Circuit protection devices
 2005-2006

MCBs, RCCBs, RCBOs, ELRs, fuse carriers,
isolating switches, surge protective devices

Welcome to the new edition of our general catalogue

For easy reference purposes, Hager general catalogue has been divided into three separate catalogues each representing the following product groups :

1. Enclosures and Connection Systems
2. Circuit Protection Devices
3. Modular Automation and Control Devices

A technical section, at the end of each catalogue provides detailed information of the products and its applications.

hager

The success is in the system

the Hager Group

With more than 7500 employees worldwide and a line of innovative products, the Hager Group is one of the leading manufacturers of electrical equipment for homes, business premises and office buildings.

Our mission

Our primary mission is to contribute to a safe and efficient distribution of electrical energy and actively participate in the improvement of building comfort.

In line with this mission statement, our ambition is to offer the market a complete range of products and services needed for the design and the implementation of a fully integrated electrical installation in homes, business premises and office buildings.

Despite its growth in recent years, the Hager Group today remains essentially a family and independent Group of companies, with its founders still managing the business with the help of the Executive Team.

A global company

The expansion of the Hager Group worldwide was not solely limited to creating commercial agencies, but included the set up of a global industrial organisation with full design and production capabilities to offer the various markets suitable products.

Obernai - France

Telford - UK

Today the Hager Group is present in 60 countries with more than 2300 points of sale and offers various products and systems meeting very different needs.

Quality and Human Resources

Although Hager's success was based on the relevance of its offer and the performance of its industrial organization, Human Resources are its basic and fundamental assets. Hager's renowned quality for products, services and sales organisation
was made possible by the use of advanced equipment and a Quality Assurance System registered to ISO 9001. But it was made possible first and foremost by the involvement of the highly qualified men and women of the Company using such equipment and implementing such Quality Organisation.

Tehalit headquarters in Heltersberg - Germany

Ensheim - Germany

hager

Hager products form a fully integrated system for safe, efficient and effective protection and control of electrical distribution systems.

- Consumer units system.
- Distribution board system.
- Enclosures.
- Busbars and connections.
- Protection devices.
- Modular control devices.
- Intelligent installation system for control of lighting, heating and shutters.
- Wiring accessories.

TEHAL/T

Tehalit products cover the complete spectrum of cable management and include systems for domestic, commercial and industrial applications.

- Skirting systems.
- Multi - compartment dado systems.
- Architectural systems.
- Island systems.
- Industrial trunking systems.
- Panel trunkings.
- Fire resistant trunkings.

KLIK secure connection systems provide an innovative solution to a variety of connection requirements. Systems are available for power and lighting distribution applications.

- KLIK lighting
- KLIK AX
- KLIK Power
${ }^{-}$KLIK LV.
- Lighting distribution systems.
- Occupancy sensors.

Cat.ref. Page No.											
A		AF125Z	26	BF484	18	CF264Z	23	L147	19	MB206A	10
AD106Z	26	AF132Z	26	BF485	18	CF281Z	23	L304	19	MB210A	10
AD110Z	26	AF140Z	26	BN264	15	CF285Z	23	L305	19	MB216A	10
AD116Z	26	AF956B	25	BN464	15	CF425J	23	L306	19	MB220A	10
AD120Z	26	AF956J	25	BP264	15	CF426Z	23	L307	19	M B225A	10
AD125Z	26	AF960B	25	BP285	18	CF440J	23	L308	19	M B232A	10
AD127	26	AF960	25	BP364	15	CF441)	23	L324	19	M B240A	10
AD128	26	AF966B	25	BP385	18	CF441Z	23	L325	19	MB250A	10
AD132Z	26	AF966J	25	BP464	15	CF426J	23	L326	19	MB263A	10
AD140Z	26	AF970B	25	BP485	18	CF463J	23	L327	19	M B306A	10
AD184	26	AF970	25	BS264	15	CF464J	23	L328	19	MB310A	10
AD185	26	AF975B	25	BS364	15	CF464Z	23	L401	20	M B316A	10
AD187	26	AF975	25	BS464	15	CF481Z	23	L402	20	MB320A	10
AD188	26	AF982B	25			CF485Z	23	L403	20	M B 325A	10
AD189	26	AF982]	25	C		CG481Z	23	L404	20	MB332A	10
AD190	26	AF990B	25	CC217J	23	CG485Z	23	L406	20	MB340A	10
AD191	26	AF990J	25	CC217Z	23	CP265F	23	L412	20	M ${ }^{\text {3 }}$ 350A	10
AD806J	25	AN150Z	26	CD225J	23	CP441J	23	L431	20	MB363A	10
AD810J	25	AP 150 Z	26	CD226J	23	CP445F	23	L432	20	MB406A	10
AD816J	25			CD226Z	23	CP464J	23	L501	20	MB410A	10
AD820	25	B		CD227T	23	CP465F	23	L502	20	MB416A	10
AD825J	25	BC226	15	CD240J	23	CZ001	24	L503	20	M ${ }^{\text {4 }}$ 20A	10
AD832	25	BD225	16	CD241J	23	CZ005	24	L504	20	MB425A	10
AD840J	25	BD226	15	CD241Z	23	CZ006	24	L506	20	MB432A	10
AD856J	25	BD240	16	CD242T	23	CZ007	24	L512	20	MB440A	10
AD860J	25	BD241	15	CD263J	23	CZ008	24	L531	20	M ${ }^{\text {4 }}$ 450A	10
AD866J	25	BD263	16	CD264J	23	CZN005	24	L532	20	MB463A	10
AD870J	25	BD264	15	CD264Z	23	CZN006	24	LF138	19	MC100A	10
AD875J	25	BD284	18	CD265T	23			LF139	19	MC101A	10
AD882J	25	BD285	18	CD281Z	23	H		LF140	19	MC102A	10
AD890J	25	BD325	16	CD285Z	23	HR400	27	LF141	19	MC103A	10
AD906B	25	BD326	15	CD425J	23	HR 402	27	LF142	19	MC104A	10
AD906J	25	BD340	16	CD426J	23	HR410	27	LR601	21	MC106A	10
AD910B	25	BD341	15	CD426Z	23	HR420	27	LR602	21	MC110A	10
AD910J	25	BD363	16	CD427T	23	HR 425	27	LR603	21	MC116A	10
AD910J	25	BD364	15	CD440J	23	HR800	28	LR604	21	MC120A	10
AD916B	25	BD384	18	CD441J	23	HR801	28	LR612	21	MC125A	10
AD916J	25	BD385	18	CD441Z	23	HR802	28	LR701	22	MC132A	10
AD920B	25	BD425	16	CD442T	23	HR803	28	LR702	22	MC140A	10
AD920J	25	BD426	15	CD463J	23	HR804	28	LR703	22	MC150A	10
AD920J	25	BD441	15	CD464J	23	HR805	28	LR 704	22	MC163A	10
AD925B	25	BD463	16	CD464Z	23	HR820	28	LR712	22	MC200A	10
AD925J	25	BD464	15	CD465T	23	HR821	28	LS601	21	M C201A	10
AD932B	25	BD484	18	CD480Z	23	HR822	28	LS602	21	MC202A	10
AD932J	25	BD485	18	CD485Z	23	HR823	28	LS603	21	MC203A	10
AD940B	25	BE264	15	CE226J	23	HR824	28	LS604	21	MC204A	10
AD940J	25	BE464	15	CE226Z	23	HR830	28	LS612	21	MC206A	10
AD956B	25	BF225	16	CE241J	23	HR831	28	LS670	21	MC210A	10
AD956J	25	BF226	15	CE241Z	23	HR832	28	LS671	21	MC216A	10
AD960B	25	BF240	16	CE264J	23			LS672	21	MC220A	10
AD960J	25	BF241	15	CE264Z	23	L		LS672	22	MC225A	10
AD966B	25	BF263	16	CE281Z	23	L022	20	LS701	22	MC232A	10
AD966J	25	BF264	15	CE285Z	23	L023	20	LS702	22	MC240A	10
AD970B	25	BF284	18	CE426J	23	L024	20	LS703	22	MC250A	10
AD970J	25	BF285	18	CE426Z	23	L025	20	LS704	22	MC263A	10
AD975B	25	BF325	16	CE441J	23	L053	20	LS712	22	MC300A	10
AD975J	25	BF326	15	CE441Z	23	L055	20	LS770	22	MC301A	10
AD982B	25	BF340	16	CE464J	23	L065	22	LS771	22	MC302A	10
AD982J	25	BF341	15	CE464Z	23	L104	19			MC303A	10
AD990B	25	BF363	16	CE481Z	23	L105	19	M		MC304A	10
AD990J	25	BF364	15	CE485Z	23	L106	19	MB106A	10	MC306A	10
AE106Z	26	BF384	18	CF225J	23	L107	19	MB110A	10	MC310A	10
AE110Z	26	BF385	18	CF225U	23	L108	19	MB116A	10	MC316A	10
AE116Z	26	BF425	16	CF226J	23	L109	19	MB120A	10	MC320A	10
AE120Z	26	BF426	15	CF240J	23	L124	19	MB125A	10	MC325A	10
AE125Z	26	BF440	16	CF241J	23	L125	19	MB132A	10	MC332A	10
AE132Z	26	BF441	15	CF241Z	23	L126	19	MB140A	10	MC340A	10
AE140Z	26	BF463	16	CF263J	23	L127	19	MB150A	10	MC350A	10
AF120Z	26	BF464	15	CF264J	23	L128	19	MB163A	10	MC363A	10

Cat.ref. Page No.		Cat.ref. Page No.		Cat.ref. Page No.		Cat.ref. Page No.		Cat.ref. Page No.		Cat.ref. Page No.	
MC406A	10	MU132A	9	MW220	8	NC303A	11	ND350A	11	NR325A	12
MC410A	10	MU140A	9	MW225	8	NC304A	11	ND363A	11	NR332A	12
MC416A	10	MU150A	9	MW232	8	NC306A	11	ND380	17	NR340A	12
MC420A	10	MU163A	9	MW240	8	NC310A	11	ND384	17	NR350A	12
MC425A	10	MU206A	9	MW306	8	NC316A	11	ND400A	11	NR363A	12
MC432A	10	MU210A	9	MW310	8	NC320A	11	ND401A	11	NR400A	12
MC440A	10	MU216A	9	MW316	8	NC325A	11	ND402A	11	NR401A	12
MC450A	10	MU220A	9	MW320	8	NC332A	11	ND403A	11	NR402A	12
MC463A	10	MU225A	9	MW325	8	NC340A	11	ND404A	11	NR403A	12
MJ 702	13	MU232A	9	MW332	8	NC350A	11	ND406A	11	NR404A	12
MJ 706	13	MU240A	9	MW340	8	NC363A	11	ND410A	11	NR406A	12
MJ 710	13	MU250A	9	MW406	8	NC400A	11	ND416A	11	NR410A	12
MJ 716	13	MU263A	9	MW410	8	NC401A	11	ND420A	11	NR416A	12
MJ 720	13	MU306A	9	MW416	8	NC402A	11	ND425A	11	NR420A	12
MJ 725	13	MU310A	9	MW420	8	NC403A	11	ND432A	11	NR425A	12
MJ 732	13	MU316A	9	MW425	8	NC404A	11	ND440A	11	NR432A	12
MJ 740	13	MU320A	9	MW432	8	NC406A	11	ND450A	11	NR440A	12
ML706	13	MU325A	9	MW440	8	NC410A	11	ND463A	11	NR450A	12
ML710	13	MU332A	9	MZ176	14	NC416A	11	ND480	17	NR463A	12
ML716	13	MU340A	9	MZ201	14	NC420A	11	ND484	17		
ML720	13	MU350A	9	MZ202	14	NC425A	11	NM 180	17	S	
ML725	13	MU363A	9	MZ203	14	NC432A	11	NM 184	17	SB116	29
ML732	13	MU406A	9	MZ204	14	NC440A	11	NM 190	17	SB125	29
ML740	13	MU410A	9	MZ205	14	NC450A	11	NM280	17	SB125V	29
M M 501N	34	MU416A	9	MZ206	14	NC463A	11	NM 284	17	SB132	29
MM502N	34	MU420A	9	MZ520N	35	ND100A	11	NM290	17	SB132V	29
MM503N	34	MU425A	9	MZ521N	35	ND101A	11	NM380	17	SB140	29
MM504N	34	MU432A	9	MZ522N	35	ND102A	11	NM384	17	SB163	29
MM505N	34	MU440A	9	MZ523N	35	ND103A	11	NM390	17	SB180	29
MM506N	34	MU450A	9	MZ527N	35	ND104A	11	NM480	17	SB199	29
MM507N	34	MU463A	9	MZ528N	35	ND106A	11	NM 484	17	SB216	29
MM508N	34	MV106	8	MZ529N	35	ND110A	11	NM490	17	SB216V	29
MM509N	34	MV110	8	MZ530N	35	ND116A	11	NR100A	12	SB225	29
MM510N	34	MV116	8	MZ531N	35	ND120A	11	NR101A	12	SB225V	29
MM511N	34	MV120	8	MZN175	14	ND125A	11	NR102A	12	SB232	29
MM512N	34	MV125	8	MZN176	14	ND132A	11	NR103A	12	SB232V	29
MM513N	34	MV132	8			ND140A	11	NR104A	12	SB240	29
MT106A	9	MV140	8	N		ND150A	11	NR106A	12	SB263	29
MT110A	9	MV206	8	NC100A	11	ND163A	11	NR110A	12	SB280	29
MT116A	9	MV210	8	NC101A	11	ND180	17	NR116A	12	SB299	29
MT120A	9	MV216	8	NC102A	11	ND184	17	NR120A	12	SB316	29
MT125A	9	MV220	8	NC103A	11	ND200A	11	NR125A	12	SB325	29
MT132A	9	MV225	8	NC104A	11	ND201A	11	NR132A	12	SB332	29
MT140A	9	MV232	8	NC106A	11	ND202A	11	NR140A	12	SB332Q	29
MT150A	9	MV240	8	NC110A	11	ND203A	11	NR150A	12	SB340	29
MT163A	9	MV306	8	NC116A	11	ND204A	11	NR163A	12	SB363	29
MT206A	9	MV310	8	NC120A	11	ND206A	11	NR200A	12	SB380	29
MT210A	9	MV316	8	NC125A	11	ND210A	11	NR201A	12	SB399	29
MT216A	9	MV320	8	NC132A	11	ND216A	11	NR202A	12	SB416	29
MT220A	9	MV325	8	NC140A	11	ND220A	11	NR203A	12	SB416F	29
MT225A	9	MV332	8	NC150A	11	ND225A	11	NR204A	12	SB425	29
MT232A	9	MV340	8	NC163A	11	ND232A	11	NR206A	12	SB425F	29
MT240A	9	MV406	8	NC200A	11	ND240A	11	NR210A	12	SB432	29
MT250A	9	MV410	8	NC201A	11	ND250A	11	NR216A	12	SB432F	29
MT263A	9	MV416	8	NC202A	11	ND263A	11	NR220A	12	SB440	29
MT306A	9	MV420	8	NC203A	11	ND280	17	NR225A	12	SB440F	29
MT310A	9	MV425	8	NC204A	11	ND284	17	NR232A	12	SB463	29
MT316A	9	MV432	8	NC206A	11	ND300A	11	NR240A	12	SB463F	29
MT320A	9	MV440	8	NC210A	11	ND301A	11	NR250A	12	SB480	29
MT325A	9	MW106	8	NC216A	11	ND302A	11	NR263A	12	SB480F	29
MT332A	9	MW110	8	NC220A	11	ND303A	11	NR300A	12	SB499	29
MT340A	9	MW116	8	NC225A	11	ND304A	11	NR301A	12	SB499F	29
MT350A	9	MW120	8	NC232A	11	ND306A	11	NR302A	12	SF115	30
MT363A	9	MW125	8	NC240A	11	ND310A	11	NR303A	12	SF118F	30
MU106A	9	MW132	8	NC250A	11	ND316A	11	NR304A	12	SF119F	30
MU110A	9	MW140	8	NC263A	11	ND320A	11	NR306A	12	SF119G	30
MU116A	9	MW206	8	NC300A	11	ND325A	11	NR310A	12	SF218F	30
MU120A	9	MW210	8	NC301A	11	ND332A	11	NR316A	12	SF219F	30
MU125A	9	MW216	8	NC302A	11	ND340A	11	NR320A	12	SF219G	30

Cat.ref. Page No.		Cat.ref. Page No.				
SF319G	30					
SF419G	30					
SPA212A	31					
SPA412A	31					
SPN015D	32					
SPN015R	32					
SPN040C	32					
SPN040D	32					
SPN040N	32					
SPN040R	32					
SPN065N	32					
SPN065R	32					
SPN140C	32					
SPN208S	33					
SPN215D	32					
SPN215R	32					
SPN240D	32					
SPN240R	32					
SPN265R	31					
SPN408S	33					
SPN415D	32					
SPN415R	32					
SPN440D	32					
SPN440R	32					
SPN465R	31					
SPN504	33					
SPN505	33					
SZ011	30					

Protection devices

8 Miniature circuit breakers - MV, MW, MT, MU
10 Miniature circuit breakers - MB, MC
11 Miniature circuit breakers - NC, ND
12 Miniature circuit breakers - NR
13 Miniature circuit breakers - MJ, ML
14 Auxiliaries and accessories for devices
15 RCCB add on blocks
17 Miniature circuit breakers- NM, ND 80, 100 and 125A
18 RCCB add on blocks - type AC/A
19 HRC fuse carrier range - LB, LBX, L and LX
20 HRC fuse carrier range - L31, L38, L51, L58
23 RCCBs 2 and 4 poles
25 RCBOs (residual circuit breaker with overload)
27 Earth leakage relays
29 Isolating switches
302 way/centre-off changeover modular switches
31 Surge protective devices
34 Motors starters

Miniature circuit breakers
3kA Type B and C - MV, MW

	Designation	In/A	Width in II 17.5 mm	Pack qty.	B curve cat. ref.	C curve cat. ref.
	Single pole MCB	6	1	12	MV 106	MW 106
	k	10	1	12	MV 110	MW 110
	L	16	1	12	MV 116	MW 116
	\%	20	1	12	MV 120	MW 120
		25	1	12	MV 125	MW 125
		32	1	12	MV 132	MW 132
		40	1	12	MV 140	MW 140

Double pole MCB	6	2	6	MV 206	MW 206
$5^{\star}-5^{\star}$	10	2	6	MV 210	MW 210
5	16	2	6	MV 216	MW 216
	20	2	6	MV 220	MW 220
	25	2	6	MV 225	MW 225
	32	2	6	MV 232	MW 232
	40	2	6	MV 240	MW 240

Triple pole MCB	6	3	4	MV 306	MW 306
	10	3	4	MV 310	MW 310
	16	3	4	MV 316	MW 316
	20	3	4	MV 320	MW 320
	25	3	4	MV 325	MW 325
	32	3	4	MV 332	MW 332
	40	3	4	MV 340	MW 340

Four pole MCB	6	4	3	MV 406	MW 406
	10	4	3	MV 410	MW 410
	16	4	3	MV 416	MW 416
	20	4	3	MV 420	MW 420
	25	4	3	MV 425	MW 425
	32	4	3	MV 432	MW 432
	40	4	3	MV 440	MW 440

MW 316

Miniature circuit breakers
6kA Type B and C - MT, MU

MT 116A

MT 216A

Double pole MCB	6	2	6	MT 206A	MU 206A
	10	2	6	MT 210A	MU 210A
	16	2	6	MT 216A	MU 216A
${ }^{\star}-t^{\star}$	20	2	6	MT 220A	MU 220A
5	25	2	6	MT 225A	MU 225A
5	32	2	6	MT 232A	MU 232A
	40	2	6	MT 240A	MU 240A
	50	2	6	MT 250A	MU 250A
	63	2	6	MT 263A	MU 263A

Triple pole MCB	6	3	4	MT 306A	MU 306A
	10	3	4	MT 310A	MU 310A
	16	3	4	MT 316A	MU 316A
	20	3	4	MT 320A	MU 320A
$-T^{\downarrow}$	25	3	MT 325A	MU 325A	
5	32	3	4	MT 332A	MU 332A
	40	3	4	MT 340A	MU 340A
	50	3	4	MT 350A	MU 350A
	63	3	4	MT 363A	MU 363A

Four pole MCB	6	4	3	MU 406A
	10	4	3	MU 410A
5	16	4	3	MU 416A
	20	4	3	MU 420A
	25	4	3	MU 425A
	32	4	3	MU 432A
	40	4	3	MU 440A
	50	4	3	MU 450A
	63	4	3	MU 463A

MT 320A

M iniature circuit breakers
6kA Type B and C - MB, MC

Miniature circuit breakers
10kA Type C and D - NC, ND

M iniature circuit breakers
15 to 25 kA Type C - NR

Miniature circuit breakers
4,5-6KA Type C SP\&N - MJ and ML

Description
Protection and control of circuits against overloads and short circuits.

Technical data

Type C tripping characteristics
Tropicalisation T2
Breaking capacity :
4 500A, 6 000A to IEC 898
Voltage rating : 230V
Current rating : 2-40A
IP2X

Connection capacity
$16 \square$ rigid cables
$10 \square$ flexible cables

+ busbars

Voltage marking as per IEC38
can be used on 240/415V
50 Hz without derating

MJ 716

ML 716

Single pole and switched neutral - 6KA	6	1	12	ML 706
SP\&N	10	1	12	ML 710
N				
N	16	1	12	ML 716
	20	1	12	ML 720
	25	1	12	ML 725
	32	1	12	ML 732

MZN 175

RCCB add-on blocks for MCB devices - Type AC -
MB, MC, NC, ND, NR

\square For technical details see page 46

MB, MC, NC, ND, NR

BD 225

BD 325

BD 463

MCB - NM, ND
Type C, 80 to 125A - Type D, $80 \& 100 \mathrm{~A}$

Description type C:80,100A \& 125A
Protection and control of circuits against overloads and short circuits.

- in commercial and industrial electrical distribution systems.

Technical data

Type C and D tripping
characteristics
Tropicalisation T2
Breaking capacity :
10 000A to IEC 947-2
Voltage rating - $230 \mathrm{~V}-400 \mathrm{~V}$
Current rating :
type C : 80, 100A \& 125A Voltage marking as per IEC38 type D : 80, 100A

Positive contact indication :

red - contacts closed
green - contacts open

Connection capacity

$50 \square$ rigid cables
$35 \square$ flexible cables
can be used on 240/415V 50 Hz without derating

Designation	In/A	Width in I	Pack
	17.5 mm	Curve C Curve D	

Single pole MCB	80	1.5	1	NM 180 ND 180	
1	100	1.5	1	NM 184	ND 184
4	$125 A$	1.5	1	NM 190*	

| Double pole MCB | 80 | 3 | 1 | NM 280 ND 280 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ${ }^{1}{ }^{3}{ }^{4}$ | 100 | 3 | 1 | NM 284 ND 284 |
| n^{2} | 125 | 3 | 1 | NM 290* |

Triple pole MCB	80	4.5	1	NM 380	ND 380
	100	4.5	1	NM 384	ND 384
5	125	4.5	1	NM 390*	
Four pole MCB	80	6	1	NM 480	ND 480
	100	6	1	NM 484	ND 484
	125	6	1	NM 490*	

* will not accept accessories (125A)

NM 480
\square for use with 80/100A MCBs (NM)

	Comply with IEC 269	

HRC fuse carrier range - L31, L38

Description
Protection and control of circuits against overloads and short-circuits in commercial and light industrial electrical distribution systems.

Fuse carrier L31
for cylindrical cartridge fuses
$8.5 \times 31.5 \mathrm{~mm}$
Max 16A-400V~
Fuse carrier L38
for cylindrical cartridge fuses
$10.3 \times 38 \mathrm{~mm}$
Max 20A-500V~

Max 32A-400V~

- Comply with IEC269-2

Connection capacity :
$16 \square$ rigid cables 10■ flexible cables

L 055

L 053

Designation	Description	Width in 17.5 mm	Pack qty.	L31 cat.ref.	L38. cat.ref.
Single pole fuse carrier	1 phase	1	12	L 401	L 501
$\psi^{\perp} \quad \psi^{\perp}-t^{\perp} \otimes$	1 phase + indic.light	1	12	L 431	L 531
Double pole fuse carrier	1 phase + neutral	1	12	L 402	L 502
$f^{\perp}-+\left.\right\|^{\perp}$	1 phase + neutral + indic. light	1	12	L 432	L 532
$\left.\right\|_{-\infty-1} ^{\perp}$	1 phase + neutral	1	12	L 406	L 506
$\psi^{\perp}-t^{\perp}$	2 phases	1	12	L 412	L 512

Triple pole fuse carrier Four pole fuse carrier	3 phases	3	4	L 403	L 503

Handle link pin
for single units
(to enable you to switch
several circuits
simultaneously)

2 pole and 4 pole RCCBs

Accessories for 2 pole and 4 pole RCCBs

RCBO (residual circuit breaker with overload)
Type B and C SP\&N with neutral lead

		Description Compact protection devices which provide MCB overcurrent protection and RCD earth leakage protection in a single unit. Complies to IEC1009 Technical data The units are available with current ratings of $6 \mathrm{~A}, 10 \mathrm{~A}, 16 \mathrm{~A}$, 25A, 32A and 40A. The device switches both the phase and neutral conductors. All ratings	have 30 mA and 300 mA earth leakage protection. The units feature indicators which show whether tripping is due to an overcurrent or earth leakage fault. Voltage rating - $110-230 \mathrm{~V}$ $50 / 60 \mathrm{~Hz}$ Current rating - 6-40A. Mechanical life : 20000 operations. Breaking capacity : 4 500A and 6 000A			Connection capacit $25 \square$ rigid cables $16 \square$ flexible cables		
		Designation	Breaking capacity	\ln / A	Width in 17.5 mm	Pack qty.	Ref. type B available as from 01.09.05	Ref. type C available as from 01.09.05

AD 916J

RCBO	4,5kA	6A	2	1	AD806J	AD856J
Type AC - 30mA		10A	2	1	AD810	AD860J
		16A	2	1	AD816]	AD866]
		20A	2	1	AD820]	AD870]
		25A	2	1	AD825!	AD875
		32A	2	1	AD832]	AD882]
		40A	2	1	AD840	AD890]
	6kA	6A	2	1	AD906B	AD956B
		10A	2	1	AD910B	AD960B
		16A	2	1	AD916B	AD966B
		20A	2	1	AD920B	AD970B
		25A	2	1	AD925B	AD975B
		32A	2	1	AD932B	AD982B
		40A	2	1	AD940B	AD990B
RCBO Type AC - 300mA	6kA	6A	2	1		AF956B
		10A	2	1		AF960B
		16A	2	1		AF966B
		20A	2	1		AF970B
		25A	2	1		AF975B
		32A	2	1		AF982B
		40A	2	1		AF990B
RCBO Type A - 30mA	6kA	6A	2	1	AD906J	AD956J
		10A	2	1	AD910]	AD960]
		16A	2	1	AD916J	AD966]
		20A	2	1	AD920]	AD970]
		25A	2	1	AD925	AD975J
		32A	2	1	AD932	AD982
		40A	2	1	AD940J	AD990
RCBO Type A-300mA	6kA	6A	2	1		AF956]
		10A	2	1		AF960]
		16A	2	1		AF966I
		20A	2	1		AF970I
		25A	2	1		AF975I
		32A	2	1		AF982]
		40A	2	1		AF990J

	Description Compact protection devices which combine the overcurrent functions of an MCB with the earth fault functions of an RCD in a single unit. A range of sensitivity and current ratings are available for use in domestic commercial and industrial applications Technical data Specification complies to IEC1009 Sensitivities : Fixed : $30 \mathrm{~mA}, 100 \mathrm{~mA}$ and 300 mA Selectivite : $100 \mathrm{~mA}, 300 \mathrm{~mA}$	Terminal capacities $16 \square$ rigid, $10 \square$ flexible Features 1 module devices provide a compact solution for installation in consumer units \& distribution boards, for individual installations. These devices are $1 P \&$ solid neutral. Operating voltage $110-230 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ Flying neutral lead length 700 mm			
	Designation	\ln / A	Width in 17.5 mm	Pack qty.	C curve cat. ref.
	RCBO, 6000A to IEC 898, C curve, 30mA sensitivity	$\begin{aligned} & 6 \\ & 10 \\ & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \\ & 45 \\ & 50 \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AD $106 Z$ AD $110 Z$ AD 116Z AD $120 Z$ AD $125 Z$ AD $132 Z$ AD $140 Z$ AD 127 AD 128
	RCBO, 6000A to IEC 898, C curve, 100 mA sensitivity	$\begin{aligned} & 6 \\ & 10 \\ & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AE $106 Z$ AE $110 Z$ AE $116 Z$ AE 120Z AE $125 Z$ AE $132 Z$ AE $140 Z$
	RCBO, 6000A to IEC 898, C curve, 300 mA sensitivity	$\begin{aligned} & 20 \\ & 25 \\ & 32 \\ & 40 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AF $120 Z$ AF $125 Z$ AF $132 Z$ AF $140 Z$
	RCBO, 10000A to IEC 898, C curve, 30 mA sensitivity	$\begin{aligned} & 6 \\ & 10 \\ & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AD 184 AD 185 AD 187 AD 188 AD 189 AD 190 AD 191
	RCBO, 6000A to IEC 898, C curve, 100 mA sensitivity selective version	50	1	1	AN 150Z
θ 0)	RCBO, 6000A to IEC 898, C curve, 300 mA sensitivity selective version	50	1	1	AP 150Z
MZN 175	Locking kit	this allows the locking of the device dolly in ON/OFF positions. It is possible to padlock the device with 2 padlocks.			MZN 175

Earth leakage relays with separate detection torroids.
These devices ensure protection of electrical installations and the protection of persons against direct and indirect contacts.

Transform circuit breakers and free-tripping switches with voltmeter triggers into earth leakage devices.

Barograph version:

Signalisation of default current by a barograph, display in \% the level of current before setting of relay (5 to 75%). An output contact prealarm to remote every overflow of 50% of $I \Delta n$.

Common characteristics

\square positive security : relay tripping when break in relay/core link, and blinking of default LED \square Default storage with control of tripping sequence (reset), \square test-button for default simulation with control of tripping sequence.
\square Nuisance tripping protection and immunity type A and HI \square Tripping on DC default current \square Display of default current by LED,
\square LED for power supply \approx

Supply voltage : 230 V
frequency: 50/60 Hz

Connection capacity :

- rigid 1,5 to 10^{\square}
- flexible 1 to 6^{\square}
max. length of wires :
remote test and reset : 20 m
According to electromagnetic compatibility (CEM)
According to standards :
CEI 60947-2 annex B
CEI 60755 CEI 61008-1
CEI 61543

For technical details see pages 52

Designation	Characteristics	Width in II
	$17,5 \mathrm{~mm}$	Ref.

HR 400

HR 410

HR 420
$\left.\begin{array}{llcc}\text { Earth leakage relays } & \begin{array}{l}\text { instant strip, } \\ \text { adjustable sensitivity, }\end{array} & 2 & \text { HR 400 } \\ \text { standard version } 1 \mathrm{C} / \mathrm{O}: 30 \mathrm{~mA}\end{array}\right]$

Earth leakage relays	standard version 1 OF	3	HR 410
standard version 1 C/O adjustable sensitivity	- display of earth leakage current	3	HR 420
$\begin{aligned} \mathrm{I} \Delta \mathrm{n}: & 0,03-0,1-0,3-0,5-1-3 \\ & 5-10 \mathrm{~A} \end{aligned}$	- positive safety output - 50\% default output with optical scale display		
adjustable time delay : 0-0,1-$0,3-0,4-0,5-1 s-3 s$			
	- display of earth leakage current - positive safety output - 50\% default output with optical scale display - external test and reset	5	HR 425

Isolating switches

Surge protective devices
type 1

This type of surge protective	With a discharge current wave
devices are recommended on	$10 / 350 \mu \mathrm{~s}(I \operatorname{imp})$ which is similar
electric installations where the	to lightning current on direct
buildings are fitted with lightning	impact, those SPD's must have
conductor. The minimavalue of	the capacity to flow out this
shock current is I imp $=12,5 \mathrm{kA}$.	energizing wave.

Monobloc SPD's type 1 have a	\square connection capacity:
LED for well functioning for each	-35 flexible conductor,
phase on the front.	-50 rigid conductor
	\square complies with
	EN $61-643.11$

EN 61-643.11
\square For technical details see pages 55-59

	Designation	Characteristics	Width in $17,5 \mathrm{~mm}$	Ref.
* 00000	SPD's type 1 I imp. 12,5 kA	2 pole $1 \mathrm{Ph}+\mathrm{N}$ Up : $2,5 \mathrm{kV}$ at In	4	SPA 212A
	$\begin{gathered} \text { Un : } 230 / 400 \mathrm{~V} \sim \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	4 poles $3 \mathrm{Ph}+\mathrm{N}$ Up: $2,5 \mathrm{kV}$ at In	8	SPA 412A

SPA 412A

Surge protective devices
 for general protection

SPDs with plug in cartridge with very high, high and medium discharge current capacity ($65 \mathrm{kA}, 40 \mathrm{kA}$ and 15 kA).

SPDs with plug in cartridge ensure:

- general protection of electric equipment,
- protection in common and differential mode for domestic, industrial and commercial buildings.

Common characteristics: SPDs with base and cartridges.

Available in 2 versions :
 \square SPDs with base and plug in cartridges with an end of life

 indication LED\square SPDs with base and auxiliary contact for remote signallings and plug in cartridges with reserve protection indicator.

This version, with reserve indicator, shows the intermediary state, with indication of the need to change the cartridge before disconnection, but keeps the maximal protection capacity till the end.

For remote signalling, an auxiliary contact (R version) is used to report the information of condition indication until the end of life of the product.

The cartridge allows simple replacement without the need to cut-off the power supply \square SPDs are equipped with integrated thermic and dynamic disconnection
\square connection capacity of terminal blocks, (L, N/E) :

- 16^{\square} flexible conductor,
- 25^{\square} rigid conductor
for auxiliary contact :
- 0,5 mini
- 1,5 maxi
\square degree of protection : IP 203
(in enclosure)

For technical details see pages 55-59

	Designation	Characteristics	Width in $17,5 \mathrm{~mm}$	Ref.
\%	SPDs with plug in cartridge I max. 65 kA	2 poles $1 \mathrm{Ph}+\mathrm{N}$ with reserve indicator and remote signalling	2	SPN 265R
\pm	$\begin{gathered} \text { Un: } 230 / 400 \mathrm{~V} \sim \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	$\mathrm{Up}: 1,3 \mathrm{kV}$ at ln		
θ	$i_{2--\theta}$	4 poles $3 \mathrm{Ph}+\mathrm{N}$ with reserve indicator and remote signalling	4	SPN 465R
SPN 265R				

SPN 465R

Surge protective devices
for general protection

	Designation	Characteristics	Width in $17,5 \mathrm{~mm}$	Ref.
4	SPDs with plug in cartridge	- single pole 1 Ph Up : 2 kV at In	1	SPN 140C
	$\begin{aligned} & \text { I max. } 40 \mathrm{kA} \\ & \text { Un: } 230 / 400 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	- 2 poles $1 \mathrm{Ph}+\mathrm{N}$ with reserve indicator and remote signalling $\mathrm{Up}: 1,2 \mathrm{kV}$ at In	2	SPN 240R
	$i_{r^{---}}$	$-2 \text { poles } 1 \mathrm{Ph}+\mathrm{N}$ $\mathrm{Up}: 1,2 \mathrm{kV}$ at In	2	SPN 240D
SPN 240R	$\begin{aligned} & D \\ & \$ \\ & = \end{aligned}$	- 4 poles $3 \mathrm{Ph}+\mathrm{N}$ with reserve indicator and remote signalling $\mathrm{Up}: 1,2 \mathrm{kV}$ at In	4	SPN 440R
		- 4 poles $3 \mathrm{Ph}+\mathrm{N}$ $\mathrm{Up}: 1,2 \mathrm{kV}$ at In	4	SPN 440D
N4	SPDs with plug in cartridge	- 2 poles $1 \mathrm{Ph}+\mathrm{N}$ with reserve indicator and remote signalling $\mathrm{Up}: 1,0 \mathrm{kV}$ at In	2	SPN 215R
0100	1 max. 15 kA			
$\underline{-2}$	Un : 230/400 V ~			
	$50 / 60 \mathrm{~Hz}$	- 2 poles $1 \mathrm{Ph}+\mathrm{N}$	2	SPN 215D
		Up : $1,0 \mathrm{kV}$ at In		
$0 \cdot$	$3--\otimes$	- 4 poles $3 \mathrm{Ph}+\mathrm{N}$	4	SPN 415R
$0 \cdot$		with reserve indicator and		
SPN 415R		remote signalling Up: $1,0 \mathrm{kV}$ at In		
	$\stackrel{1}{=}$	- 4 poles $3 \mathrm{Ph}+\mathrm{N}$ Up: 1,0 kV at In	4	SPN 415D

Replacement cartridges

for SPDs with plug in cartridge

Replacement cartridges

The cartridge allows simple replacement without the need to cut-off the power supply.

Cartridges are available for all discharge currents ($65 \mathrm{kA}, 40$ reserve protection indication.

A keying system exists to prevent a line cartridge being interchanged by mistake with a neutral and visa versa

For technical details see pages 55-59

Surge protective devices

for fine protection

SPDs

for telephone lines

SPDs for telephone lines.

For the protection of receiver against transient current surge vehicled by telephone lines (fax, modem, etc...)
Protection is assured in both common and differential modes
$\left.\begin{array}{lll}\begin{array}{ll}\text { In-line connection on telephone } \\ \text { line with receiver to be }\end{array} & \begin{array}{l}\text { Discharge current: } \\ \text { I max } \mathbf{1 0} \mathbf{~ k A ~ (8 / 2 0 ~ w a v e) . ~}\end{array} & \begin{array}{l}\text { Complies with } \\ \text { protected. }\end{array} \\ & \text { IEC 61643-21 } \\ \text { Connection capacity } \\ -0,5 \text { à } 2,5 \text { flexible conductor }\end{array}\right]$

Description
to ensure localised control and
to ensure localised control and protection of single and three phase motors.

Technical data

- adjustable thermal relay
- AC3 utilisation category

Connection capacity

2 conductors
max size 1 to $4 \square$ flexible 1.5 to $6 \square$ rigid

Options

under voltage release: MZ 528N,
MZ 529N
auxiliary contacts: MZ 520N,
MZ 527N
alarm contact: MZ 527N,

	Designation	current setting	Stand.power motors 50/60Hz	Ratings of 3 phase (AC3 category)	Width in I 17.5 mm	Pack qty.	Cat. ref.
	Motors starters		230 V (kW)	400 V (kW)			
		0.1-0.16A	-	-	$21 / 2$	1	MM 501N
	$\left.b^{\frac{1}{2}} 5^{\frac{1}{2}}\right]^{\frac{1}{2}}$	0.16-0.24A	-	0.06	$21 / 2$	1	MM 502N
		0.24-0.4A	0.06	0.09	$21 / 2$	1	MM 503N
		$0.4-0.63 \mathrm{~A}$	0.09	0.12	$21 / 2$	1	MM 504N
		0.63-1A	0.12	0.25	$21 / 2$	1	MM 505N
MM 501N		1-1.6A	0.25	0.55	$21 / 2$	1	MM 506N
		1.6-2.5A	0.37	0.75	$21 / 2$	1	MM 507N
		2.5-4A	0.75	1.5	$21 / 2$	1	MM 508N
		4-6.3A	1.1	2.2	$21 / 2$	1	MM 509N
		6.3-10A	2.7	4	$21 / 2$	1	MM 510N
		10-16A	4	7.5	$21 / 2$	1	MM 511N
		16-20A	5.5	9	$21 / 2$	1	MM 512N
		20-25A	7.5	12.5	$21 / 2$	1	MM 513N

Accessories for motor starters

This "made by hager" symbol is your guarantee to receive the very best that hager has to offer.

Over time, it will replace the hologram which will be progressively withdrawn.
hager 5

hager

Technical information

38 Circuit protection

40 Miniature circuit breakers
44 Auxiliaries for MCBs and RCDs
45 Transformer protection and lighting circuits
46 RCD add on blocks
47 HRC fuse carriers
48 RCCBs
52 Earth fault protection relays
53 Torroids for earth fault protection relays
55 Surge protective device
60 Motor starters

Basic Principles

The proper selection of the correct circuit protective device requires an understanding of the potential hazards against which protection for safety is required. The Wiring Regulations identify several hazards:

- electric shock
- thermal effects
- overcurrent
- undervoltage
- isolation

Electric shock - is divided into two parts:

- direct contact: contact with parts which result in an electric shock in normal service
- indirect contact: contact with exposed conductive parts which result in an electric shock in case of a fault.

To protect against direct contact the Wiring Regulations suggest the following basic measures should be taken:
(1) by insulation of live parts
(2) by enclosures or barriers
(3) by obstacles
(4) by placing out of reach

To protect against indirect contact the Wiring Regulations suggest the following basic measures should be taken:
(1) earthed equipotential bonding and automatic disconnection of supply
(2) use of class II equipment or equivalent insulation
(3) non-conducting location
(4) earth-free local equipotential bonding
(5) electrical separation

Of these five measures, the first is by far the most commonly used
(1) earthed equipotential bonding and automatic disconnection of supply:

In each installation main equipotential bonding conductors shall connect the main earthing terminal of the installation; this metalwork comprises exposed conductive parts which are part of the electrical installation itself and extraneous conductive parts including the following:

- main water pipes
- gas installation pipes
- other service pipes and ducting
- risers of central heating and air conditioning systems
- exposed metal parts of the building structure

This bonding creates a zone within which any voltages appearing between exposed conductive parts and extraneous conductive parts, are minimised; the earth fault loop impedance must have an value low enough to allow sufficient current to flow for the circuit protective device to operate rapidly to disconnect the supply; disconnection must be sufficiently fast so that voltages appearing on the bonded metalwork cannot persist long enough to cause danger; depending on the operating characteristics of the protective device and the earth impedance, such disconnection may be achieved either by overcurrent devices, Fuses, Miniature Circuit Breakers, (i.e. MCBs) or by Residual Current Devices, (i.e. RCDs).

Thermal Effect - refers to heat generated by the electrical equipment in normal use and under fault conditions. The proper selection of equipment complying with the latest product standards is essential in providing protection against thermal effects.

Overcurrent - is defined as a current exceeding the rated value of the circuit components. It may be caused by the overloading of a healthy circuit or it may take the form of a short-circuit current, defined as an "overcurrent resulting from a fault of negligible impedance between live conductors having a difference in potential under normal operating conditions". Overcurrent protection may be provided by using fuses or circuit breakers singly or in combination.

Undervoltage - refers to the dangers that could be caused by the reduction or loss in voltage and the subsequent restoration, such as the unexpected re-starting of motors or the automatic closing of protective devices. The proper selection of control and protective devices must take the protection against undervoltage into consideration.

Isolation - every circuit shall be provided with means of isolation (except in certain cases) to prevent or remove hazards associated with the installation, equipment and machines. The new standards for circuit breakers and switch-fuses now take this into account.

Protection against shock by indirect contact

Indirect contact - is the contact of persons or livestock with exposed conductive parts made live by a fault and which may result in electric shock. An example would be where the insulation of an electric heater has broken down resulting in a live conductor internally touching the casing. This could result in the heater casing being raised to a hazardous voltage level, causing electric shock to a person touching it.

Two important measures must be taken to prevent this hazard:

- the impedance of circuit conductors is kept to a minimum. The earth fault loop impedance $\left(Z_{S}\right)$ is used as a measure of the circuit impedance under fault conditions.
- the overcurrent device protecting the circuit is selected to rapidly disconnect an earth fault.

The effect of these two measures is inter-related.

1. By ensuring that the circuit protective conductor is of a low impedance, the voltage to which the live casing is raised, under fault conditions, is kept to a minimum.
2. The low impedance path provided by the circuit conductors and the circuit protective conductor will result in a high level of current in the event of an earth fault. This high fault current ensures that the overcurrent protective device will disconnect the fault in a short time, reducing the interval during which the casing of the faulty equipment is live.

Components of earth fault loop impedance $\left(Z_{s}\right)$ in a system.
(Earth fault at load between conductor and casing).
$Z_{s}=Z_{e}+\left(R_{1}+R_{2}\right)$

Earth fault loop impedance $\left(Z_{s}\right)$

To ensure the impedance of conductors in a circuit is sufficiently low the system designer has to establish the value of the earth fault loop impedance.
$\mathbf{Z}_{\mathbf{s}}$ - is a measure of the earth fault current loop, comprising the phase conductor and the earth conductor. It comprises the complete loop including the winding of the transformer from which the circuit is supplied as defined by the following:
$\mathbf{Z}_{\mathbf{e}}$ - is the part of the earth fault loop impedance external to the installation, its value can be measured or a nominal value can be obtained from the supply authority.

Circuit protection

$\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}\right)$ - where $\mathrm{R}_{\mathbf{1}}$ is the resistance of the phase conductor within the installation and R_{2} is the resistance of the circuit protective conductor. These two components constitute the loop impedance within the installation.

Therefore: $\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{e}}+\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
Once the value of Z_{S} has been established a suitable overcurrent protective device has to be selected to ensure disconnection of an earth fault within the specified time. The times are:

- 5 seconds for fixed equipment.
- For portable equipment and for fixed equipment installed outside the equipotential bonding zone, the
disconnection times are dependent on the nominal
voltage to earth, i.e. 220 to 277 volts $=0.4$ seconds.

$\mathbf{Z}_{\mathbf{s}}$ by calculation

To establish whether the relevant disconnection time can be achieved a simple calculation must be made, based on Ohm's law:

Uo (open circuit voltage)*
I_{f} (fault current) $=Z_{S}$ (earth fault loop)

* voltage between phase and earth (240V)

The fault current (l_{f}) must be high enough to cause the circuit protective device to trip in the specified time. This can be established by consulting the time/current characteristic for the protective device. If the maximum trip time for the fault current calculated is less than or equal to the relevant value (5 s for fixed equipment; 0.4 s for portable equipment) then compliance is achieved. It is important that when consulting the characteristic curve the worst case is used, i.e. the maximum tripping time including any tolerance. An example is shown in Figs 1 and 2.

Z_{s} by tables

The above procedure can be used for any type of protective device providing a time/current characteristic curve is available. Frequently, however, a much simpler method is available using tables listing maximum Z_{S} values which have been interpreted from the characteristic curves for the relevant devices. Providing the system Z_{S} is equal to or less than the value given in the table, compliance is achieved. Tables for a number of 'standard' devices (certain fuses and MCBs) are given in the Wiring Regulations.

Zs too high

If the system Z_{S} value is too high to achieve rapid enough disconnection with the overcurrent protective devices available then it is necessary to use one of the two following methods:

- fit a cable with a larger cross-section and consequently a lower impedance. This may be a very expensive solution especially when the installation is complete before the problem is discovered.
- use a Hager residual current device (RCD). Subject to certain conditions being met this provides a simple and economical solution.

Example

Fig 2
Fig 2 shows a fixed circuit with an earth loop impedance Z_{S} of 0.7 ohms protected with an MT 132. The fault current (l_{f}) will therefore be $U_{0} / Z_{S}=240 / 0.7=343 \mathrm{~A}$
By referring to the characteristic for MT132 (see Fig 3) it can be seen
that the breaker will disconnect in 0.02 seconds for this current. The breaker therefore easily satisfies the requirement for disconnection in 5 seconds.
If the circuit Z_{S} was 2.0 ohms then the fault current would be:
$240 / 2=120 \mathrm{~A}$
and the disconnection time would be 10 seconds, in which case compliance would not be achieved.
Fig 3

Protection against overcurrent

Overcurrent - "A current exceeding the rated value. For conductors the rated value is the current-carrying capacity"

Overload Current - "An overcurrent occurring in a circuit which is electrically sound"

Short-Circuit Current - "An overcurrent resulting from a fault of negligible impedance between live conductors having a difference in potential under normal operating conditions."

Protection against Overload Current

For the protection against overload current, protective devices must be provided in the circuit to break any overload current flowing in the circuit conductors before it can cause a temperature rise which would be detrimental to insulation, joints, terminations or the surroundings of the conductors.

In order to achieve this protection the nominal current of the protective device I_{n} should be not less than the design current of the circuit I_{b} and that I_{n} should not exceed the current-carrying capacity of the conductors I_{Z}, and that the current causing
effective operation of the protective device 12 does not exceed 1.45 times the current-carrying capacity of the conductor I_{Z}, expressed as $\mathrm{I}_{\mathrm{b}} \leq \mathrm{I}_{\mathrm{n}} \leq \mathrm{I}_{\mathrm{z}}$
$\mathrm{I}_{2} \leq 1.45 \mathrm{I}_{\mathrm{z}}$

Protection against Short-C ircuit Current

Protective devices must be provided to break any short-circuit current before it can cause danger due to thermal and mechanical (electro-dynamic) effects produced in the conductors and connections. The breaking capacity of the protective device shall not be less than the prospective short-circuit current at the point at which the device is installed. However a lower breaking capacity is permitted provided that a properly co-ordinated back-up device having the necessary breaking capacity is installed on the supply side.

Positioning of Overcurrent Devices

Devices for the protection against overload and short-circuit must be placed at the point where a reduction occurs in the
current-carrying capacity of the conductors. This reduction could be caused by a change in the environmental conditions as well as the more obvious change in the cross-sectional area of the cable.

There are of course exceptions to this general rule which relate to a very few special applications. These are set out in detail in the the Wiring Regulations.

Both of the new International Standards covering Low Voltage Circuit Breakers provide the user with a better assurance of quality and performance by taking into account the actual operating conditions of the breaker. New definitions and symbols have been introduced which should be committed to memory. Some of those most frequently used are:
U_{e} : rated service voltage
$\mathrm{U}_{\mathrm{i}}: \quad$ rated insulation voltage ($>\mathrm{U}_{\mathrm{emax}}$)
$U_{\text {imp }}$: rated impulse withstand
I_{cm} : rated short circuit making capacity
$I_{\text {cn }}$: rated short circuit capacity
$I_{\text {cs }}$: rated service short circuit breaking capacity
$I_{\text {cu }}$: rated ultimate short circuit breaking capacity
${ }^{\mathrm{I}} \mathrm{n}$: rated residual operating current (often called residual sensitivity)
In: rated current = maximum value of current used for the temperature rise test
$\Delta t: \quad$ trip delay of residual current devices
In addition IEC 898 sets out to provide a greater degree of safety to the uninstructed users of circuit breakers. It is interesting to note that the description "miniature circuit breaker" or MCB is not used at all in this standard, but no doubt both manufacturers and users will continue to call circuit breakers complying with IEC 898 miniature circuit breakers or MCBs for some time to come.

The scope of this standard is limited to ac air break circuit breakers for operation at 50 Hz or 60 Hz , having a rated current not exceeding 125 A and a rated short-circuit capacity not exceeding 25 kA .

A rated service short-circuit breaking capacity $I_{C S}$ is also included which is equal to the rated short-circuit capacity $I_{c n}$ for short-circuit capacity values up to and including 6kA, and 50% of Icn above 6kA with a minimum value of 7.5 kA . As the circuit- breakers covered by this standard are intended for household and similar uses, Ics is of academic interest only. The rated short-circuit capacity of a MCB $\left(I_{\mathrm{Cn}}\right)$ is the alternating component of the prospective current expressed by its r.m.s. value, which the MCB is designed to make, carry for its opening time and to break under specified conditions. $I_{C n}$ is shown on the MCB label in a rectangular box without the suffix ' A ' and is the value which is used for application purposes. I Cn (of the MCB) should be equal to or greater than the prospective short-circuit current at the point of application.

You will see from the curves that the inverse time delay characteristic which provides overload protection is the same on all three. This is because the Standards requires the breaker to carry 1.13 times the rated current without tripping for at least one hour and when the test current is increased to 1.45 times the rated current, it must trip within one hour, and again from cold if the last current is increased to 2.55 times the rated current the breaker must trip between 1 and 120 seconds. The inverse time delay characteristic of all MCBs claiming compliance with IEC 898 must operate within these limits.

The difference between the three types of characteristic curves designated ' B ', ' C ' and ' D ' concerns only the magnetic instantaneous trip which provides short-circuit protection.

- For type 'B' the breaker must trip between the limits of 3 to 5 times rated current
- For type ' C " the breaker must trip between the limits of 5 to 10 times rated current, and
- For type ' D ' the breaker must trip between the limits of 10 to 20 times rated current.

Often manufacturers publish their MCB tripping characteristics showing the limits set by the standard and guarantee that any breaker that you purchase will operate within these limits. So great care should be taken when working with characteristic curves showing lower and higher limits - on no account should you take a mean point for application design purposes.

For cable protection applications you should take the maximum tripping time and some manufacturers publish single line characteristic curves which show the maximum tripping time. If the design problem is nuisance tripping then the minimum tripping time should be used and for desk top co-ordination studies, both lower and upper limits have to be taken into account.

Energy limiting

Energy is measured in J oules. * ames Prescott J oule proved that thermal energy was produced when an electric current flowed through a resistance for a certain time, giving us the formula :-

J oules $=I^{2} \times R \times t$ or because we know that watts $=I^{2} R$
Joules = watts \times seconds
Therefore we can say that :-
One Joule = one watt second
or energy $=$ watts \times seconds $=I^{2}$ R t
If the resistance (R) remains constant or is very small compared with the current (I) as in the case of short-circuit current, then energy becomes proportional to $I^{2} t$. Which is why the energy let-through of a protective device is expressed in ampere squared seconds and referred to as $\mathrm{I}^{2} \mathrm{t}$

I $\mathrm{t}(\|$ oule Integral) is the integral of the square of the current over a given time interval ($\mathrm{t}_{0}, \mathrm{t}_{1}$)

The $I^{2 t}$ characteristic of a circuit breaker is shown as a curve giving the maximum values of $\mathrm{I}^{2} \mathrm{t}$ as a function of the prospective current.

Manufacturers are required by the Standard to produce the I t characteristic of their circuit breakers.

See page 39.

The energy limiting characteristics of modern MCBs greatly reduce the damage that might otherwise be caused by short-circuits. They protect the cable insulation and reduce the risk of fire and other damage. Knowledge of the energy limiting characteristic of a circuit breaker also helps the circuit designer calculate discrimination with other protective devices in the same circuit.

Because of the importance of the energy limiting characteristic the Standards for circuit breakers for household and similar installations suggests three energy limiting classes based on the permissible I2t (let-through) values for circuit breakers up to 32A; class 3 having the highest energy limiting performance.

All Hager MCBs are well within the limits of energy let-through set by IEC 898 for energy limiting class 3.

Electrical characteristics	References											
	MJ	ML	MV	MW	MT	MU	MB	MC	NC	ND	NR	NM*
Poles	SP+N	SP+N	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4
Rated operational voltage $\mathbf{U}_{\mathbf{e}}(\mathbf{V}){ }^{* *}$	230	230	230/400	230/400	230/400	230/400	230/400	230/400	230/400	230/400	230/400	230/400
Nominal current	2-40A	6-40A	6-40A	6-40A	6-63A	6-63A	0.5-63A	0.5-63A	0.5-63A	0.5-63A	0.5-63A	80-100A
Breaking capacity to IEC 898	4.5 kA	6kA	3kA	3kA	6kA	6 kA	6kA	6kA	10kA	10kA	-	-
Breaking capacity to IEC 947-2	-	-	-	-	10kA	10kA	10kA	10kA	15kA	15kA	25/20/15kA	10kA
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}(\mathbf{V})$	500V	500V	500V	500V	500V	500 V	500 V	500 V	500 V	500V	500V	500V
Rated impulse voltage $\mathbf{U}_{\text {imp }}(\mathbf{k V})$	2500 V											
Electrical enduranc	10000	10000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000

* din rail mount only, not for use in fixed busbar distribution boards
** As per IEC 38. Can be installed in $240 / 415 \mathrm{~V}$ system without derating. Voltage tolerances -20% to $+10 \%$

Power loss

The power loss of MCB's is closely controlled by the standards and is calculated on the basis of the voltage drop across the main terminals measured at rated current. The power loss of Hager circuit breakers is very much lower than that required by the Standard, so in consequences run cooler and are less affected when mounted together.

The table below gives the watts loss per pole at rated current.

| MCB rated
 current (A) | 0.5 | 1 | 2 | 3 | 4 | 6 | 10 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Watts loss per
 pole (W) | 1.3 | 1.5 | 1.7 | 2.1 | 2.4 | 2.7 | 1.8 | 2.6 | 2.8 | 3.3 | 3.9 | 4.3 | 4.8 | 5.2 | 8 | 10 |

For use with DC

Because of their quick make and break design and excellent arc quenching capabilities Hager circuit breakers are suitable for DC applications.

The following parameters must be considered.
1 system voltage:
Determined by the number of poles connected in series

2 short circuit current:

3 tripping characteristics:

- the thermal trip remains unchanged
- the magnetic trip will become less sensitive requiring derating by $\sqrt{2}$ the ac value.

| No. of poles $\mathbf{1}$ pole | | $\mathbf{2}$ poles in series | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Range | Max
 voltage | Breaking capacity
 L/R $=15 \mathrm{~ms}$ | Max
 voltage | Breaking capacity
 L/R $=15 \mathrm{~ms}$ |
| MT, MU, | | | | |
| MB, MC | 60 V | 6 kA | 125 V | 6 kA |
| NC, ND | 60 V | 10 kA | 125 V | 10 kA |

Characteristic curve	B		C	
Magnetic trip	50 Hz	dc	50 Hz	dc
$\operatorname{Irm} 1$	$3 \ln$	$4.5 \ln$	$5 \ln$	$7.5 \operatorname{In}$
$\operatorname{lrm} 2$	$5 \ln$	$7.5 \ln$	10 In	15 In

Note : the circuit breaker can have the line\load connected to either the top or bottom terminals

Temperature Derating

MCBs are designed and calibrated to carry their rated current and to operate within their designated thermal time/current zone at $40^{\circ} \mathrm{C}$. Testing is carried out with the breaker mounted singly in a vertical plane in a controlled environment. Therefore if the circuit breaker is required to operate in conditions which differ from the reference conditions, certain factors have to be applied to the standard data. For instance if the circuit breaker is required to operate in a higher ambient temperature than $40^{\circ} \mathrm{C}$ it will require progressively less current to trip within the designated time/current zone.

correction factor

The breaker is calibrated at a temperature of $40^{\circ} \mathrm{C}$.
Temperature correction

$\mathbf{I n}(\mathbf{A})$	$\mathbf{4 5}^{\circ} \mathbf{C}$	$\mathbf{5 0}^{\circ} \mathbf{C}$	$\mathbf{5 5}^{\circ} \mathbf{C}$
$\mathbf{6 0}$			
$\mathbf{0} \mathbf{C}$			
$\mathbf{0 . 5}$	0.48	0.46	-
-			
$\mathbf{1}$	0.96	0.92	0.88
$\mathbf{2}$	1.92	1.84	1.76
$\mathbf{3}$	2.88	2.76	2.64
$\mathbf{4}$	3.3	3	2.8
$\mathbf{6}$	5.76	5.52	5.28
$\mathbf{1 0}$	9.6	9.2	8.82
$\mathbf{1 6}$	15.4	14.7	14.1
$\mathbf{2 0}$	19.2	18.4	17.6
$\mathbf{2 5}$	24	23	22
$\mathbf{3 2}$	30.7	29.4	28.2
$\mathbf{4 0}$	38.4	36.8	35.2
$\mathbf{5 0}$	48	46	44
$\mathbf{6 3}$	60.5	58.0	55.4
$\mathbf{8 0}$	76.8	73.6	70.4
$\mathbf{1 0 0}$	96	92	88

Grouping factors

Consideration should also be given to the proximity heating effect of the breakers themselves when fully loaded and mounted together in groups. There is a certain amount of watts loss from each breaker depending on the trip rating which may well elevate the ambient air temperature of the breaker above the ambient air temperature of the enclosure.
grouping factor (rated current reduce by factor K)

No. of units \mathbf{n}	\mathbf{K}
$\mathrm{n}=1$	1
$2 \leq \mathrm{n}<4$	0.95
$4 \leq \mathrm{n}<6$	0.9
$6 \leq \mathrm{n}$	0.85

Frequency

thermal - unchanged
magnetic - value multiplied by coefficient K

| $\mathbf{F}(\mathrm{Hz})$ | $17 \mathrm{~Hz}-60 \mathrm{~Hz}$ | 100 Hz | 200 Hz | 400 Hz |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{K} | 1 | 1.1 | 1.2 | 1.5 |

'B' curve (IEC 898)

MCBs: MT rated 6-63A
MV rated 6-40A
MB rated $0.5-63 \mathrm{~A}$
'C' curve (IEC 898)
MCBs : NC rated 0.5-63A MW rated 6-40A
'D' curve (IEC 898)
MJ rated $2-40 \mathrm{~A}$ MU rated $6-63 \mathrm{~A}$
NM rated $80-125 \mathrm{~A}$ MC rated $0.5-63 \mathrm{~A}$
ML rated 6-40A

current limiting at 400V

1^{2} t characteristics

MW, MU, MC, NC, NR

NM 80-100A

MV, MT, MB

Auxiliaries for MCBs and RCCBs

Functions

Tripping and indication auxiliary contacts are common to the range of multi-pole MCBs.
They should be mounted on the left hand side of the device
Auxiliary contact MZ 201
Allows remote indication of the status of the device contacts to which it is associated.

Alarm contact MZ 202

The alarm contact will provide indication if the breaker trips under fault conditions.

Shunt trip MZ 203-MZ 204

Allows tripping of the device by feeding the coil. It is fitted with internal contacts which allow it to be fed by an impulse or latched feed.
MZ 203-230V to 415 V ac / 110 V to 130 V dc
MZ 204-24V to 48 V ac / 12 to 48 V dc
Under voltage release MZ 205-MZ 206
Allows the MCB to trip when the voltage drops or by pressing a remote off switch (ie emergency stop).
MZ 205-48V dc
MZ 206-230V ac

Wiring diagram
MZ 201 auxiliary contact

MZ 206 under voltage release

Mounting of auxiliaries

No tools is necessary for the mounting of the auxiliaries. The auxiliaries click onto the left side of the breakers and are held in place with special designed fixing points. The whole operation is performed within seconds. It is possible to fit the auxiliary without removing the associated device from the din rail.

Combination of auxiliaries with circuit breakers and RCDs
It is possible to combine 4 auxiliaries with miniature circuit breakers, however the following must be observed :

- only one protection auxiliary is allowed.
- the trip contact MZ 202 must be mounted first.
- all auxiliaries are left mounted.

Transformer Protection

When a transformer is switched on, a high inrush current occurs in the primary circuit of the transformer irrespective of the load on the secondary side. Correct selection of the primary circuit protective device will avoid the risk of nuisance tripping due to this inrush current. Tables below show the recommended MCB's for the protection of single phase (230 V) and three phase (400 V) transformers.

Single Phase 230V

Transformer	Primary	Recommended MCB	
Rating (VA)	Current (A)	NC	ND
50	0.22	1	6
100	0.43	2	6
200	0.87	3	6
250	1.09	4	6
300	1.30	4	6
400	1.74	6	6
500	2.17	10	6
750	3.26	10	6
1000	4.35	16	10
2500	10.87	40	20
5000	21.74	63	32
7500	32.60		50
10000	43.48		63

Three Phase 400V			
Transformer Rating (VA)	Primary Current (A)	Recommended MCB	
		NC	ND
500	0.72	3	6
750	1.08	4	6
1000	1.44	6	6
2000	2.88	10	6
3000	4.33	16	10
4000	5.77	20	10
5000	7.21	25	16
7500	10.82	32	20
10000	14.43	50	25
15000	21.64	63	32
20000	28.86		50
25000	36.07		63

Lighting circuits

Although the MCBs prime function is the protection of lighting circuits, they are often used as local control switches as well, conveniently switching on and off large groups of luminaries in shops and factories. The MCB is well able to perform this additional task safely and effectively. Hager MCBs have an electrical endurance of 20,000 on/off operations for rated trips up to and including 32A and 10,000 on/off operations for 40,50 and 63A rated trips.

For the protection of lighting circuits the designer must select the circuit breaker with the lowest instantaneous trip current compatible with the inrush currents likely to develop in the circuit.

High Frequency (HF) ballasts are often singled out for their high inrush currents but they do not differ widely from the conventional 50 Hz . The highest value is reached when the ballast is switched on at the moment the mains sine wave passes through zero. However, because the HF system is a "rapid start" system whereby all lamps start at the same time, the total inrush current of an HF system exceeds the usual values of a conventional 50 Hz system. Therefore where multiple ballasts are used in lighting schemes, the peak current increases proportionally.

Mains circuit impedance will reduce the peak current but will not affect the pulse time.

The problem facing the installation designer in selecting the correct circuit breaker is that the surge characteristic of HF ballasts vary from manufacturer to manufacturer. Some may be as low as 12A with a pulse time of 3 mS and some as high as 35 A with a pulse time of 1 mS . Therefore it is important to obtain the expected inrush current of the equipment from the manufacturer in order to find out how many HF ballasts can safely be supplied from one circuit breaker without the risk of nuisance tripping

This information can then be divided into the minimum peak tripping current of the circuit breaker, shown in Table below

Minimum peak tripping current

Circuit
breaker Circuit breaker rated current

type	6 A	10 A	16 A	20 A	25 A	32 A	40 A	50 A
63 A								
B	26	43	68	85	106	136	170	212
268								
C	43	71	113	142	177	223	283	354
D	85	142	226	283	354	453	566	707

Example:

How many HF ballasts, each having an expected inrush of 20A can be supplied by a 16A type C circuit breaker? From table above, 16A type C we have a minimum peak tripping current of 113A.
Therefore $\frac{113}{20}=5$
i.e. 5 ballasts can be supplied by a 16A type C circuit breaker.

Assembly of the RCCB add-on blocks $\leqslant 63 \mathrm{~A}$

Assembly of the add-on blocks 80-100 A

By pushing the "lock" button it will bolt both devices together mechanically, thus forbidding a dismantling of the products without deteriorating the RCCB add-on block (compliance to annex G of standard EN 61-009).

Dimensions of associated MCB / RCCB add-on block

RCCB add-on blocks 25 , 40 et 63 A

RCCB add-on blocks 80-100 A

	E
2 P.P. 6 to 63 A	4 \|
2 P.P. 80 to 100 A	5,5
3 P.P. 6 to 25 A	5 -
3 P.P. 32 to 63 A	6
3 P.P. 80 to 100 A	9
4 P.P. 6 to 25 A	6 -
4 P.P. 32 to 63 A	7 -
4 P.P. 80 to 100 A	10,5 \|

Wiring diagram for MCB+Add-on block from 25 to 100A

incoming

Connection capacities

for assembled products from 6 to 25A : $6^{\square} / 10^{\square}$
for assembled products from 32 to 63 A : $10^{\square} / 25^{\square}$
for assembled products from 80 to 100A : 35 / 50^{\square}
If the supply of the RCCB add-on block is done from the bottom it should be clearly indicated.

Correction chart for admissable current

A - ambient temperature effect.
B - mutual temperature effect.
In conditions where both conditions are combined (ambient temperature $>20^{\circ} \mathrm{C}$ and 3 juxtaposed phases simultaneously on load) both coefficients A and B are applicable.

Type fuse size	$\begin{aligned} & \text { L } 31 \\ & 8.5 \times 31.5 \end{aligned}$	$\begin{aligned} & \text { L } 38 \\ & 10,3 \times 38 \end{aligned}$	$\begin{aligned} & \text { L } 51 \\ & 14 \times 51 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { L } 58 \\ & 22 \times 58 \end{aligned}$
In for Un 400 V ~	20A	32 A	50 A	125 A
In for Un $500 \mathrm{~V} \sim$	16A	20 A	40 A	80 A
20°	1	1	1	1
A 30°	0.95	0,95	0,95	0,95
40°	0.9	0,90	0,90	0,90
50°	0.8	0,80	0,80	0,80
1 to 3 Ph	1	1	1	1
B 4 to 6 Ph	0.8	0,8	0,8	0,8
7 to 9 Ph	0.7	0,7	0,7	0,7
$>10 \mathrm{Ph}$	0.6	0,6	0,6	0,6

Function of auxiliary contact

- possible to disconnect the supply to the motor by wiring the auxiliary to the coil of the contactor.
- remote indication of the fuse blown status by wiring the auxiliary to an indicating lamp

Note:

to use the auxiliary for remote indication it is necessary to use fuse links with striker pins.

Indicating light

mounting on L 51 and L 58

Auxiliary changeover contact
Identical mounting on L51 and L 58-SP and multipole type LS

Application drawing

Isolation and padlocking in open position

Residual current devices

A residual current device (RCCBS) is the generic term for a device which simultaneously performs the functions of detection of the residual current, comparison of this value with the rated residual operating value and opening the protected circuit when the residual current exceeds this value.
For fixed domestic installations and similar applications we have two types :-

- Residual current operated circuit-breaker without integral over-current protection (RCCB's) which should comply with the requirements of IEC 1008
- Residual current operated circuit-breaker with integral overcurrent protection (RCBO's) which should comply with the requirements of IEC 1009

Both RCCB's and RCBO's are further divided into types depending on their operating function :

Type AC For which tripping is ensured for residual sinusoidal alternating currents, whether suddenly applied or slowly rising. Marked with the symbol.

Type A For which tripping is ensured for residual sinusoidal alternating currents and residual pulsating direct currents, whether suddenly applied or slowly rising . Marked with the symbol.

Type S For selectivity, with time-delay. Marked with the symbol.

S

RCCB's must be protected against short-circuits by means of circuit-breakers or fuses

RCBO's have their own in built short-circuit protection, up to it's rated value

The drawing opposite shows how a torroid is located around the line and neutral conductors to measure the magnetic fields created by the current flowing in these conductors. The sum of the magnetic fields set up by these currents (which takes into consideration both the magnitude and phase relationship of the currents) is detected by the torroid.

In a normal healthy circuit the vector sum of the current values added together will be zero. Current flowing to earth, due to a line earth fault, will return via the earth conductor, and regardless of load conditions will register as a fault. This current flow will give rise to a residual current (Ires) which will be detected by the device.

It is most important that the line and neutral conductors are passed through the torroid. A common cause of nuisance operation is the failure to connect the neutral through the device.

RCCBSs work just as well on three phase or three phase and neutral circuits, but when the neutral is distributed it must pass through the torroid.

RCCBs are not suitable for use on DC systems and unearthed networks.

RCCBSs - domestic installation

RCCBs can be installed in two ways:

1. whole house protection
2. selective protection.

Whole house protection is provided typically by a consumer unit where the RCCBs device serves as the main switch. Although very popular this suffers from a disadvantage: all circuits are disconnected in the event of fault. Selective protection can be provided by associating the RCCBs with identified high risk circuits by adopting one or more of the following :

Principle

Current flowing through torroid in healthy circuit

$$
I_{\text {res }}=I_{1}+I_{2}=0
$$

Current flowing through torroid in circuit with earth fault I_{3}

$$
I_{\text {res }}=I_{1}+I_{2}+I_{3}=I_{3}
$$

- Split busbar consumer unit:

All circuits are fed via an overall isolator and selected circuits fed additionally via the RCCBs. Typical circuits fed direct are lighting, freezer, storage heating: and circuits fed via the RCCBs are socket outlets, garage circuits. This concept minimises inconvenience in the event of fault.

- Whole ring circuit

A 30 mA device adjacent to the consumer unit, which provides protection for the downstairs ring circuit, provides an easy installation with protection for all associated socket outlets. This represents the best solution for upgrading existing installations.

Nuisance tripping

All Hager RCCBs incorporate a filtering device preventing the risk of nuisance tripping due to transient voltages (lightning, line disturbances on other equipment...) and transient currents (from high capacitive circuit).

Pulsating DC fault current sensitive

Increasingly, semi-conductors are also extensively used in computers, VDUs, printers, plotters... all of which may be fed from the mains electrical supply. The presence of semi-conductors may result in the normal sinusoidal AC waveform being modified. For example, the waveform may be rectified or, as in asymmetric phase control devices, the waveform may be chopped. The resulting waveforms are said to have a pulsating DC component.

In the event of an earth fault occurring in equipment containing semi-conductor devices, there is a probability that the earth fault current will contain a pulsating DC component.

Standard type AC may not respond to this type of earth fault current and the intended degree of protection will not be provided.

Use of RCCBs

RCCBs offer excellent protection against earth fault currents; the main areas of application being as follows:

- Zs value too high to allow disconnection in the required time

Where the overcurrent protection or a circuit breaker cannot provide disconnection within the specified time because the earth fault loop impedance is too high the addition of RCCBs protection may well solve the problem without any other change in the system. Because of its high sensitivity to earth fault current and its rapid operating time, in most cases the RCCBs will ensure disconnection within the specified time. This is achieved without any detriment to overcurrent discrimination because, unlike the situation in a fuse based system, the increased sensitivity is obtained without increasing sensitivity to overcurrent faults. Use of RCCBs in this way can be particularly useful for construction sites and bathrooms where disconnection times are more stringent than for standard installations.
(Construction sites -0.2 s at $220-277 \mathrm{~V}$, bathrooms -0.4 s).
The limitation to this technique is the requirement that the rated residual operating current multiplied by Zs should not exceed 50 V . This is to avoid the danger of exposed conductive parts reaching an unacceptably high voltage level.

Residual current protection can even be added to a completed distribution system where the value of Zs is excessive, either because of a design oversight or subsequent wiring modification.

- Protection against shock by direct contact

So far we have considered shock by indirect contact only. Direct contact is defined thus:

Direct contact - contact of persons or livestock with live parts which may result in electric shock. The consideration here is not the hazard of parts becoming live as a result of a fault but the possibility of touching circuit conductors which are intentionally live.

RCCBs, although affording good protection against the potentially lethal effects of electric shock, must not be used as a the sole means of protection against shock by direct contact. The Electricity at Work Act recommends the use of RCCBs, "....danger may be reduced by the use of a residual current device but states that this should be "....considered as a second line of defence". The Wiring Regulations defines the other measures that should be taken i.e.

- insulation of live parts.
- barriers or enclosures.
- obstacles.
- placing live parts out of reach.

Additionally an RCCB used for this purpose should have:

- a sensitivity of 30 mA
- an operating time not exceeding 40 mS at a residual current of 150 mA .

The specified sensitivity is based on research that has been carried out to estimate the effect various levels and duration of current can have on the human body. This experience is summarised in a graph shown in 'IEC 479-1: Effects of current passing through the human body'. A simplified version of this graph is shown. It shows that very small currents can be tolerated for reasonably long periods and moderate currents for very short periods. It can be seen, for instance, that 100 mA for 100 mS or 20 mA for 500 mS will not normally cause any harmful effect. 200 mA for 200 mS or 50 mA for 500 mS which are in Zone 3, would be more dangerous; and shock levels in Zone 4 carry a risk of lethal consequences.

The tripping characteristic for a 30 mA RCCBs is also shown in the graph. It shows the level of current required to cause the RCCBs to trip, for example; 50 mA will cause a trip but not 10 mA . Comparing its characteristic with the various zones on the graph it can be seen that the 30 mA RCCBs gives a very good measure of protection against the hazards associated with electric shock. Where a higher level of protection is required, for example in laboratories, 10 mA devices are available.

Note:

Although RCCBs are extremely effective devices they must never be used as the only method of protection against electric shock. With or without RCCBs protection all electrical equipment should be kept in good condition and should never be worked on live.

- Protection against shock outside the equipotential bonding

 zoneBonding conductors are used in an installation to maintain metallic parts, as near as possible, to the same potential as earth. Working with portable equipment outside this equipotential bonding zone, e.g. in the car park of a factory, introduces additional shock hazards. Socket outlets rated 32A or less 'which may be reasonably expected to supply portable equipment for use outdoors' should have at least one socket nominated for outdoor use. This socket should be equipped with RCCBs protection unless fed from an isolating transformer or similar device, or fed from a reduced voltage.

- Protection in special situations

The use of RCCBs is obligatory or recommended in the following situations:

- caravans: 30 mA RCCBs should be used.
- TT systems.
- swimming pools: 30mA RCCBs for socket outlets in Zone B obligatory; recommended in Zone C.
- agricultural and horticultural: 30mA RCCBs for socket outlets and for the purpose of protection against fire, RCCBS $\leq 0.5 \mathrm{~A}$ sensitivity.
- construction sites: 30 mA RCCBs recommended.
- Portable equipment

With the exception mentioned above, where a socket is specifically designated for work outside the equipotential bonding zone, the Wiring Regulations demand the use of RCCBs to protect the users of portable equipment. It is widely recognised that their use has made a significant contribution to safety in the workplace and the home.

- Protection against fire hazards

The provisions in the Wiring Regulations for protection against shock by indirect contact ensure rapid disconnection under earth fault assuming the fault has negligible impedance. Under such conditions the fault current, as we have seen, is sufficiently great to cause the overcurrent protection device to quickly disconnect the fault. However high impedance faults can arise where the fault current is sufficient to cause considerable local heat without being high enough to cause tripping of the overcurrent protective device. The heat generated at the point of the fault may initiate a fire long before the fault has deteriorated into a low impedance connection to earth.

The provision of residual current protection throughout a system or in vulnerable parts of a system will greatly reduce the hazard of fire caused by such faults.

- PEN conductors

The use of RCCBSs with PEN conductors is prohibited. A PEN conductor is a single conductor combining the functions of neutral conductor and protective conductor. This being so, when the PEN conductor is taken through the torroid of an RCCBS, earth faults will go undetected because the return path for the earth fault current is included in the residual sum.

- Auxiliary contacts

A range of auxiliaries, alarm and shunt contacts are available for Hager RCCBs.

- Supply entry

Top or bottom feed.

CB/RCCBs co-ordination

RCCBs	Short circuit current capacity of the RCCBS only	With MCB's				
		$\begin{aligned} & \text { MT } \\ & 6-63 A \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MU } \\ & 6-63 A \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MC } \\ & 0.5-63 A \end{aligned}$	$\begin{aligned} & \text { NC } \\ & 0.5-63 A \end{aligned}$	$\begin{aligned} & \text { ND } \\ & \text { 1-63A } \\ & \hline \end{aligned}$
		B	C	C	C	D
2 poles						
16A	1500A	6kA	6kA	6kA	10kA	6kA
25A	1500A	6kA	6kA	6kA	10kA	6kA
40A	1500A	6kA	6kA	6kA	10kA	6kA
63 A	1500A	6kA	6kA	6kA	10kA	6kA
80A	1500A	6kA	6kA	6kA	10kA	6kA
4 poles						
16A	1500A	6kA	6kA	6kA	6kA	4.5 kA
25A	1500A	6kA	6kA	6kA	6kA	4.5 kA
40A	1500A	6kA	6kA	6kA	6kA	4.5 kA
63 A	1500A	6kA	6kA	6kA	6kA	4.5 kA
80 A	1500A	6kA	6kA	6kA	6kA	4.5 kA
100A	1500A	6kA	6kA	6kA	6kA	4.5 kA

Product presentation

Contact positioning indicator

The mechanical indicator on the front of RCCB shows the physical position of the contacts.

- Red indication for closed contacts
- Green indication for open contacts

The green indication is the guarantee that the contacts are open and that the terminals are not live.

Positive contact indication

Trip indicator

The status of the RCCB can be visualised by the colour of the trip indicator in addition to the position of the operating lever.

- Grey indication for normal conditions (even when operating lever is in ON/OFF position)
- Yellow indication for tripped condition, operating lever in OFF position.
Similar condition exists when TEST button is pushed or RCCB is remotely tripped via protection auxiliaries.

Earth leakage fault indication

Mounting of auxiliaries

lit is possible to mount two auxiliaries on RCCB.

- Auxiliary CZ 001 for ON/OFF status and TRIP indication is mounted first on the left hand side of the RCCB.
- Additional protection auxiliary MZ 203 to MZ 206 can be mounted besides CZ 001.

Auxiliaries association possibilities

MZ 203... + CZ 001 MZ 206 (CA+SD)

Technical specifications

	non adjustable earth leakage relays HR 400 HR 402	adjustable earth leakage relays		
power supply voltage $\sim 50 / 60 \mathrm{~Hz}$	$230 \mathrm{~V} \pm 20 \%$			
controlled main voltage $\sim 50 / 60 \mathrm{~Hz}$	50 to 700 V			
imput power	3 VA	5 VA		5 VA
control output	inverter free of potential			
breaking capacity (standard output, positive security, pre-alarm 50\%)	6 A / 250 V AC1			
sensitivity $1 \Delta n$	0,03 A 0,3 A	0 / 0,03	0,3 A / 0,5	A / 10 A
tripping ($\pm 20 \%$)	instantaneous	instant	yed 0,1 s	,4s/0,5 s/1 s/3s
memory	storage of default by "reset" button			
acceptable overload at torroid level	$30 \mathrm{kA} / 100 \mathrm{~ms}$			
voltage of test and reset buttons	100 to 250 V			
max. length of test/reset connection	200 m			
max. length of torroid/relay connection	50 m maxi with twisted cables of 1,5 mm -25 m non twisted cable			
relay connect. : cage terminals rigid connect. torroid flexible rigid flexible	$\begin{aligned} & 1,5 \text { to } 4 \\ & 1, \text { to } 2,5 \\ & 1,5 \text { to } 4 \\ & 1 \end{aligned}$			
operating temperature storage temperature	$\begin{aligned} & -10 \text { to }+55^{\circ} \mathrm{C} \\ & -25 \text { to }+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			

main characteristics

(1) "reset" button : in case of tripping, output remains switched and return to normal position is obtained either :

- by pressing the "reset" clear pushbutton
- or cutting off the power supply
(2) "test" button : pressing the "test" button allows a fault simulation which operates the relay and the output contacts.
(3) fault signal LED : switched on when a fault is detected, intermittent light when break in connection relay/core.

(4) power indicator:

indicates well working of product.
(5) I Δ n selector: $0,03 / 0,1 / 0,3 / 0,5 / 1 / 3 / 10 \mathrm{~A}$
(6) time delay selector $\Delta \mathbf{t}: 0 / 0,1 / 0,3 / 0,4 / 0,5 / 1 / 3 \mathrm{~s}(\pm 20 \%)$
(7) standard output (1 OF) : tripping at 85% of $\mid \Delta n \pm 15 \%$
goes from 0 to 1 when :

- failure of the torroid/core connection,
- fault current in the monitored installation.
(8) positive safety outlet (1 OF) :
switching to state 1 : by switching on of the power:
- switching to state 0 : failure of the torroid/relay connection,
- fault current in installation,
- fault supply or fault on internal relay.
(9) safety output (1 F) : contact closes at 50% of $I \Delta n(\pm 15 \%$)
(10) remote test and reset
(11) optical scale display : indicates permanently the value of leakage current, 5 to $15 \%, 15$ to $30 \%, 30$ to $45 \%, 45$ to 60% and 60 to 75% de $I \Delta n$.

Electrical connections

Circular torroids:
HR 800

HR 801 to HR 805

Dimensions for circular and rectangular torroids

references	size (en mm)									
	A	A1	A2	B	C	D	E	F	G	H
HR 801	ø 35	-	-	92	86	43,5	74	17	32,5	5,5
HR 802	$\emptyset 70$	-	-	115	118	60,5	97	17	32,5	5,5
HR 803	ø 105	-	-	158	162,5	84,5	140	15	32,5	5,5
HR 804	ø 140	-	-	202	203	103,5	178	21	32,5	7,5
HR 805	ø 210	-	-	290	295	150	265	23	32,5	7,5
HR 830	-	70	175	260	162	85	225	22	40	7,5
HR 831	-	115	305	400	225	116	360	25	48	8,5
HR 832	-	150	350	460	270	140	415	28	48	8,5

Dimensions for opening rectangular torroids

	A1	A2	B	C	D	E
HR 820	20	30	89	110	41	32
HR 821	50	80	114	145	50	32
HR 822	80	80	145	145	50	32
HR 823	80	121	145	185	50	32
HR 824	80	161	184	244	70	37

Torroids capacity

on copper cables

Installation example

Some installation rules for SPDs

- General SPD protects the whole installation by flowing the lightning current out to the earth. Fitted in directly dowstream the type S differential function or delayed for system TT and TN-S.
- The cable length $L 1$ must be reduced to less than $0,5 \mathrm{~m}$
- The resistance of the earth connection must be weakest possible (approx. 10Ω) and only one is requested by installation,
- SPDs SPN 208S and SPN 408S protect very sensitive devices of class I and class II.
- A cable length of at least 1 m is requested between general and secondary SPD to ensure a minimum impedance in order to avoid the simultaneous bringing into conduction of both SPDs,
- SPDs SPN 504 and SPN 505 protect analog or digital telephone lines from very sensitive receivers.

Choice of disconnection device

The choosen device is an MCB

Selection chart for disconnection device according to the SPD type

general SPD	$\int_{5}^{k} C 1(1)$
SPN 265R SPN 465R	32 A curve C
SPN 140C SPN 240R - SPN 240D SPN 440R - SPN 440D	32 A curve C
SPN 215R - SPN 215D SPN 415R - SPN 415D	32 A curve C

[^0]N.b. : when SPD is fitted downstream of differential system, the system should preferably be selectif to avoid inopportune setting of.

Distressing of SPD

Successive discharging of current due to lightning reduces progressively the performance of SPD's, with the consequence of a possible short circuit for the installation.
For this reason, all our SPDs are fitted with an automatic thermic and dynamic disconnection device
LED on front indicates the good working of the device :

- for normal version :
green $=O K$ red $=$ replacement
- for version with reserve indicator :
green $=\mathrm{OK}$ yellow $=$ caution red $=$ replacement
- for version with electric LED for SPDs for fine protection
green $=O K \quad$ LED off $=$ replacement

Warranty

Warranty can not be applied for SPDs as their life expectancy depends on the perturbation level absorbed to protect the electric installation.

Surge protective devices

SPDs with plug in cartridge

Presentation of 1 pole and multi pole SPDs : available in two versions :

- base with an auxiliay contact and cartridges with reserve indicator
- base without auxiliary contact and cartridges with end of life LED

Keying system for fitting of neutral and phase cartridge

Neutral plug in cartridges can not be fitted in slots for phase cartridges and visa versa

On the front of the cartridge, a mechanical LED indicates the state of SPD
with reserve indicator

end of life LED

OK

Auxiliary contact for signalling transfert

Connection diagrams
Single pole SPDs: SPN 140C
protection only in common mode
IT / TN-C

Multi pole SPDs : SPN 215D ... SPN 465R
protection is assured in both common and differential modes without adding devices
TT / TN-S

Technical characteristics of single pole SPDs

references	SPA 212A	références	SPN 140C
	SPA 412A	installation exposure level (risk	medium
installation exposure level (risk)	very high	installation of SPDs	in parallel
installation of SPDs	in parallel	installation of SPDs	in parallel
nominal voltage Un frequency	$230 \mathrm{~V} \sim$	nominal voltage Un frenquency	$\begin{aligned} & 230 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
	$50 / 60 \mathrm{~Hz}$	Max. continuous operating voltage UC	440 V
Max. continuous operating voltage Uc	255 V	Max. continuous operating voltage Uc	440 V
voltage protection level Up	2,5 kV	voltage protection level Up	2 kV
protection mode	common	discharge current capacity nominal current In 8/20 μ s wave max. current Imax	$\begin{aligned} & 15 \mathrm{kA} \\ & 40 \mathrm{kA} \end{aligned}$
	differential		
shock current limp	12,5 kA	degree of protec	IP 20
disconnection value Ifi	12,5 kA	short circuit resistance ICc (MCB - curve C)	$20 \mathrm{kA}-32 \mathrm{~A}$
		temperature working	-20 à $+60^{\circ} \mathrm{C}$
resistance to short-circuit Icc alone	$\begin{aligned} & 12,5 \mathrm{kA} \\ & 25 \mathrm{kA} \end{aligned}$	storage	-40 à $+70^{\circ} \mathrm{C}$
of max. 125 A in series		end of live LED	SPN 140C
or 315 A in parrallel		reserve indicator + auxiliary contact	-
working temperature	-40 à $+60^{\circ} \mathrm{C}$	domestic building collective/individual	yes
end of life LED	yes	industrial/commercial	yes
earthing systems	TT - TNS	earthing systems	IT, TN-C
max.connection capacity $\begin{aligned} & \text { flexible } \\ & \text { rigid }\end{aligned}$	$\begin{aligned} & 25 \mathrm{~mm} \\ & 35 \mathrm{~mm} \end{aligned}$	max. connection capacity flexible $(\mathrm{Ph}, \mathrm{N}, \mathrm{E})$ rigid	$\begin{aligned} & 25 \mathrm{~mm} \\ & 35 \mathrm{~mm} \end{aligned}$
screw head	PZ3	screw head	PZ2

technical characteristics of multipole SPDs

references	SPN 265R-SPN 465R	SPN 240R, SPN 440R SPN 240D, SPN 440D	SPN 215R, SPN 415R SPN 215D, SPN 415D
installation exposure level (risk)	very high	medium	low
installation of SPDs	in parallel	in parallel	in parallel
nominal voltage Un frenquency	$\begin{aligned} & 230 / 400 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 / 400 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 / 400 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Max. continuous operating voltage Uc between Phase / Neutral between Neutre / PE	$\begin{aligned} & 255 \mathrm{~V} \\ & 275 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 255 \mathrm{~V} \\ & 275 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 255 \mathrm{~V} \\ & 275 \mathrm{~V} \end{aligned}$
protection mode common differential	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
voltage protection level Up	$1,5 \mathrm{kV}$	$1,2 \mathrm{kV}$	$1,0 \mathrm{kV}$
discharge current capacity nominal current In $8 / 20 \mu$ s wave maxial current Imax	$\begin{aligned} & 20 \mathrm{kA} \\ & 65 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 15 \mathrm{kA} \\ & 40 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{kA} \\ & 15 \mathrm{kA} \end{aligned}$
degree of protection	IP 20		
short circuit resistance Icc (MCB - curve C)	20 kA - 32 A	20 kA - 32 A	10 kA - 32 A
working temperature	$-40^{\circ} \mathrm{C}$ à $+60^{\circ} \mathrm{C}$		
end of life LED	-	SPN 240D - SPN 440D	SPN 215D - SPN 415D
reserve indicator + auxiliary contact	SPN 265R - SPN 465R	SPN 240R - SPN 440R	SPN 215R - SPN 415R
domestic buildings collective / individual industrial / commercial	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$		
earthing systems	$\begin{aligned} & \text { TT } \\ & \text { TN - S } \end{aligned}$	$\begin{aligned} & \text { TT } \\ & \text { TN - S } \end{aligned}$	$\begin{aligned} & \text { TT } \\ & \text { TN - S } \end{aligned}$
connection capacity flexible (Ph, N, E) rigid	$\begin{aligned} & 25 \mathrm{~mm} \\ & 35 \mathrm{~mm} \end{aligned}$		
screw head	PZ2		

Technical characteristics of secondary SPDs (fine protection)

references	SPN 2085	SPN 408S
installation exposure level (risk)	low	low
installation of SPDs	in parallel	in parallel
nominal voltage Un frequency	$\begin{aligned} & 230 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 / 400 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Max. continuous operating voltage Uc between N / PE between Phase and Neutral	$\begin{aligned} & 255 \mathrm{~V} \\ & 255 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 255 \mathrm{~V} \\ & 255 \mathrm{~V} \end{aligned}$
protection mode common differential	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
voltage protection level Up	$1,0 \mathrm{kV}$	$1,0 \mathrm{kV}$
discharge current capacity nominal current In $8 / 20$ нs wave maximal current Imax	$\begin{aligned} & 2 \mathrm{kA} \\ & 8 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 2 \mathrm{kA} \\ & 8 \mathrm{kA} \end{aligned}$
degree of protection	IP 20	IP 20
short ciruit resistance Icc (with fuse or associated MCB)	$6 \mathrm{kA}-32 \mathrm{~A}$	$6 \mathrm{kA}-32 \mathrm{~A}$
temperature working storage	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { à }+40^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { à }+40^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { à }+40^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { à }+40^{\circ} \mathrm{C} \end{aligned}$
well functioning indicator	green LED	green LED
domestic buildings collective / individual industrial / commercial	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
earthing systems	$\begin{aligned} & \mathrm{TT}, \mathrm{IT}, \\ & \mathrm{TN} \text { - S } \end{aligned}$	$\begin{aligned} & \mathrm{TT}, \mathrm{IT}, \\ & \mathrm{TN} \text { - S } \end{aligned}$
connection capacity flexible $\min . /$ max. $(\mathrm{Ph}, \mathrm{N}, \mathrm{E})$ rigid $\mathrm{min} . / \max$.	$\begin{aligned} & \text { 2,5/6 mm } \\ & 6 / 10 \mathrm{~mm}^{\square} \end{aligned}$	$\begin{aligned} & 2,5 / 6 \mathrm{~mm}^{\square} \\ & 6 / 10 \mathrm{~mm} \end{aligned}$
screw head	PZ1	

SPDs SPN 2085 and SPN $408 S$

Technical characteristics of the SPDs for telephone line

references	SPN 504	SPN 505
surge protective device	digital line (Numéris, RNIS, ISDN...)	analog line
installation of SPDs	in series	in series
ingress protection	IP 10	IP 10
nominal voltage Un	$5 \mathrm{~V} / 40 \mathrm{~V}$	130 V
maximum continious operating voltage Uc	7,5 V / 60 V	170 V
voltage protection level Up	600 V	600 v
voltage protection level common mode differential mode	yes yes	yes yes
series impedence	1,0 Ω	4,7 Ω
discharge current wave In (total) In (line)	$\begin{aligned} & 10 \mathrm{kA} \\ & 5 \mathrm{kA} \end{aligned}$	$\begin{aligned} & \hline 5 \mathrm{kA} / 10 \mathrm{kA} \text { (RJ } 45 / \mathrm{vis}) \\ & 2,5 / 5 \mathrm{kA} \text { (RJ } 45 / \mathrm{vis}) \end{aligned}$
working temperature	$-40^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { connection } & \text { in } \\ \text { out }\end{array}$	$\begin{aligned} & \text { screw } \\ & \text { screw / RJ } 45 \end{aligned}$	$\begin{aligned} & \text { screw / RJ } 45 \\ & \text { screw / RJ } 45 \end{aligned}$
connection capacity flexible min./max. $(\mathrm{Ph}, \mathrm{N}, \mathrm{T})$ rigid $\mathrm{min} . / \mathrm{max}$.	$\begin{aligned} & 0,08 \mathrm{~mm} \\ & 2,5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0,08 \mathrm{~mm}^{\square} \\ & 2,5 \mathrm{~mm} \end{aligned}$
applications	digital line ISDN, RNIS	analog line

Electrical connection

Electrical characteristics

- electrical supply : $230 \mathrm{~V} / 400 \mathrm{~V} \sim$
- ambient temperature range : from -25 to $+55^{\circ} \mathrm{C}$
- working life : 100000 operations - categorie : AC3
- maximum : 40 operations / hour
- tropicalize : normale all climates (TC)
- connection capacity :
flexible wire : from 1 to 4 rigid wire : from 1,5 to 6
- insulation voltage : 6000 V
- frequency : $40-60 \mathrm{~Hz}$

Single phase connection diagram

Auxiliaries

- auxiliary contacts $\mathbf{1 0}+\mathbf{1 F}$: MR 520N
$230 \mathrm{~V} \sim 3,5 \mathrm{~A}$
$400 \mathrm{~V} \sim 2 \mathrm{~A}$

- cauxiliary contacts 1 F: MO 522N

230-400 V~1A

- default signal contact 2 F: MR 527N
change state on short-circuit (magnetic tripping) $)\left.^{--}\right|_{14} ^{13}$
change state on overload and short-circuit (magnetic and thermic tripping)

Breaking capacity

	230 V	400 V
MM 501N MM 502N MM 503N	100 kA	100 kA
MM 504N		
MM 505N		
MM 506N		
MM 507N		
MM 508N		
MM 509N		
MM 510N		
MM 511N	16 kA	16 kA
MM 512N		
MM 513N		
tripping curve		

- waterproof enclosure IP 55 : MC 521N
allows to control the motor starter via external rotary handle

- emergency stop button : MZ 530N

- synchronized
- synchronized unlocking by key: MZ 531N
allows the emergency stop of motors by tripping auxiliary connected to MCB . (MZ 523N - MZ 528N - MZ 529N)
- under voltage release : MZ 528N 230 V~, MZ 529N 400 V~
maintain voltage $0,85 \times \mathrm{Un}$
fall voltage 0,7 à $0,35 \times$ Un

Connection of auxiliaries (without tool)

AUSTRIA :

Hager Electro Ges. m. b. H.
Dieselgasse, 3
2333 Leopoldsdorf / AUSTRIA
Tel. (43) 02235 / 44600
Fax (43) 02235 / 44545

BELGIUM :

S.A. Hager Modulec N.V.

Boulevard Industriel 61 BRUXELLES 1070 / BELGIUM
Tel. (32) 25294711
Fax (32) 25271261

CZECH REPUBLIC :
Hager Electro s.r.o.
Podebradská 186/56
18066 Praha 9 - Hloubetin
CZECH REPUBLIC
Tel. (42) 0266107308
Fax (42) 0266107310

CYPRUS:

N.P. LANITIS LTD

106 Gladstonos Street
3032 LIMASSOL
CYPRUS
Tel. (357)-25 819030
Fax (357)-25 819075
e.mail : info@nplanitis.com

DENMARK:

ELPEFA A/S
Postbox 180
2670 GREVE / DENMARK
Tel. (45) 43959595
Fax (45) 43959590

ESTONIA:

Hager Süsteemid OÜ
Türi 10d
11313 TALLINN
Tél. +3726556146
Fax +3726556168

FINLAND :

URHO TUOMINEN Oy

Palopellonkatu 7-PL 33
04250 KERAVA / FINLAND
Tel. (358) 92746411
Fax (358) 927464141

FRANCE
Hager Electro S.A.
132, Bld d'Europe
B.P. $n^{\circ} 3$

67215 OBERNAI Cedex FRANCE
Tel. (33) 0388495050
Fax (33) 0388495003

GERMANY:
Hager Electro GmbH
Im Hofgarten
66131 SAARBRÜCKEN GERMANY
Tel. (49) 68939450
Fax (49) 6893945376
Hager Electro GmbH
Zum Gunterstal
66440 BLIESKASTEL
GERMANY
Tel. (49) 68429450
Fax (49) 6842945676

GREAT BRITAIN :

Hager Ltd
Hortonwood 50
TELFORD, Shropshire
TF1 4FT / U.K.
Tel. (44) 1952-677 899
Fax (44) 1952-670 271
http://www.hagergroup.com.uk

GREECE

Hager Hellas
lapetou Street 33
11364 ATHENS / GREECE
Tel. (30) 18645090
Fax (30) 18650956

HUNGARY:

Hager Kft
Aradi utca 16
1043 BUDAPEST
Tél. +361 3695689
Fax +361 3693601

ICELAND :

J ohan RÖNNING Hf
Sundaborg 15
104 REYKJ AVIK / ICELAND
Tel. (354) 5200800
Fax (354) 5200888

IRELAND
Hager Nolan Ltd
Techna House
Terenure Road East
DUBLIN 6 / IRELAND
Tel. (353) 1-490 6611
Fax (353) 1-490 1274

ITALY:

Hager Lume S.p.A.
Via Battistotti Sassi n. 11
20133 MILANO / ITALY
Tel. (39) 0270107440
Fax (39) 0270107430

LATVIA :
SIA Hager Sistémas
Bauskas 58
1004 RIGA
Tél. +371 7808680
Fax +371 7808681

LITHUANIA :
Hager Polo UAB
Laisves pr 77
2600 VILNIUS
Tél. +370 52742827
Fax +370 52742838

MALTA :

International Trading Co
White House Buildings
M ountbatten Street
BLATA L-BAJ DA / MALTA
Tel. (356) 21240291
Fax (356) 21243186
http://www.itc-malta.com

NETHERLANDS:
Hager Electro b.v.
Larenweg 36
5234 KA's Hertogenbosch
NETHERLANDS
Tel. (31) 736428584
Fax (31) 736442674

NORWAY:
Hager Systemer A/S.
Industriveien 8b
Postboks 391
1473 SKÅRER / NORWAY
Tel. (47) 67975011
Fax (47) 67972055

POLAND :
Hager Polo Sp.zo.o.
ul. Domaniewska 39A
02-672 WARSZAWA
Tél. +48 226402880
Fax +48 226402881

PORTUGAL:
Hager SEM SA
(Sistemas Electricos Modulares)
Estrada para Polima
Complexo Meramar
Armazem C
Abóboda
2775 PAREDE / PORTUGAL
Tel. (351) 214458450
Fax (351) 214458454

RUMANIA :
Hager Romania SRL
B-dul Precizei 32, Sect. 6
cod 062204
BUCURESTI Romania
Tél. +40 214340937
Fax +40 214341660

SPAIN :
Hager Sistemas S.A.
Paratge Coll-Blanc s/n
Apartado 39
08430 LA ROCA DEL VALLES
SPAIN
Tel. (34) 902422232
(34) 938424730

Fax (34) 938422132

SWEDEN:

Hager Elektro AB
Box 9040
40091 GÖTEBORG / SWEDEN
Tel. (46) 317063900
Fax (46) 317063950

SWITZERLAND :

Hager Tehalit AG
Moosweg 8,
Postfach 431
8501 FRAUENFELD
SWITZERLAND
Tel. (41) 0527232400
Fax (41) 0527232405

AUSTRALIA

Hager B\&R Ltd
Unit 14 Riverside Centre
148 J ames Ruse Drive
(cnr River Road West)
North Parramatta NSW 2150
AUSTRALIA
Tel. (61) 2-9687 0077
Fax (61) 2-9687 0011 or 22
http://www.hagergroup.com.au

BAHRAIN, KUWAIT, OMAN, QATAR, SAUDI ARABIA, U.A.E., IRAN, EGYPT, PAKISTAN,
AFGHANISTAN, IRAK and INDIA
Hager Tehalit Systems
M.E. FZE

POB 61056
J EBEL ALI
DUBAI / U.A.E.
Tel. (971) 4-883 6364
Fax (971) 4-883 7993
e-mail : htsme@emirates.net.ae
http://www.hagergroup.com.ae

CHINA
Hager Beijing Office
N ${ }^{\circ}$ 308, He Qiao Building
8A Guang Hua Road
Chaoyang District
100026 BEIJ ING / CHINA
Tel. (86) 10-6503 5170
Fax (86) 10-6503 5173

EGYPT

M.B. for Engineeering \&

Contracting
10, Omar Ebnel Khattab Street Dokky, Giza
EGYPT
Tel. (20) 2-3375283/7490592
Fax (20) 2-7490592
e-mail : tbshalaby@link.net

ERITREA

Electrolight Pvt. Ltd.
PO Box 4642
ASMARA / ERITREA
Tel. (291) 1121265
Fax (291) 1126759
e-mail : elelight@gemel.com.er

GHANA

Grand Pacific Ltd.
PO Box 140
KORLE-BU
ACCRA / GHANA
Tel. (233) 21 667037, 665778
Fax (233) 21670316
e-mail : gpacific@ucomgh.com

HONG KONG

Hager Electro Ltd
Suite 310 Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East, Kowloon
HONG KONG
Tel. (852) 2688.0228
and 0234
Fax (852) 2688.0336

J ORDAN

Dasouki Trading Corp.
PO Box 815422
11180 AMMAN / J ORDAN
Tel. (962) 64652711
Fax (962) 64647472
e-mail : dasouki@index.com.jo

LEBANON

Cesar Debbas \& Fils
Imm. Debbas
Corniche EI-Nahr
BEIRUT 20696810
LEBANON
Tel. (961) 1442740
Fax (961) 1447562
e-mail : cdf@debbas.com.lb

LYBIA

ALWAQAEA Co.
Saadum Street
MISURATA
LYBIA
Tel. (218) 51613471
Fax (961) 51612390

KENYA
Nabico Enterprises Ltd.
PO Box 39639, 00623
Kirinyaga Road
NAIROBI / KENYA
Tel. (254) 20 336445, 224088
Fax (254) 20225952
e-mail : nabico@africaonline.co.ke

MALAYSIA

Hager Engineering (M)

SDN BHD

$N^{\circ} 12$, J alan 4/91A
Taman Shamelin Perkasa
Cheras
56100 KUALA LUMPUR /
MALAYSIA
Tel. (60) 3-983 3353
Fax (60) 3-983 2335
http://www.hagergroup.com.my

MAURITIUS

Simelec
116 Royal Road, G.R.N.W.
PO Box 739
Bell Village, PORT LOUIS
MAURITIUS
Tel. (230) 2121073
Fax (230) 2128762
e-mail : simelec@intnet.mu

SINGAPORE :
Hager Electro Systems
PTE Ltd
23, New Industrial Road
04/04 Century Industrial
Building
SINGAPORE 536209
Tel. (65) 3831030
Fax (65) 3830230
http://www.hagergroup.com.sg

SOUTH AFRICA
Electromechanica

(Gauteng)

9/11 Data Crescent, Ormonde Ext. 8
PO Box 38980
BOOYSENS 2016
SOUTH AFRICA
Tel. (27) 112495000
Fax (27) 114962779
http://www.em.co.za

Electromechanica

(Cape Province)
44 Freeway Park
cnr Upper Camp \& Berkley Rd.
PO Box 267
MAITLAND
SOUTH AFRICA
Tel. (27) 215105030
Fax (27) 215105050

Electromechanica

(Kwazulu Natal)

17 Mc Donald Road
PO Box 17317
CONGELLA 4013
SOUTH AFRICA
Tel. (27) 312051571
Fax (27) 312051625

SYRIA

Constructions Electriques Hanino
PO Box 5236
Abbara AI - Hamra
ALEPPO / SYRIA
Tel. (963) 212113373
Fax (963) 212113376

OTHER COUNTRIES

Hager Electro S.A.S.
PO Box 3
67215 OBERNAI Cedex
FRANCE
Tel. (33) 388495050
Fax (33) 388495144
e-mail : hageroverseas@hager.fr
hager
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
hager
Notes

The success is in the system

Hager Electro S.A.S
132, boulevard d'Europe
B.P. 3

67215 Obernai cedex
France
Tel +33 (0) 388495050
Fax +33 (0)3 88495144
e-mail : hageroverseas@hager.fr
http://www.hager.com

[^0]: (1) The breaking capacity of MCB must be choosen according to the short circuit intensity at the head of the installation and according to the number of poles (1,2 or 4)

