sampling method: MIL-STD-105E, Level II, normal one time sampling

Defect classification

Classify		Item	Note	AQL
Major	Display state	Short or open circuit	1	0.65
	LC leakage			
		Flickering		
		No display		
		Wrong viewing direction		
		Contrast defect (dim, ghost)	2	
		Back-light	1,8	
	Non-display	Flat cable or pin reverse	10	
		Wrong or missing component	11	
Minor	Display	Background color deviation	2	1.0
	state	Black spot and dust	3	
		Line defect, Scratch	4	
		Rainbow	5	
		Chip	6	
		Pin hole	7	
		Protruded	12	
	Polarizer	Bubble and foreign material	3	
Soldering Poor of		Poor connection	9	
	Wire	Poor connection	10	
	TAB	Position, Bonding strength	13	

Note on defect classification

No.	Item	Criterion					
1	Short or open circuit	Not allow					
	LC leakage						
	Flickering						
	No display						
	Wrong viewing direction						
	Wrong Back-light						
2	Contrast defect		Refer to approva	al sample			
	Background color deviation						
3	Point defect, Black spot, dust (including Polarizer) $\phi = (X+Y)/2$	$\begin{array}{ c }\hline & & & \\ \hline & & & \\ \hline & & & \\ X \end{array} Y$	Point Size $\phi \leq 0.10$ $0.10 < \phi \leq 0.15$ $0.15 < \phi \leq 0.25$ $\phi > 0.25$	Acceptable Qty. Disregard 2 1 0			
			Unit: I	nch ²			
4	Line defect, Scratch	$ \begin{array}{c} & \downarrow \\ & \downarrow \\ & \uparrow \\ & \downarrow \\ & \downarrow \\ & L \end{array} W $	Line L V 0.05>W 3.0>L 0.1>W 2.0>L 0.15≥V	Acceptable V >0.05 Disrega V>0.1	e Qty. ard		
		Not more then two o		Unit: mm			
5	Rainbow	Not more than two c	olor changes acros	s the viewing area.			

No	Item	Criterion
6	Chip Remark: X: Length	$\begin{array}{c c} X & Y \\ \hline Z^{T} & \downarrow Y \\ \hline \hline \\ \hline$
	Y: WidthZ: Thicknesst: Glass thicknessW: Terminal widthL: Glass length	$\begin{array}{c c} X & Y \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
		YXYZY \swarrow ≤ 3 ≤ 2 $\leq t$ Shall not reach to ITO X X X
		$W_{V} \qquad \qquad$
		$\begin{array}{c c} & Y \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & X \end{array} \xrightarrow{Y} \\ & X \end{array} \xrightarrow{Acceptable criterion} \\ \hline X \\ \hline X \\ \hline X \\ \hline S \\ $

No.	Item	Criterion				
7	Segment pattern W = Segment width $\phi = (X+Y)/2$	(1) Pin hole $\phi < 0.10$ mm is acceptable. Y Y Y W X Y Y Y Y Y Y Y Y Y Y Y Y Y				
8	Back-light	(1) The color of backlight should correspond its specification.(2) Not allow flickering				
9	Soldering	 (1) Not allow heavy dirty and solder ball on PCB. (The size of dirty refer to point and dust defect) (2) Over 50% of lead should be soldered on Land. 				
10	Wire	 (1) Copper wire should not be rusted (2) Not allow crack on copper wire connection. (3) Not allow reversing the position of the flat cable. (4) Not allow exposed copper wire inside the flat cable. 				
11*	РСВ	(1) Not allow screw rust or damage.(2) Not allow missing or wrong putting of component.				

No	Item	Criterion
12	Protruded W: Terminal Width	$W_{\underline{y}}$ $W_{\underline{y}$ $W_{\underline{y}}$ $W_{\underline{y}}$ $W_{\underline{y}}$ $W_{\underline{y}}$ $W_{$
13	ТАВ	1. Position H H H TAB H = TAB H = TAB H = TAB H = TAB H = TAB
		2 TAB bonding strength test F TAB F <
14	Total no. of acceptable Defect	 A. Zone Maximum 2 minor non-conformities per one unit. Defect distance: each point to be separated over 10mm B. Zone It is acceptable when it is no trouble for quality and assembly in customer's end product.

Electrical and optical inspection

ITEM	SVMBOI	STN De	LINIT			
I I L'AVI	STMBOL	MIN.	TYP.	MAX.	UINII	
LCD Operating Voltage	V _{LCD}	-	5.0	-	V	
Contrast	Cr	10:1			-	
$\mathbf{P}_{acrophyse}$ Time (25°C)	t _r		150	250	ms	
Response Time (25 C)	t _d		150	250		
Viewing Angle (Cr=2)	θ	45	-	60	deg	
Viewing Angle (CI-3)	Ф	-40	-	40		
Operating Temp.	T _{OP}	-20~+70			°C	
Storage Temp.	T _{ST}	-25~+80				
Minimum Life Time	τ	≥50000			h	

Electrical and Optical Parameters of LCM

Reliability of LCM

Reliability test

Items of reliability test are as the followings with no abnormalities and function failures found after the test: (Number of specimen: 16)

Item	Condition	Time (hrs)	Assessment
High temp. Storage	80°C	96	
High temp. Operating	70°C	96	
Low temp. Storage	-30°C	96	No abnormalities
Low temp. Operating	-20°C	96	in functions
Humidity	40°C/ 90%RH	96	and appearance
	-20°C ← 25°C →70°C		
Temperature shock	$(30 \min \leftarrow 5 \min \rightarrow 30 \min)$	12 cycles	

Recovery time should be 12 hours minimum.

Vibration test

10~55Hz and amplitude 1.5mm at X, Y and Z direction for 2 hours each

Drop test

Drop shock from height of 1m, 10pcs in packing

General Precautions:

- LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- 2. The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol or ethyl alcohol, do not use water, ketone or aromatics and never scrub LCD hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not make any modification on the PCB without consulting XIAMEM OCULAR
- 5. When mounting a LCM, make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- 6. Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels and also cause rainbow on the display.
- 7. Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal sprays on skin or clothes, please wash it off immediately with water.

Static Electricity Precautions:

- CMOS-LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into contact with the module.
- Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.
- Do not touch the connection terminals of the display with bare hand; it will cause disconnection or defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.
- 5. Only properly grounded soldering irons should be used.
- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches.
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

Soldering Precautions:

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.

- 3. Soldering temperature: 280°C±10°C
- 4. Soldering time: 3 to 4 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7. Flux residue should be removed.

Operation Precautions:

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.
- 6. Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.
- For long-term storage over 40°C is required, the relative humidity should be kept below 60%, and avoid direct sunlight.