ardware Manue

M16C/65 Group HARDWARE MANUAL

RENESAS MCU M16C FAMILY / M16C/60

PRELIMINARY

Note: All information contained in this document is provided on an "as is" basis. The information on products or specifications is subject to change without notice. Please verify the latest information available on our website prior to use.

Rev.0.30

Revision Date: Sep 09, 2008

Renesas Technology www.renesas.com

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
 You should not use the products or the technology described in this document for the purpose of military
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life
 - Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

HOW TO USE THIS MANUAL

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual. The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the M16C/64 Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Technology Web site.

Document Type	Description	Document Title	Document No.
Datasheet	Hardware overview and electrical characteristics	M16C/65 Group	
		Datasheet	
Hardware manual	Hardware specifications (pin assignments,	M16C/65 Group	This hardware
	memory maps, peripheral function	Hardware Manual	manual
	specifications, electrical characteristics, timing		
	charts) and operation description		
	Note: Refer to the application notes for details on		
	using peripheral functions.		
Software manual	Descriptions of CPU instruction set	M16C/60, M16C/	REJ09B0137
		20, M16C/Tiny	
		Series Software	
		Manual	
Application note	Information on using peripheral functions and	Available from Ren	esas
	application examples	Technology Web si	te.
	Sample programs		
	Information on writing programs in assembly		
	language and C		
Renesas	Product specifications, updates on documents,		
technical update	etc.		

2. Notation of Numbers and Symbols

The notation conventions for register names, bit names, numbers, and symbols used in this manual are described below.

(1) Register Names, Bit Names, and Pin Names

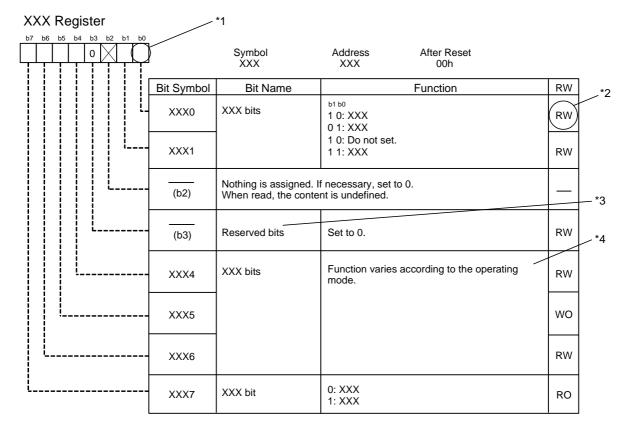
Registers, bits, and pins are referred to in the text by symbols. The symbol is accompanied by the word "register," "bit," or "pin" to distinguish the three categories.

Examples the PM03 bit in the PM0 register

P3_5 pin, VCC pin

(2) Notation of Numbers

The indication "b" is appended to numeric values given in binary format. However, nothing is appended to the values of single bits. The indication "h" is appended to numeric values given in hexadecimal format. Nothing is appended to numeric values given in decimal format.


Examples Binary: 11b

Hexadecimal: EFA0h

Decimal: 1234

3. Register Notation

The symbols and terms used in register diagrams are described below.

*1

Blank: Set to 0 or 1 according to the application.

0: Set to 0.

1: Set to 1.

X: Nothing is assigned.

*2

RW: Read and write.

RO: Read only.

WO: Write only.

-: Nothing is assigned.

*3

• Reserved bit

Reserved bit. Set to specified value.

*4

Nothing is assigned

Nothing is assigned to the bit. As the bit may be used for future functions, if necessary, set to 0.

• Do not set to a value

Operation is not guaranteed when a value is set.

• Function varies according to the operating mode.

The function of the bit varies with the peripheral function mode. Refer to the register diagram for information on the individual modes.

4. List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communication Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connection
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

All trademarks and registered trademarks are the property of their respective owners.

IEBus is a registered trademark of NEC Electronics Corporation.

HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

SI	FR Page R	eference	B-1
1.	Overvi	ew	1
	1.1 Fe	eatures	1
	1.1.1	Applications	1
	1.2 Sp	pecifications	2
	1.3 P	roduct List	8
	1.4 Bl	ock Diagram	10
	1.5 Pi	n Assignments	13
	1.6 Pi	n Functions	24
2.	Centra	Il Processing Unit (CPU)	32
		ata Registers (R0, R1, R2, and R3)	
	2.2 Ac	ddress Registers (A0 and A1)	33
	2.3 Fr	ame Base Register (FB)	33
	2.4 Int	terrupt Table Register (INTB)	33
	2.5 Pr	ogram Counter (PC)	33
	2.6 Us	ser Stack Pointer (USP) and Interrupt Stack Pointer (ISP)	33
	2.7 St	atic Base Register (SB)	33
	2.8 Fla	ag Register (FLG)	33
	2.8.1	Carry Flag (C Flag)	33
	2.8.2	Debug Flag (D Flag)	33
	2.8.3	Zero Flag (Z Flag)	33
	2.8.4	Sign Flag (S Flag)	33
	2.8.5	Register Bank Select Flag (B Flag)	33
	2.8.6	Overflow Flag (O Flag)	33
	2.8.7	Interrupt Enable Flag (I Flag)	33
	2.8.8	Stack Pointer Select Flag (U Flag)	
	2.8.9	Processor Interrupt Priority Level (IPL)	34
	2.8.10	Reserved Space	34
3.	Addres	ss Space	35
	3.1 Ac	ddress Space	35
		emory Map	
		ccessible Area in Each Mode	

4.	Spe	cial	Function Registers (SFRs)	38
	4.1	SF	Rs	38
	4.2	Not	tes on SFRs	54
	4.2.	1	Register Settings	54
5.	Prot	ect	ion	55
Ο.	5.1		oduction	
	5.2		gister	
	5.2.	•	Protect Register (PRCR)	
	5.3		tes on Protection	
6.	Res	ets		58
	6.1	Intr	oduction	58
	6.2	Re	gisters	59
	6.2.	1	Processor Mode Register 0 (PM0)	60
	6.2.	2	Reset Source Determine Register (RSTFR)	61
	6.3	Op	tional Function Select Area	63
	6.3.	1	Optional Function Select Address 1 (OFS1)	63
	6.4	Ор	erations	65
	6.4.	1	Status After Reset	65
	6.4.	2	Hardware Reset	68
	6.4.	3	Power-On Reset Function	69
	6.4.	4	Voltage Monitor 0 Reset	70
	6.4.	5	Voltage Monitor 1 Reset	70
	6.4.	6	Voltage Monitor 2 Reset	71
	6.4.	7	Oscillation Stop Detection Reset	71
	6.4.	8	Watchdog Timer Reset	72
	6.4.	9	Software Reset	72
	6.4.	10	Cold Start-Up/Warm Start-Up Discrimination	73
	6.5	Not	tes on Resets	74
	6.5.	1	Power Supply Rising Gradient	74
	6.5.	2	Power-On Reset	74
	6.5.3	3	OSDR Bit (Oscillation Stop Detection Reset Detection Flag)	74
7.	Volta	ade	Detector	75
-		Ū	oduction	75

	7.2 Re	gisters	77
	7.2.1	Voltage Detection 2 Circuit Flag Register (VCR1)	78
	7.2.2	Voltage Detection Circuit Operation Enable Register (VCR2)	79
	7.2.3	Voltage Monitor Function Select Register (VWCE)	80
	7.2.4	Voltage Detection 1 Level Select Register (VD1LS)	80
	7.2.5	Voltage Monitor 0 Circuit Control Register (VW0C)	82
	7.2.6	Voltage Monitor 1 Circuit Control Register (VW1C)	83
	7.2.7	Voltage Monitor 2 Circuit Control Register (VW2C)	85
	7.3 Op	tional Function Select Area	87
	7.3.1	Optional Function Select Address (OFS1)	87
	7.4 Op	erations	88
	7.4.1	Digital Filter	88
	7.4.2	Voltage Detection 0 Circuit	89
	7.4.3	Voltage Detection 1 Circuit	91
	7.4.4	Voltage Detection 2 Circuit	94
	7.5 Into	errupts	97
8.	Clock (Generator	98
	8.1 Int	roduction	98
	8.2 Re	gistersgisters	101
	8.2.1	Processor Mode Register 0 (PM0)	102
	8.2.2	System Clock Control Register 0 (CM0)	103
	8.2.3	System Clock Control Register 1 (CM1)	105
	8.2.4	Oscillation Stop Detection Register (CM2)	107
	8.2.5	Peripheral Clock Select Register (PCLKR)	109
	8.2.6	PLL Control Register 0 (PLC0)	110
	8.2.7	Processor Mode Register 2 (PM2)	111
	8.2.8	40 MHz On-Chip Oscillator Control Register 0 (FRA0)	112
	8.3 Clo	ocks Generated by Clock Generators	113
	8.3.1	Main Clock	113
	8.3.2	PLL Clock	115
	8.3.3	fOCO40M	116
	8.3.4	fOCO-F	116
	8.3.5	125 kHz On-Chip Oscillator Clock (fOCO-S)	117
	8.3.6	Sub Clock (fC)	118

	8.4	CPU Clock and Peripheral Function Clocks	119
	8.4.	.1 CPU Clock and BCLK	119
	8.4.	.2 Peripheral Function Clocks (f1, fOCO40M, fOCO-F, fOCO-S, fC32, fC)	119
	8.5	Clock Output Function	121
	8.6	System Clock Protection Function	121
	8.7	Oscillation Stop/Re-Oscillation Detect Function	122
	8.7.	.1 Operation When CM27 Bit is 0 (Oscillation Stop Detection Reset)	122
	8.7.	1	
		Interrupt)	
	8.7.		
	8.8	Notes on Clock Generator	
	8.8.	3	
	8.8.		
	8.8.		
	8.8.	• ,	
	8.8.	.5 PLL Frequency Synthesizer	128
9.	Pov	wer Control	129
	9.1	Introduction	129
	9.2	Registers	129
	9.2.	.1 Flash Memory Control Register 0 (FMR0)	130
	9.2.	.2 Flash Memory Control Register 2 (FMR2)	131
	9.3	Clock	132
	9.3.	.1 Normal Operating Mode	132
	9.3.	.2 Mode Transitions	136
	9.3.	.3 Wait Mode	139
	9.3.	.4 Stop Mode	143
	9.4	Power Control in Flash Memory	146
	9.4.	.1 Stopping Flash Memory	146
	9.4.	.2 Reading Flash Memory	147
	9.5	Reducing Power Consumption	149
	9.5.	.1 Ports	149
	9.5.	.2 A/D Converter	149
	9.5.	.3 D/A Converter	149
	9.5.	.4 Stopping Peripheral Functions	149
	9.5.	.5 Switching the Oscillation-Driving Capacity	149

9.6	No	tes on Power Control	150
9.6	.1	CPU Clock	150
9.6	.2	Wait Mode	150
9.6	.3	Stop Mode	151
9.6	.4	Low Current Consumption Read Mode	151
10. Pro	ces	sor Mode	152
10.1	Intr	oduction	152
10.2	Re	gisters	153
10.	2.1	Processor Mode Register 0 (PM0)	153
10.	2.2	Processor Mode Register 1 (PM1)	154
10.	2.3	Program 2 Area Control Register (PRG2C)	156
10.3	Ор	erations	157
10.	3.1	Processor Mode Settings	157
11. Bus	3		159
11.1	Intr	oduction	159
11.2	Re	gisters	160
11.:	2.1	Chip Select Control Register (CSR)	161
11.:	2.2	Chip Select Expansion Control Register (CSE)	162
11.3	2.3	External Area Wait Control Expansion Register (EWC)	163
11.3	2.4	External Area Recovery Cycle Control Register (EWR)	164
11.3	Ор	erations	165
11.3	3.1	Common Specifications of Internal Bus and External Bus	165
11.3	3.2	Internal Bus	166
11.3	3.3	External Bus	167
11.3	3.4	External Bus Mode	167
11.3	3.5	External Bus Control	168
11.4	No	tes on Bus	181
11.	4.1	Reading Data Flash	181
11.4	4.2	External Bus	181
11.	4.3	External Access Soon After Writing to the SFRs	181
12. Me	mor	y Space Expansion Function	182
12.1	Intr	oduction	182
12 2	Re	gisters	182

12.	2.1	Data Bank Register (DBR)	183
12.3	Ор	erations	184
12.	3.1	1-Mbyte Mode	184
12.	3.2	4-Mbyte Mode	186
13. Pro	grar	mmable I/O Ports	192
13.1	Intr	oduction	192
13.2	I/O	Ports and Pins	194
13.3	Re	gisters	204
13.	3.1	Pull-Up Control Register 0 (PUR0)	205
13.	3.2	Pull-Up Control Register 1 (PUR1)	206
13.	3.3	Pull-Up Control Register 2 (PUR2)	207
13.	3.4	Pull-Up Control Register 3 (PUR3)	208
13.	3.5	Port Control Register (PCR)	209
13.	3.6	Port Pi Registers (Pi) (i = 0 to 14)	210
13.	3.7	Port Pi Direction Registers (PDi) (i = 0 to 14)	212
13.	3.8	NMI/SD Digital Filter Register (NMIDF)	213
13.4	Pei	ripheral Function I/O	214
13.	4.1	Peripheral Function I/O and Port Direction Bits	214
13.	4.2	Priority Level of Peripheral Function I/O	214
13.	4.3	NMI/SD Digital Filter	215
13.	4.4	CNVSS	215
13.5	Una	assigned Pin Handling	216
13.6	No	tes on Programmable I/O Ports	218
13.	6.1	Influence of the SD Input	218
13.	6.2	Influence of SI/O3 and SI/O4	218
13.	6.3	100-Pin Package	218
13.	6.4	80-Pin Package	218
14. Inte	errup	ots	219
14.1	Intr	oduction	219
14.2	Re	gisters	220
14.	2.1	Processor Mode Register 2 (PM2)	222

1	4.2.2	Interrupt Control Register 1 (TB5IC, TB4IC/U1BCNIC, TB3IC/U0BCNIC, BCNIC, DM0IC to DM3IC, KUPIC, ADIC, S0TIC to S2TIC, S0RIC to S2RIC, TA0IC to TA4IC, TB0 TB2IC, U5BCNIC/CEC1IC, S5TIC/CEC2IC, S5RIC to S7RIC, U6BCNIC RTCTIC, S6TIC/RTCCIC, U7BCNIC/PMC0IC, S7TIC/PMC1IC, IICIC, SCLDAIC)	IC to C/
1	4.2.3	Interrupt Control Register 2 (INT7IC, INT6IC, INT3IC, S4IC/INT5IC, S3IC/INT4IC, INT0IC to INT2IC)	
1	4.2.4	Interrupt Source Select Register 3 (IFSR3A)	225
1	4.2.5	Interrupt Source Select Register 2 (IFSR2A)	226
1	4.2.6	Interrupt Source Select Register (IFSR)	227
1	4.2.7	Address Match Interrupt Enable Register (AIER)	228
1	4.2.8	Address Match Interrupt Enable Register 2 (AIER2)	228
1	4.2.9	Address Match Interrupt Register i (RMADi) (i = 0 to 3)	229
1	4.2.10	Port Control Register (PCR)	230
1	4.2.11	NMI/SD Digital Filter Register (NMIDF)	231
14.3	В Тур	es of Interrupt	232
14.4	l Sof	tware Interrupts	233
1	4.4.1	Undefined Instruction Interrupt	233
1	4.4.2	Overflow Interrupt	233
1	4.4.3	BRK Interrupt	233
1	4.4.4	INT Instruction Interrupt	233
14.5	5 Har	dware Interrupts	234
1	4.5.1	Special Interrupts	234
1	4.5.2	Peripheral Function Interrupts	234
14.6	6 Inte	errupts and Interrupt Vectors	235
1	4.6.1	Fixed Vector Tables	236
1	4.6.2	Relocatable Vector Tables	236
14.7	' Inte	errupt Control	239
1	4.7.1	Maskable Interrupt Control	239
1	4.7.2	Interrupt Sequence	240
1	4.7.3	Interrupt Response Time	241
1	4.7.4	Variation of IPL When Interrupt Request is Accepted	241
1	4.7.5	Saving Registers	242
1	4.7.6	Returning from an Interrupt Routine	243
1	4.7.7	Interrupt Priority	243
1	4.7.8	Interrupt Priority Level Select Circuit	243

14.7.9	Multiple Interrupts	246
14.8 ĪNT	Interrupt	247
14.9 NV	ĪĪ Interrupt	248
14.10 Ke	y Input Interrupt	248
14.11 Add	dress Match Interrupt	249
14.12 No	n-Maskable Interrupt Source Discrimination	250
14.13 No	tes on Interrupts	251
14.13.1	Reading Address 00000h	251
14.13.2	SP Setting	251
14.13.3	NMI Interrupt	251
14.13.4	Changing an Interrupt Source	252
14.13.5	Rewriting the Interrupt Control Register	253
14.13.6	ĪNT Interrupt	254
15. Watcho	log Timer	255
	oduction	
	gisters	
15.2.1	Voltage Monitor 2 Circuit Control Register (VW2C)	
15.2.2	Count Source Protection Mode Register (CSPR)	
15.2.3	Watchdog Timer Reset Register (WDTR)	
15.2.4	Watchdog Timer Start Register (WDTS)	
15.2.5	Watchdog Timer Control Register (WDC)	
15.3 Op	tional Function Select Area	
15.3.1	Optional Function Select Address 1 (OFS1)	
15.4 Op	erations	
15.4.1	Count Source Protection Mode Disabled	261
15.4.2	Count Source Protection Mode Enabled	262
15.5 Inte	errupts	263
15.6 No	tes on Watchdog Timer	264
16 DMAC		265
	oduction	
	gisters	
16.2.1	DMAi Source Pointer (SARi) (i = 0 to 3)	
16.2.2	DMAi Destination Pointer (DARi) (i = 0 to 3)	
16.2.3	DMAi Transfer Counter (TCRi) (i = 0 to 3)	269

16.2.4	DMAi Control Register (DMiCON) (i = 0 to 3)	270
16.2.	5 DMAi Source Select Register (DMiSL) (i = 0 to 3)	271
16.3	Operations	274
16.3.	DMA Enabled	274
16.3.2	2 DMA Request	274
16.3.3	3 Transfer Cycles	275
16.3.4	DMAC Transfer Cycles	277
16.3.	Single Transfer Mode	278
16.3.6	Repeat Transfer Mode	279
16.3.7	Channel Priority and DMA Transfer Timing	279
16.4 I	nterrupts	281
16.5 N	lotes on DMAC	282
16.5.	Write to the DMAE Bit in the DMiCON Register (i = 0 to 3)	282
16.5.2	Changing DMA Request Source	282
17 Time	· A	283
	ntroduction	
	Registers	
17.2.		
17.2.2		
17.2.3		
17.2.4		
17.2.		
17.2.6	Timer A Waveform Output Function Select Register (TAPOFS)	292
17.2.7	Timer A Output Waveform Change Enable Register (TAOW)	293
17.2.8	Timer Ai Register (TAi) (i = 0 to 4)	294
17.2.9	Timer Ai-1 Register (TAi1) (i = 1, 2, 4)	295
17.2.	0 Count Start Flag (TABSR)	296
17.2.	1 One-Shot Start Flag (ONSF)	297
17.2.	2 Trigger Select Register (TRGSR)	298
17.2.	3 Up/Down Flag (UDF)	299
17.2.	4 Timer Ai Mode Register (TAiMR) (i = 0 to 4)	300
17.3	Operations	
17.3.	Common Operations	301
17.3.3	7 Timer Mode	303

17.	3.3	Event Counter Mode (When Not Processing Two-Phase Pulse Signal)	. 307
17.	3.4	Event Counter Mode (When Processing Two-Phase Pulse Signal)	. 311
17.	3.5	One-Shot Timer Mode	. 316
17.	3.6	Pulse Width Modulation (PWM) Mode	. 320
17.	3.7	Programmable Output Mode (Timers A1, A2, and A4)	. 325
17.4	Inte	errupts	. 329
17.5	Not	tes on Timer A	. 330
17.	5.1	Timer A (Timer Mode)	. 330
17.	5.2	Timer A (Event Counter Mode)	. 331
17.	5.3	Timer A (One-Shot Timer Mode)	. 332
17.	5.4	Timer A (Pulse Width Modulation Mode)	. 333
17.	5.5	Timer A (Programmable Output Mode)	. 334
18. Tim	er E	3	335
18.1	Intr	oduction	. 335
18.2	Re	gisters	. 338
18.	2.1	Peripheral Clock Select Register (PCLKR)	. 339
18.	2.2	Clock Prescaler Reset Flag (CPSRF)	. 339
18.	2.3	Timer Bi Register (TBi) (i = 0 to 5)	. 340
18.	2.4	Timer Bi-1 Register (TBi1) (i = 0 to 5)	. 341
18.2	2.5	Pulse Period/Pulse Width Measurement Mode Function Select Register (PPWFSi) (i = 1, 2)	
18.	2.6	Timer B Count Source Select Register i (TBCSi) (i = 0 to 3)	. 343
18.	2.7	Timer AB Division Control Register 0 (TCKDIVC0)	. 344
18.	2.8	Count Start Flag (TABSR) Timer B3/B4/B5 Count Start Flag (TBSR)	. 345
18.	2.9	Timer Bi Mode Register (TBiMR) (i = 0 to 5)	. 346
18.3	Op	erations	. 347
18.	3.1	Common Operations	. 347
18.	3.2	Timer Mode	349
18.	3.3	Event Counter Mode	. 351
18.	3.4	Pulse Period/Pulse Width Measurement Modes	354
18.4	Inte	errupts	359
18.5	Not	tes on Timer B	360
18.	5.1	Timer B (Timer Mode)	360
1852		Timer B (Event Counter Mode)	. 361

	18.	5.3	Timer B (Pulse Period/Pulse Width Measurement Modes)	362
19.	Thr	ee-F	Phase Motor Control Timer Function	363
1	9.1	Intr	oduction	363
1	9.2	Re	gisters	367
	19.	2.1	Timer B2 Register (TB2)	368
	19.	2.2	Timer Ai, Ai-1 Register (TAi, TAi1) (i = 1, 2, 4)	368
	19.	2.3	Three-Phase PWM Control Register 0 (INVC0)	369
	19.	2.4	Three-Phase PWM Control Register 1 (INVC1)	371
	19.	2.5	Three-Phase Output Buffer Register i (IDBi) (i = 0, 1)	373
	19.	2.6	Dead Time Timer (DTT)	373
	19.	2.7	Timer B2 Interrupt Generation Frequency Set Counter (ICTB2)	374
	19.	2.8	Timer B2 Special Mode Register (TB2SC)	375
	19.	2.9	Position-Data-Retain Function Control Register (PDRF)	376
	19.	2.10	Port Function Control Register (PFCR)	377
	19.	2.11	Three-Phase Protect Control Register (TPRC)	377
1	9.3	Ope	erations	378
	19.	3.1	Common Operations in Multiple Modes	378
	19.	3.2	Triangular Wave Modulation Three-Phase Mode 0	384
	19.	3.3	Triangular Wave Modulation Three-Phase Mode 1	389
	19.	3.4	Sawtooth Wave Modulation Mode	396
1	9.4	Inte	errupts	401
	19.	4.1	Timer B2 Interrupt	401
	19.	4.2	Timers A1, A2 and A4 Interrupts	401
1	9.5	Not	es on Three-Phase Motor Control Timer Function	402
	19.	5.1	Timer A, Timer B	402
	19.	5.2	Forced Cutoff Input	402
20.	Rea	al-Tii	me Clock	403
2	20.1	Intr	oduction	403
2	20.2	Re	gisters	405
	20.	2.1	Real-Time Clock Second Data Register (RTCSEC)	406
	20.	2.2	Real-Time Clock Minute Data Register (RTCMIN)	407
	20.	2.3	Real-Time Clock Hour Data Register (RTCHR)	408
	20.	2.4	Real-Time Clock Day Data Register (RTCWK)	409
	20.	2.5	Real-Time Clock Control Register 1 (RTCCR1)	410

	20.2	2.6	Real-Time Clock Control Register 2 (RTCCR2)	412
	20.2	2.7	Real-Time Clock Count Source Select Register (RTCCSR)	414
	20.2	2.8	Real-Time Clock Second Compare Data Register (RTCCSEC)	415
	20.2	2.9	Real-Time Clock Minute Compare Data Register (RTCCMIN)	416
	20.2	2.10	Real-Time Clock Hour Compare Data Register (RTCCHR)	417
2	0.3	Оре	erations	418
	20.3	3.1	Basic Operation	418
	20.3	3.2	Compare Mode	421
2	0.4	Inte	rrupts	427
2	0.5	Not	es on Real-Time Clock	428
	20.5	5.1	Starting and Stopping Count	428
	20.5	5.2	Register Setting (Time Data etc.)	428
	20.5	5.3	Register Setting (Compare Data)	428
	20.5	5.4	Time Reading Procedure of Real-Time Clock Mode	429
21.	Pul	se V	Vidth Modulator	430
2	1.1	Intr	oduction	430
2	1.2	Reg	gisters	431
	21.2	2.1	PWM Control Register 0 (PWMCON0)	432
	21.2	2.2	PWMi Prescaler (PWMPREi) (i = 0, 1)	433
	21.2	2.3	PWMi Register (PWMREGi) (i = 0, 1)	434
	21.2	2.4	PWM Control Register 1 (PWMCON1)	435
2	1.3	Оре	erations	437
	21.3	3.1	Setting Procedure	437
	21.3	3.2	Operation Example	437
22.	Rer	note	Control Signal Receiver	440
2	2.1	Intr	oduction	440
2	2.2	Reg	gisters	443
	22.2	2.1	PMCi Function Select Register (PMCiCON0) (i = 0, 1)	445
	22.2	2.2	PMCi Function Select Register (PMCiCON1) (i = 0, 1)	447
	22.2	2.3	PMCi Function Select Register 2 (PMCiCON2) (i = 0, 1)	
	22.2	2.4	PMCi Function Select Register 3 (PMCiCON3) (i = 0, 1)	451
	22.2	2.5	PMCi Status Register (PMCiSTS) (i = 0, 1)	
	22.2	26	PMCi Interrupt Source Register (PMCiINT) (i = 0. 1)	455

	22.2.7	PMCi Header Pattern Set Register (MIN) (PMCiHDPMIN) (i = 0, 1) PMCi Header Pattern Set Register (MAX) (PMCiHDPMAX) (i = 0, 1)	456
	22.2.8	PMCi Data 0 Pattern Set Register (MIN) (PMCiD0PMIN) (i = 0, 1) PMCi Data 0 Pattern Set Register (MAX) (PMCiD0PMAX) (i = 0, 1) PMCi Data 1 Pattern Set Register (MIN) (PMCiD1PMIN) (i = 0, 1) PMCi Data 1 Pattern Set Register (MAX) (PMCiD1PMAX) (i = 0, 1)	457
	22.2.9	PMCi Measurements Register (PMCiTIM) (i = 0, 1)	458
	22.2.10	PMCi Counter Value Register (PMCiBC) (i = 0, 1)	458
	22.2.11	PMC0 Receive Bit Count Register (PMC0RBIT)	458
	22.2.12	PMC0 Receive Data Store Register i (PMC0DATi) (i = 0 to 5)	459
	22.2.13	PMC0 Compare Control Register (PMC0CPC)	460
	22.2.14	PMC0 Compare Data Register (PMC0CPD)	461
22	2.3 Ope	erations	462
	22.3.1	Common Operations in Multiple Modes	462
	22.3.2	Pattern Match Mode (PMC0 and PMC1 Operate Individually)	464
	22.3.3	Pattern Match Mode (Connected Operation of PMC0 and PMC1)	471
	22.3.4	Input Capture Mode (PMC0 and PMC1 Operate Individually)	476
	22.3.5	Input Capture Mode (Simultaneous Count Operation of PMC0 and PMC	
		errupt	
22		es on Remote Control Signal Receiver	
	22.5.1	Start/Stop of PMCi	
	22.5.2	Register Reading Procedure	486
23.	Serial Ir	nterface UARTi (i = 0 to 2, 5 to 7)	. 487
23	3.1 Intro	oduction	487
23	3.2 Reg	gisters	492
	23.2.1	UART Clock Select Register (UCLKSEL0)	494
	23.2.2	Peripheral Clock Select Register (PCLKR)	494
	23.2.3	UARTi Transmit Buffer Register (UiTB) (i = 0 to 2, 5 to 7)	495
	23.2.4	UARTi Receive Buffer Register (UiRB) (i = 0 to 2, 5 to 7)	496
	23.2.5	UARTi Bit Rate Register (UiBRG) (i = 0 to 2, 5 to 7)	498
	23.2.6	UARTi Transmit/Receive Mode Register (UiMR) (i = 0 to 2, 5 to 7)	498
	23.2.7	UARTi Transmit/Receive Control Register 0 (UiC0) (i = 0 to 2, 5 to 7)	499
	23.2.8	UARTi Transmit/Receive Control Register 1 (UiC1) (i = 0 to 2, 5 to 7)	501
	23.2.9	UART Transmit/Receive Control Register 2 (UCON)	503
	23.2.10	UARTi Special Mode Register (UiSMR) (i = 0 to 2, 5 to 7)	504

	23.2	2.11	UARTi Special Mode Register 2 (UiSMR2) (i = 0 to 2, 5 to 7)	505
	23.2	2.12	UARTi Special Mode Register 3 (UiSMR3) (i = 0 to 2, 5 to 7)	506
	23.2	2.13	UARTi Special Mode Register 4 (UiSMR4) (i = 0 to 2, 5 to 7)	507
23	3.3	Оре	erations	508
	23.3	3.1	Clock Synchronous Serial I/O Mode	508
	23.3	3.2	Clock Asynchronous Serial I/O (UART) Mode	517
	23.3	3.3	Special Mode 1 (I ² C mode)	527
	23.3	3.4	Special Mode 2	537
	23.3	3.5	Special Mode 3 (IE mode)	542
	23.3	3.6	Special Mode 4 (SIM Mode) (UART2)	544
23	3.4	Inte	rrupts	549
	23.4	4.1	Interrupt Related Registers	549
	23.4	4.2	Reception Interrupt	550
23	3.5	Not	es on Serial Interface UARTi (i = 0 to 2, 5 to 7)	551
	23.	5.1	Clock Synchronous Serial I/O	551
	23.5	5.2	UART (Clock Asynchronous Serial I/O) Mode	553
	23.5	5.3	Special Mode 1 (I2C Mode)	553
	23.	5.4	Special Mode 4 (SIM Mode)	553
24.	Ser	ial Ir	nterface SI/O3 and SI/O4	554
	4.1		oduction	
	4.2		gisters	
_	24.2		Peripheral Clock Select Register (PCLKR)	
	24.2		SI/O Transmit/Receive Register (SiTRR) (i = 3, 4)	
	24.2	2.3	SI/Oi Control Register (SiC) (i = 3, 4)	
	24.2	2.4	SI/Oi Bit Rate Register (SiBRG) (i = 3, 4)	
	24.2	2.5	SI/O3, 4 Control Register 2 (S34C2)	
24	4.3	Ope	erations	
	24.3	•	Basic Operations	
	24.3	3.2	CLK Polarity Selection	
	24.3		LSB First or MSB First Selection	
	24.3		Internal Clock	
	24.3		Function for Selecting SOUTi State after Transmission	
	24.3		External Clock	
	24.3		SOUTi Pin	

	24.3	.8	Function for Setting SOUTi Initial Value	565
24	1.4	Inte	rrupt	566
24	1.5	Not	es on Serial Interface SI/O3 and SI/O4	567
	24.5	.1	SOUTi Pin Level When SOUTi Output Disabled	567
	24.5	.2	External Clock Control	567
	24.5	.3	Register Access When Using External Clock	567
	24.5	.4	SiTRR Register Access	567
	24.5	.5	Pin Function Switch When Using Internal Clock	567
	24.5	.6	Operation After Reset When Selecting External Clock	567
25.	Mult	i-Ma	aster I ² C-bus Interface	. 568
25	5.1	Intro	oduction	568
25	5.2	Reg	gisters Descriptions	571
	25.2	.1	Peripheral Clock Select Register (PCLKR)	572
	25.2	.2	I2C0 Data Shift Register (S00)	573
	25.2	.3	I2C0 Address Register i (S0Di) (i = 0 to 2)	574
	25.2	.4	I2C0 Control Register (S1D0)	575
	25.2	.5	I2C0 Clock Control Register (S20)	578
	25.2	.6	I2C0 Start/Stop Condition Control Register (S2D0)	581
	25.2	.7	I2C0 Control Register 1 (S3D0)	582
	25.2	.8	I2C0 Control Register 2 (S4D0)	587
	25.2	.9	I2C0 Status Register 0 (S10)	589
	25.2	.10	I2C0 Status Register 1 (S11)	594
25	5.3	Оре	erations	595
	25.3	.1	Clock	595
	25.3	.2	Generation of Start Condition	598
	25.3	.3	Generation of Stop Condition	600
	25.3	.4	Generation of Restart Condition	601
	25.3	.5	Start Condition Overlap Protect	602
	25.3	.6	Arbitration Lost	604
	25.3	.7	Start Condition and Stop Condition Detection	605
	25.3	.8	Operation After Completion of Slave Address/Data Transmit/Receive	608
	25.3	.9	Timeout Detection	609
	25.3	.10	Data Transmit/Receive Examples	610
25	5.4	Inte	rrupts	615

	25.5	Not	tes on Multi-Master I ² C-bus Interface	618
	25.	5.1	Limitation on CPU Clock	618
	25.	5.2	Register Access	618
26	Cor	neum	ner Electronics Control (CEC) Function	610
	. 00i 26.1		oduction	
	26.2		gisters	
	20.2 26.:		CEC Function Control Register 1 (CECC1)	
	26.		CEC Function Control Register 2 (CECC2)	
	26.		CEC Function Control Register 3 (CECC3)	
	26.		CEC Function Control Register 4 (CECC4)	
	26.		CEC Flag Register (CECFLG)	
	26.			
			CEC Interrupt Source Select Register (CISEL)	
	26.		CEC Transmit Buffer Register 1 (CCTB1)	
	26.		CEC Transmit Buffer Register 2 (CCTB2)	
	26.		CEC Receive Buffer Register 1 (CCRB1)	
			CEC Receive Buffer Register 2 (CCRB2)	632
	26.	2.11	CEC Receive Follower Address Set Register 1 (CRADRI1), CEC Receive Follower Address Set Register 2 (CRADRI2)	633
	26.	2.12	Port Control Register (PCR)	
	26.3		erations	
	26.	•	Standard Value and I/O Timing	
	26.	3.2	Count Source	
	26.	3.3	CEC Input/Output	
	26.	3.4	Digital Filter	636
	26.	3.5	Reception	
	26.	3.6	Transmission	
	26.4	Inte	errupts	648
	26.5		tes on CEC (Consumer Electronics Control)	
	26.		Registers and Bit Operation	
~-	۸ /۵			
			nverter	
	27.1		oduction	
	27.2	Re	gisters	
	27.		Peripheral Clock Stop Register (PCLKSTP1)	
	27	2.2	Port Control Register (PCR)	655

	27.2.3	Open-Circuit Detection Assist Function Register (AINRST)	656
	27.2.4	AD Register i (ADi) (i = 0 to 7)	657
	27.2.5	A/D Control Register 2 (ADCON2)	658
	27.2.6	A/D Control Register 0 (ADCON0)	660
	27.2.7	A/D Control Register 1 (ADCON1)	662
2	7.3 O	perations	663
	27.3.1	A/D Conversion Cycle	663
	27.3.2	A/D Conversion Start Conditions	665
	27.3.3	A/D Conversion Result	666
	27.3.4	Extended Analog Input Pins	666
	27.3.5	Current Consumption Reduce Function	666
	27.3.6	Open-Circuit Detection Assist Function	666
2	7.4 O	perational Modes	668
	27.4.1	One-Shot Mode	668
	27.4.2	Repeat Mode	671
	27.4.3	Single Sweep Mode	674
	27.4.4	Repeat Sweep Mode 0	676
	27.4.5	Repeat Sweep Mode 1	678
2	7.5 E	xternal Sensor	681
2	7.6 In	terrupt	683
2	7.7 N	otes on A/D Converter	684
	27.7.1	Analog Input Pin	684
	27.7.2	fAD Frequency	684
	27.7.3	Pin Configuration	684
	27.7.4	Register Access	684
	27.7.5	A/D Conversion Start	684
	27.7.6	A/D Operation Mode Change	685
	27.7.7	State When Forcibly Terminated	685
	27.7.8	A/D Open-Circuit Detection Assist Function	685
	27.7.9	Detection of Completion of A/D Conversion	685
	27.7.10	0 Register Settings	685
28	D/A C	onverter	686
		troduction	
		egisters	
2	υ.∠ Γ	CYIOLDI O	007

28.2.1		2.1	D/Ai Register (DAi) (i = 0 to 1)	. 687
	28.2	2.2	D/A Control Register (DACON)	. 687
	28.3	Оре	erations	. 688
	28.4	Not	tes on D/A Converter	. 689
	28.4	4.1	Not Using D/A Converter	. 689
29	O. CR	C C	alculator	690
	29.1		oduction	
	29.2		gisters	
	29.2		CRC Data Register (CRCD)	
	29.2		CRC Input Register (CRCIN)	
	_	2.3	CRC Mode Register (CRCMR)	
	29.2		SFR Snoop Address Register (CRCSAR)	
			erations	
	29.3	-	Basic Operation	
	29.3	3.2	CRC Snoop	
~ ~			·	
30			lemory	
	30.1		oduction	
	30.2		mory Map	
	30.3		gisters	
	30.3	3.1	Flash Memory Control Register 0 (FMR0)	
	30.3	3.2	Flash Memory Control Register 1 (FMR1)	. 703
	30.3	3.3	Flash Memory Control Register 2 (FMR2)	. 704
	30.3	3.4	Flash Memory Control Register 3 (FMR3)	. 705
	30.3	3.5	Flash Memory Control Register 6 (FMR6)	. 706
	30.4	Opt	tional Function Select Address 1 (OFS1)	. 707
	30.5	Fla	sh Memory Rewrite Disable Function	. 708
	30.6	Boo	ot Mode	. 708
	30.7	Use	er Boot Function	. 709
	30.8	СР	U Rewrite Mode	. 711
	30.8	8.1	Operating Speed	. 712
	30.8	3.2	Data Protect Function	. 712
	30.8	3.3	Suspend Function (under review)	. 713
	30.8	8.4	Software Command	. 714
	30.8	8 5	Status Register	721

	30.8.6	EW0 Mode	724
	30.8.7	EW1 Mode	729
	30.9 Sta	andard Serial I/O Mode	734
	30.9.1	ID Code Check Function	735
	30.9.2	Forced Erase Function	736
	30.9.3	Standard Serial I/O Mode Disable Function	736
	30.9.4	Standard Serial I/O Mode 1	737
	30.9.5	Standard Serial I/O Mode 2	739
	30.9.6	Parallel I/O Mode	740
	30.10 No	tes on Flash Memory	741
	30.10.1	Functions to Prevent Flash Memory from Being Rewritten	741
	30.10.2	Reading of Data Flash	741
	30.10.3	CPU Rewrite Mode	741
	30.10.4	Standard Serial I/O Mode	743
3′	I. Precau	tions	744
	31.1 OF	S1 Address and ID Code Storage Address	744
	31.2 No	tes on Noise	744
	31.3 No	tes on SFRs	746
	31.3.1	Register Settings	746
	31.4 No	tes on Protection	747
	31.5 No	tes on Resets	748
	31.5.1	Power Supply Rising Gradient	748
	31.5.2	Power-On Reset	748
	31.5.3	OSDR Bit (Oscillation Stop Detection Reset Detection Flag)	748
	31.6 No	tes on Clock Generator	749
	31.6.1	Oscillation Circuit Using an Oscillator	749
	31.6.2	Noise Countermeasure	750
	31.6.3	CPU ClockW	751
	31.6.4	Oscillation Stop, Re-Oscillation Detect Function	751
	31.6.5	PLL Frequency Synthesizer	752
	31.7 No	tes on Power Control	753
	31.7.1	CPU Clock	753
	31.7.2	Wait Mode	753
	31.7.3	Stop Mode	754

31.7.4	Low Current Consumption Read Mode	754
31.8 Not	es on Processor Mode	755
31.9 Not	es on Bus	756
31.9.1	Reading Data Flash	756
31.9.2	External Bus	756
31.9.3	External Access Soon After Writing to the SFRs	756
31.10 Not	es on Memory Space Expansion Function	757
31.11 Not	es on Programmable I/O Ports	758
31.11.1	Influence of the SD Input	758
31.11.2	Influence of SI/O3 and SI/O4	758
31.11.3	100-Pin Package	758
31.11.4	80-Pin Package	758
31.12 Not	es on Interrupts	759
31.12.1	Reading Address 00000h	759
31.12.2	SP Setting	759
31.12.3	NMI Interrupt	759
31.12.4	Changing an Interrupt Source	760
31.12.5	Rewriting the Interrupt Control Register	761
31.12.6	INT Interrupt	762
31.13 Not	es on Watchdog Timer	763
31.14 Not	es on DMAC	764
31.14.1	Write to the DMAE Bit in the DMiCON Register (i = 0 to 3)	764
31.14.2	Changing DMA Request Source	764
31.15 Not	es on Timer A	765
31.15.1	Timer A (Timer Mode)	765
31.15.2	Timer A (Event Counter Mode)	766
31.15.3	Timer A (One-Shot Timer Mode)	767
31.15.4	Timer A (Pulse Width Modulation Mode)	768
31.15.5	Timer A (Programmable Output Mode)	769
31.16 Not	es on Timer B	770
31.16.1	Timer B (Timer Mode)	770
31.16.2	Timer B (Event Counter Mode)	771
31.16.3	Timer B (Pulse Period/Pulse Width Measurement Modes)	772
31.17 Not	es on Three-Phase Motor Control Timer Function	773
31 17 1	Timer A Timer B	773

31.17.2	Forced Cutoff Input	773
31.18 Not	es on Real-Time Clock	774
31.18.1	Starting and Stopping Count	774
31.18.2	Register Setting (Time Data etc.)	774
31.18.3	Register Setting (Compare Data)	774
31.18.4	Time Reading Procedure of Real-Time Clock Mode	775
31.19 Not	es on Pulse Width Modulator	776
31.20 Not	es on Remote Control Signal Receiver	777
31.20.1	Start/Stop of PMCi	777
31.20.2	Register Reading Procedure	777
31.21 No	tes on Serial Interface UARTi (i = 0 to 2, 5 to 7)	778
31.21.1	Clock Synchronous Serial I/O	778
31.21.2	UART (Clock Asynchronous Serial I/O) Mode	780
31.21.3	Special Mode 1 (I2C Mode)	780
31.21.4	Special Mode 4 (SIM Mode)	780
31.22 Not	es on SI/O3 and SI/O4	781
31.22.1	SOUTi Pin Level When SOUTi Output Disabled	781
31.22.2	External Clock Control	781
31.22.3	Register Access When Using External Clock	781
31.22.4	SiTRR Register Access	781
31.22.5	Pin Function Switch When Using Internal Clock	781
31.22.6	Operation After Reset When Selecting External Clock	781
31.23 Not	es on Multi-Master I ² C-bus Interface	782
31.23.1	Limitation on CPU Clock	782
31.23.2	Register Access	782
31.24 Not	es on CEC (Consumer Electronics Control)	783
31.24.1	Registers and Bit Operation	783
31.25 Not	es on A/D Converter	784
31.25.1	Analog Input Pin	784
31.25.2	fAD Frequency	784
31.25.3	Pin Configuration	784
31.25.4	Register Access	784
31.25.5	A/D Conversion Start	784
31.25.6	A/D Operation Mode Change	785
31 25 7	State When Forcibly Terminated	785

31.25.8	A/D Open-Circuit Detection Assist Function	. 785
31.25.9	Detection of Completion of A/D Conversion	. 785
31.25.10	Register Settings	. 785
31.26 Not	tes on D/A Converter	. 786
31.26.1	Not Using D/A Converter	. 786
31.27 Not	tes on Flash Memory	. 787
31.27.1	Functions to Prevent Flash Memory from Being Rewritten	. 787
31.27.2	Reading of Data Flash	. 787
31.27.3	CPU Rewrite Mode	. 787
31.27.4	Standard Serial I/O Mode	. 789
Appendix 1.	Package Dimensions	790

SFR Page Reference

Address	Register	Symbol	Page
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	60
0005h	Processor Mode Register 1	PM1	154
0006h	System Clock Control Register 0	CM0	103
0007h	System Clock Control Register 1	CM1	105
0008h	Chip Select Control Register	CSR	161
0009h	External Area Recovery Cycle Control	EWR	164
000Ah	Register Protect Register	PRCR	55
000An	Data Bank Register	DBR	183
000Ch	Oscillation Stop Detection Register	CM2	107
000Ch	Oscillation Stop Detection Register	CIVIZ	107
000Eh			
000EH			
000FII	Drawam 2 Area Control Degister	PRG2C	156
0010h	Program 2 Area Control Register External Area Wait Control Expansion	EWC	164
OUTIN	Register	EWC	104
0012h	Peripheral Clock Select Register	PCLKR	109
XXXX	-	SCM0	
X000b			
0014h			
0015h	Clock Prescaler Reset Flag	CPSRF	288
0016h			
0017h			
0018h	Reset Source Determine Register	RSTFR	61
0019h	Voltage Detection 2 Circuit Flag Register	VCR1	78
001Ah	Voltage Detection Circuit Operation Enable	VCR2	79
001Bh	Register Chip Select Expansion Control Register	CSE	162
001Ch	PLL Control Register 0	PLC0	110
001Ch	PLE CONTROL Register 0	PLCU	110
001Eh	Dropper Mode Register 2	PM2	111
001EH	Processor Mode Register 2	FIVIZ	1111
001FII			
0020H			
0021h	40 MHz On-Chip Oscillator Control Register 0	FRA0	112
0022H	40 MHZ OTI-CHIP OSCIIIATOI CONTIOI REGISTEI 0	FRAU	112
0023h			
0024H			
0025h	Voltage Monitor Function Select Register	VWCE	80
0020H	Voltage Monitor Function Select Register	VVVCL	00
002711 0028h	Voltage Detection 1 Level Salest Register	VD1LS	80
0028h	Voltage Detection 1 Level Select Register	VDILS	60
0029H	Voltage Maniter O Circuit Control Register	VW0C	82
002AH	Voltage Monitor 0 Circuit Control Register	VW1C	83
002Bh	Voltage Monitor 1 Circuit Control Register Voltage Monitor 2 Circuit Control Register	VW1C VW2C	85
002Ch	Vollage Monitor 2 Official Control Register	V VVZO	05
002Dh 002Eh			
002EH			
002FN 0030h			
0030H			
0031h			
0032h			
0033h			
0034h			
0035h			
0036h			
0037h 0038h			
0039h			
003Ah 003Bh			
003Ch			
003Dh			
			l
003Eh			
003Fh			

1	Address	Register	Symbol	Page
1	0042h	INT7 Interrupt Control Register	INT7IC	224

A -l -l	Desistes	0	D
Address 0043h	Register INT6 Interrupt Control Register	Symbol INT6IC	Page
	· ·		224
0044h	INT3 Interrupt Control Register	INT3IC	224
0045h	Timer B5 Interrupt Control Register	TB5IC	223
0046h	Timer B4 Interrupt Control Register	TB4IC	223
	UART1 Bus Collision Detection Interrupt Control Register	U1BCNIC	
0047h	Timer B3 Interrupt Control Register UART0 Bus Collision Detection Interrupt Control Register	TB3IC U0BCNIC	223
0048h	SI/O4 Interrupt Control Register INT5 Interrupt Control Register	S4IC INT5IC	224
0049h	SI/O3 Interrupt Control Register INT4 Interrupt Control Register	S3IC INT4IC	224
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	223
004Bh	DMA0 Interrupt Control Register	DM0IC	223
004Ch	DMA1 Interrupt Control Register	DM1IC	223
004Dh	Key Input Interrupt Control Register	KUPIC	223
004Eh	A/D Conversion Interrupt Control Register	ADIC	223
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	223
0050h	UART2 Receive Interrupt Control Register	S2RIC	223
0051h	UART0 Transmit Interrupt Control Register	SOTIC	223
0052h	UART0 Receive Interrupt Control Register	S0RIC	223
0053h	UART1 Transmit Interrupt Control Register	S1TIC	223
0054h	UART1 Receive Interrupt Control Register	S1RIC	223
0055h	Timer A0 Interrupt Control Register	TA0IC	223
0056h	Timer A1 Interrupt Control Register	TA1IC	223
0057h	Timer A2 Interrupt Control Register	TA2IC	223
0058h	Timer A3 Interrupt Control Register	TA3IC	223
0059h	Timer A4 Interrupt Control Register	TA4IC	223
		_	
005Ah	Timer B0 Interrupt Control Register	TB0IC	223
005Bh	Timer B1 Interrupt Control Register	TB1IC	223
005Ch	Timer B2 Interrupt Control Register	TB2IC	223
005Dh	INT0 Interrupt Control Register	INT0IC	224
005Eh	INT1 Interrupt Control Register	INT1IC	224
	·	_	
005Fh	INT2 Interrupt Control Register	INT2IC	224
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
	DIMAN AND AND AND AND AND AND AND AND AND A	DIMOIO	000
0069h	DMA2 Interrupt Control Register	DM2IC	223
006Ah	DMA3 Interrupt Control Register	DM3IC	223
006Bh	UART5 Bus Collision Detection Interrupt	U5BCNIC	223
	Control Register UART5 Bus Collision Detection Interrupt	CEC1IC	
	Control Register		
006Ch	UART5 Transmit Interrupt Control Register	S5TIC	223
00051	CEC2 Interrupt Control Register	CEC2IC	200
006Dh	UART5 Receive Interrupt Control Register	S5RIC	223
006Eh	UART6 Bus Collision Detection Interrupt Control Register Real-Time Clock Period Interrupt Control	U6BCNIC RTCTIC	223
006Fh	Register UART6 Transmit Interrupt Control Register Real-Time Clock Compare Match Interrupt Control Register	S6TIC RTCCIC	223
0070h	UART6 Receive Interrupt Control Register	S6RIC	223
	UART7 Bus Collision Detection Interrupt	U7BCNIC	223
		PMC0IC	223
0071h	Control Register Remote Control Signal Receiver 0 Interrupt Control Register		
	Remote Control Signal Receiver 0 Interrupt	S7TIC PMC1IC	223
0071h	Remote Control Signal Receiver 0 Interrupt Control Register UART7 Transmit Interrupt Control Register Remote Control Signal Receiver 1 Interrupt	S7TIC	223
0071h 0072h 0073h	Remote Control Signal Receiver 0 Interrupt Control Register UART7 Transmit Interrupt Control Register Remote Control Signal Receiver 1 Interrupt Control Register	S7TIC PMC1IC	
0071h 0072h 0073h 0074h	Remote Control Signal Receiver 0 Interrupt Control Register UART7 Transmit Interrupt Control Register Remote Control Signal Receiver 1 Interrupt Control Register	S7TIC PMC1IC	
0071h 0072h 0073h 0074h 0075h	Remote Control Signal Receiver 0 Interrupt Control Register UART7 Transmit Interrupt Control Register Remote Control Signal Receiver 1 Interrupt Control Register	S7TIC PMC1IC	
0071h 0072h 0073h 0074h 0075h 0076h	Remote Control Signal Receiver 0 Interrupt Control Register UART7 Transmit Interrupt Control Register Remote Control Signal Receiver 1 Interrupt Control Register UART7 Receive Interrupt Control Register	S7TIC PMC1IC S7RIC	
0071h 0072h 0073h 0074h 0075h 0076h	Remote Control Signal Receiver 0 Interrupt Control Register UART7 Transmit Interrupt Control Register Remote Control Signal Receiver 1 Interrupt Control Register	S7TIC PMC1IC S7RIC	

	-		
Address	Register	Symbol	Page
0079h 007Ah		1	
	1100	11010	200
007Bh	IICBus Interface Interrupt Control Register	IICIC	223
007Ch	SCL/SDA Interrupt Control Register	SCLDAIC	223
007Dh			
007Eh			
007Fh			
0080h to			i
เบ 017Fh			i
0180h	DMA0 Source Pointer	SAR0	268
0181h			i
0182h			i
0183h			
0184h	DMA0 Destination Pointer	DAR0	268
0185h			
0186h			
0187h			
0188h	DMA0 Transfer Counter	TCR0	269
0189h	DIVIAO TIANSIEI Gountei	1010	203
0189h			
018An 018Bh			
018Bh	DMA0 Control Register	DM0CON	270
	DIVIAU CUITIUI REGISTEI	DIVIOCON	210
018Dh		1	
018Eh			
018Fh	DMM Course Points	0454	000
0190h	DMA1 Source Pointer	SAR1	268
0191h			
0192h			
0193h			
0194h	DMA1 Destination Pointer	DAR1	268
0195h			i
0196h			
0197h			
0198h	DMA1 Transfer Counter	TCR1	269
0199h			i
019Ah			
019Bh			
019Ch	DMA1 Control Register	DM1CON	270
019Dh			
019Eh			
019Fh			
01A0h	DMA2 Source Pointer	SAR2	268
01A1h			i
01A2h			
01A3h			
01A4h	DMA2 Destination Pointer	DAR2	268
01A5h			
01A6h			
01A7h			
01A711	DMA2 Transfer Counter	TCR2	269
01A9h		. 52	
01AAh		1	
01ABh			
01ACh	DMA2 Control Pogistor	DM2CON	270
01ACh	DMA2 Control Register	DIVIZOON	210
01AEh			
01AFh	DMAQ Quara Paintan	0450	000
01B0h	DMA3 Source Pointer	SAR3	268
01B1h			
01B2h			
01B3h			
			268
01B4h	DMA3 Destination Pointer	DAR3	200
01B4h 01B5h	DMA3 Destination Pointer	DAR3	200
01B4h	DMA3 Destination Pointer	DAR3	
01B4h 01B5h	DMA3 Destination Pointer	DAR3	
01B4h 01B5h 01B6h	DMA3 Destination Pointer DMA3 Transfer Counter	DAR3	269
01B4h 01B5h 01B6h 01B7h			

Address 01BBh	Register	Symbol	Page
01BCh	DMA3 Control Register	DM3CON	270
01BDh			
01BEh			
01BFh			
01C0h	Timer B0-1 Register	TB01	341
01C1h	-		
01C2h	Timer B1-1 Register	TB11	341
01C3h			
01C4h	Timer B2-1 Register	TB21	341
01C5h			
01C6h	Pulse Period/Pulse Width Measurement	PPWFS1	342
01C7h	Mode Function Select Register 1	1	
01C8h	Timer B Count Source Select Register 0	TBCS0	343
01C9h	Timer B Count Source Select Register 1	TBCS0	343
01CAh	Timer B Count Cource Gelect Register 1	15001	343
01CBh	Timer AB Division Control Register 0	TCKDIVC0	289
01CCh	Timer AD Division Control Register 0	TORDIVOO	203
01CDh		-	
01CEh		+	
01CFh		 	
01D0h	Timer A Count Source Select Register 0	TACS0	290
01D0H	Timer A Count Source Select Register 1	TACS1	290
01D1h	Timer A Count Source Select Register 2	TACS2	290
01D2h			
01D3h	16-Bit Pulse Width Modulation Mode	PWMFS	291
	Function Select Register		
01D5h	Timer A Waveform Output Function Select Register	TAPOFS	292
01D6h	register		
01D7h			
01D8h	Timer A Output Waveform Change Enable	TAOW	293
	Register		
01D9h			
01DAh	Three-Phase Protect Control Register	TPRC	377
01DBh			
01DCh			
01DDh			
01DEh			
01DFh	Times P2 4 Degister	TB31	341
01E0h	Timer B3-1 Register	1831	341
01E1h	Timer B4-1 Register	TB41	341
01E2h 01E3h	Timer 64-1 Register	1041	341
	Timer DE 1 Degister	TDE1	341
01E4h 01E5h	Timer B5-1 Register	TB51	341
01E5h	Pulse Period/Pulse Width Measurement	PPWFS2	342
O I LOII	Mode Function Select Register 2	FF WF32	342
01E7h		†	
01E8h	Timer B Count Source Select Register 2	TBCS2	343
01E9h	Timer B Count Source Select Register 3	TBCS3	343
01EAh		1	
01EBh		1	
01ECh			
01EDh			
01EEh		1	
01EFh			
01F0h	PMC0 Function Select Register 0	PMC0CON0	445
01F1h	PMC0 Function Select Register 1	PMC0CON1	447
01F2h	PMC0 Function Select Register 2	PMC0CON2	449
01F3h	PMC0 Function Select Register 3	PMC0CON3	451
01F4h	PMC0 Status Register	PMC0STS	452
· · · · · · ·	PMC0 Interrupt Source Select Register	PMC0INT	455
01F5h	PMC0 Compare Control Register	PMC0CPC	460
	1 mos compare control regions		
01F5h	PMC0 Compare Data Register	PMC0CPD	461
01F5h 01F6h			
01F5h 01F6h 01F7h	PMC0 Compare Data Register	PMC0CPD	461

Note: 1. Blank columns are all reserved space. No access is allowed.

Address	Register	Symbol	Page
01FBh	PMC1 Function Select Register 3	PMC1CON3	451
01FCh	PMC1 Status Register	PMC1STS	452
01FDh	PMC1 Interrupt Source Select Register	PMC1INT	455
01FEh			
01FFh			
0200h			
0201h			
0202h			
0203h			
0204h		+	
0205h	Interrupt Source Select Register 3	IFSR3A	225
0205h	Interrupt Source Select Register 2	IFSR2A	226
	-	IFSR	
0207h	Interrupt Source Select Register	IFSK	227
0208h			
0209h			
020Ah			
020Bh			
020Ch			
020Dh			
020Eh	Address Match Interrupt Enable Register	AIER	228
020Fh	Address Match Interrupt Enable Register 2	AIER2	228
0210h	Address Match Interrupt Register 0	RMAD0	229
0211h		1	
0212h		j	
0213h			
0213h	Address Match Interrupt Register 1	RMAD1	229
0214H 0215h		NWADI	223
0215h			
0217h			
0218h	Address Match Interrupt Register 2	RMAD2	229
0219h			
021Ah			
021Bh			
021Ch	Address Match Interrupt Register 3	RMAD3	229
021Dh			
021Eh			
021Fh			
0220h	Flash Memory Control Register 0	FMR0	130
0221h	Flash Memory Control Register 1	FMR1	701
0222h	Flash Memory Control Register 2	FMR2	131
0223h	Flash Memory Control Register 3	FMR3	703
0224h	That Mariory Control Register 6	TIVILLO	700
0224H		1	
0226h			
0227h		<u> </u>	
0228h		1	
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
022Eh		1	
022Fh			
0230h	Flash Memory Control Register 6	FMR6	704
0231h	,	+	**
0232h		+ -	
0232h		1	
0233h		+	
		+	
0235h		1	
0236h			
0237h		<u> </u>	
0238h			
0239h			
023Ah			
023Bh			
023Ch		1	
023Dh			
023Eh		†	
023Fh		† †	
	İ	1	

0240h UARTO Special Mode Register 4 UOSMR4 507 0243h UARTO Special Mode Register 3 UOSMR3 506 0244h UARTO Special Mode Register 3 UOSMR2 505 0246h UARTO Special Mode Register 2 UOSMR2 505 0246h UARTO Special Mode Register 3 UOSMR 498 0249h UARTO Special Mode Register 4 UOSMR 498 0249h UARTO Transmit/Receive Mode Register 4 UOSMR 498 0249h UARTO Brita Rate Register 4 UOSMR 498 0244h UARTO Transmit/Receive Control Register 9 UOC0 499 0244h UARTO Transmit/Receive Control Register 1 UOC1 501 0247h UARTO Receive Buffer Register UCLKSEL0 496 0247h UARTO Transmit/Receive Control Register 1 UOC1 503 0247h UART Grock Select Register UCLKSEL0 494 0247h UART Special Mode Register 2 UCLKSEL0 494 0255h UART Special Mode Register 3 UISMR2 505	Address	Register	Symbol	Page
0242h				
0243h UARTO Special Mode Register 4 UOSMR4 507 0246h UARTO Special Mode Register 3 UOSMR3 506 0246h UARTO Special Mode Register 2 UOSMR2 505 0247h UARTO Special Mode Register 2 UOSMR 504 0248h UARTO Transmit/Receive Mode Register 3 UOBRG 498 0244h UARTO Transmit/Receive Control Register 4 UOCD 499 0244h UARTO Transmit/Receive Control Register 1 UOCD 499 0240h UARTO Transmit/Receive Control Register 1 UOCD 499 0240h UARTO Receive Buffer Register 4 UOCD 501 0241h UARTO Receive Buffer Register 4 UOCD 503 0242h UARTO Receive Buffer Register 4 UCLKSELO 494 0245h UART Transmit/Receive Control Register 2 UCON 503 0251h UART Special Mode Register 4 UCLKSELO 494 0255h UART Special Mode Register 3 UISMR3 506 0255h UART Special Mode Register 3 UISMR3 506 0256h UART Special Mode Register 3 UISMR3 506 0256h UART Transmi	-			
0244h UARTO Special Mode Register 3 UOSMR3 506 0246h UARTO Special Mode Register 3 UOSMR3 506 0247h UARTO Special Mode Register 2 UOSMR2 505 0247h UARTO Special Mode Register 2 UOSMR 504 0249h UARTO Transmit/Receive Mode Register 3 UOBMR 498 0244h UARTO Bit Rate Register 4 UORB 498 0244h UARTO Transmit/Receive Control Register 1 UOC0 499 0244h UARTO Transmit/Receive Control Register 1 UOC1 501 0244h UARTO Receive Buffer Register 4 UOC0 501 0247h UARTO Receive Buffer Register 4 UCLKSELO 494 0247h UART Clock Select Register 4 UCLKSELO 494 0250h UART Special Mode Register 2 UCLKSELO 494 0255h UART Special Mode Register 3 UISMR3 506 0255h UART Special Mode Register 3 UISMR3 506 0256h UART Special Mode Register 4 UISMR3 506 0256h UART Transmit/Receive Mode Register 3 UISMR3 506 0256h UART Transmit/Receive Regist				
0245h UARTO Special Mode Register 3 UOSMR3 506 0246h UARTO Special Mode Register 2 UOSMR2 505 0247h UARTO Special Mode Register UOSMR 498 0248h UARTO Briansmit/Receive Mode Register UOBRG 498 0249h UARTO Bit Rate Register UOBRG 498 0244h UARTO Transmit/Receive Control Register 0 UOCO 499 0240h UARTO Transmit/Receive Control Register 1 UOCD 499 0241h UARTO Transmit/Receive Control Register 1 UOCD 503 0242h UARTO Transmit/Receive Control Register 2 UCLXSELO 496 0247h UARTO Transmit/Receive Control Register 2 UCLXSELO 494 0250h UART Transmit/Receive Control Register 2 UCLXSELO 494 0251h UART Clock Select Register UCLXSELO 494 0253h UART Special Mode Register 3 U1SMR3 506 0255h UART1 Special Mode Register 4 U1SMR2 505 0255h UART3 Special Mode Register 4 U1SMR 5 <td></td> <td></td> <td></td> <td></td>				
Q246h		' '		
0247h UARTO Special Mode Register UOSMR 504 0249h UARTO Bit Rate Register UOMR 498 0244h UARTO Bit Rate Register UOBRG 498 024Ah UARTO Transmit/Receive Mode Register UOTB 495 024Bh UARTO Transmit/Receive Control Register 0 UOC0 499 024Ch UARTO Transmit/Receive Control Register 1 UOC1 501 024Eh UARTO Receive Buffer Register UORB 496 024Fh UART Receive Buffer Register UOCN 503 025bh UART Transmit/Receive Control Register 2 UCON 503 025bh UART Clock Select Register UCLKSELO 494 0255h UART1 Special Mode Register 3 U1SMR3 506 0255h UART1 Special Mode Register 2 U1SMR3 506 0255h UART1 Special Mode Register 3 U1SMR3 506 0255h UART1 Special Mode Register 2 U1SMR 498 498 0255h UART1 Special Mode Register 3 U1BRG 498 498 <				
0248h UARTO Transmit/Receive Mode Register UOMR 498 0248h UARTO Bit Rate Register UOBRG 498 0248h UARTO Transmit Buffer Register UOTB 495 0248h UARTO Transmit/Receive Control Register 0 UOCO 499 0240h UARTO Transmit/Receive Control Register 1 UOCO 499 0241h UARTO Receive Buffer Register UORB 496 0242h UARTO Receive Buffer Register UCON 503 0250h UART Transmit/Receive Control Register 2 UCON 503 0251h UART Clock Select Register UCLKSELO 494 0253h UARTI Special Mode Register 3 U1SMR3 506 0254h UARTI Special Mode Register 2 U1SMR2 505 0255h UARTI Special Mode Register 2 U1SMR2 505 0257h UARTI Special Mode Register 3 U1BMR 504 505 0258h UARTI Transmit/Receive Mode Register 4 U1BR 495 498 0259h UARTI Sit Rate Register 4 U1BR 495 498				
0249h UARTO Bit Rate Register UOBRG 498 024Ah UARTO Transmit Buffer Register UOTB 495 024Ch UARTO Transmit/Receive Control Register 0 UOCO 499 024Ch UARTO Transmit/Receive Control Register 1 UOC1 501 024Eh UARTO Receive Buffer Register UORB 496 025Th UART Clock Select Register UCCWS 503 025th UART Clock Select Register UCLKSELO 494 025th UART Special Mode Register 4 UTSMR4 507 025th UART1 Special Mode Register 3 U1SMR3 506 025th UART1 Special Mode Register 2 U1SMR3 506 025th UART1 Special Mode Register 3 U1SMR 504 025th UART1 Bit Rate Register U1SMR 504 025th UART1 Bit Rate Register U1BRG 498 025th UART1 Transmit/Receive Control Register U1C0 499 025th UART1 Receive Buffer Register U1C1 501 025th		-		
024Ah UART0 Transmit Buffer Register UOTB 495 024Bh UART0 Transmit/Receive Control Register 0 UOC0 499 024Dh UART0 Transmit/Receive Control Register 1 UOC1 501 024Bh UART0 Receive Buffer Register UORB 496 024Fh UART Receive Buffer Register UOCN 503 0250h UART Transmit/Receive Control Register 2 UCON 503 0255h UART Clock Select Register UCLKSELO 494 0255h UART1 Special Mode Register 3 U1SMR4 507 0255h UART1 Special Mode Register 3 U1SMR2 505 0256h UART1 Special Mode Register 1 U1SMR 2 505 0257h UART1 Special Mode Register 1 U1SMR 498 498 0258h UART1 Transmit Buffer Register 1 U1BR 498 495 0258h UART1 Transmit Buffer Register 1 U1C0 499 495 0256h UART1 Transmit/Receive Control Register 0 U1C0 499 496 0257h UART2 Special Mode Register 2 U2SMR2 505 <td< td=""><td></td><td>-</td><td></td><td></td></td<>		-		
024Bh UART0 Transmit/Receive Control Register 0 UOC0 499 024Dh UART0 Transmit/Receive Control Register 1 UOC1 501 024Eh UART0 Receive Buffer Register UORB 496 024Fh UART0 Receive Buffer Register UCON 503 0250h UART Transmit/Receive Control Register 2 UCON 503 0251h UART Clock Select Register UCLKSELO 494 0253h UART1 Special Mode Register 4 U1SMR4 507 0255h UART1 Special Mode Register 3 U1SMR3 506 0255h UART1 Special Mode Register 2 U1SMR2 505 0257h UART1 Special Mode Register 3 U1SMR 504 0257h UART1 Special Mode Register 4 U1SMR 505 0257h UART1 Transmit/Receive Mode Register 4 U1SMR 504 0258h UART1 Transmit/Receive Control Register 0 U1C0 499 0250h UART1 Receive Buffer Register 4 U2C0 499 025bh UART1 Receive Buffer Register 1 U1C1 501				
024Ch UART0 Transmit/Receive Control Register 0 UOC0 499 024Dh UART0 Transmit/Receive Control Register 1 UOC1 501 024Eh UART0 Receive Buffer Register UORB 496 025Dh UART Transmit/Receive Control Register 2 UCON 503 0251h UART Clock Select Register UCLKSELO 494 0253h UART1 Special Mode Register 3 UCLKSELO 494 0255h UART1 Special Mode Register 3 U1SMR3 506 0255h UART1 Special Mode Register 2 U1SMR3 506 0255h UART1 Special Mode Register 3 U1SMR3 506 0255h UART1 Special Mode Register 4 U1SMR 505 0255h UART1 Special Mode Register 9 U1BRG 498 0259h UART1 Brate Register U1BRG 498 0255h UART1 Transmit Buffer Register U1C0 499 0255h UART1 Transmit Receive Control Register 0 U1C0 499 0256h UART1 Transmit Receive Gontrol Register 1 U1C1 501	-	UART0 Transmit Buffer Register	0018	495
024Dh UART0 Transmit/Receive Control Register U0C1 501 024Fh UART0 Receive Buffer Register U0RB 496 025Dh UART Transmit/Receive Control Register 2 UCON 503 0251h UCDSD VART Clock Select Register UCLKSEL0 494 0253h UART1 Special Mode Register 4 U1SMR4 507 0255h UART1 Special Mode Register 3 U1SMR3 506 0256h UART1 Special Mode Register 2 U1SMR2 505 0257h UART1 Special Mode Register 2 U1SMR3 506 0257h UART1 Special Mode Register 3 U1SMR3 506 0257h UART1 Special Mode Register 4 U1BRG 498 0259h UART1 Transmit/Receive Mode Register 2 U1BRG 498 0259h UART1 Transmit/Receive Control Register 0 U1C0 499 0250h UART1 Transmit/Receive Control Register 1 U1C1 501 0255h UART1 Receive Buffer Register U1RB 496 0255h UART2 Special Mode Register 2 U2SMR3		114070 7 11/0 11 0 11 10 11 10	LIGOS	
024Eh UARTO Receive Buffer Register UORB 496 0250h UART Transmit/Receive Control Register 2 UCON 503 0251h UART Clock Select Register UCLKSELO 494 0253h UART Special Mode Register 4 U1SMR4 507 0255h UART1 Special Mode Register 3 U1SMR3 506 0256h UART1 Special Mode Register 2 U1SMR 505 0257h UART1 Special Mode Register 2 U1SMR 504 0258h UART1 Special Mode Register 2 U1SMR 504 0257h UART1 Special Mode Register 3 U1SMR 504 0258h UART1 Transmit/Receive Mode Register 4 U1BRG 498 0259h UART1 Transmit/Receive Control Register 0 U1C0 499 0259h UART1 Transmit/Receive Control Register 1 U1C1 501 0250h UART1 Receive Buffer Register U1RB 496 0257h UART1 Receive Buffer Register U1C0 499 0263h UART2 Special Mode Register 2 U2SMR3 506				
024Fh UZSDh UART Transmit/Receive Control Register 2 UCON 503 0251h UART Clock Select Register UCLKSEL0 494 0253h UART Clock Select Register UCLKSEL0 494 0253h UART1 Special Mode Register 3 U1SMR3 506 0255h UART1 Special Mode Register 2 U1SMR2 505 0257h UART1 Special Mode Register 2 U1SMR 504 0258h UART1 Special Mode Register W1BRG 498 0259h UART1 Bit Rate Register U1BRG 498 0259h UART1 Transmit/Receive Control Register U1BRG 498 0259h UART1 Transmit/Receive Control Register 0 U1C0 499 0250h UART1 Transmit/Receive Control Register 1 U1C1 501 0255h UART1 Transmit/Receive Control Register 1 U1C1 501 0256h UART1 Special Mode Register 3 U2SMR3 506 0267h UART2 Special Mode Register 3 U2SMR3 506 0268h UART2 Special Mode Register 2 U2SMR2 505		· · · · · · · · · · · · · · · · · · ·		
0250h UART Transmit/Receive Control Register 2 UCON 503 0251h UCLKSELO 494 0252h UART Clock Select Register UCLKSELO 494 0253h UART Special Mode Register 3 USMR4 507 0255h UART1 Special Mode Register 2 UISMR2 505 0257h UART1 Special Mode Register U1SMR 504 0258h UART1 Transmit/Receive Mode Register U1MR 498 0259h UART1 Transmit/Receive Mode Register U1BRG 498 0259h UART1 Transmit/Receive Control Register U1DQ 499 025bh UART1 Transmit/Receive Control Register 0 U1C0 499 025bh UART1 Transmit/Receive Control Register 1 U1C1 501 025bh UART1 Transmit/Receive Control Register 1 U1C1 501 025bh UART1 Receive Buffer Register U1RB 496 025bh UART1 Receive Buffer Register U1RB 496 026th UART2 Special Mode Register 2 U2SMR 3 506 026th <td></td> <td>UARTU Receive Buffer Register</td> <td>UURB</td> <td>496</td>		UARTU Receive Buffer Register	UURB	496
0251h		HART Towns it/Deceins Control Decistor C	HOON	500
02525h UART Clock Select Register UCLKSELO 494 0253h 0254h UART1 Special Mode Register 4 U1SMR4 507 0255h UART1 Special Mode Register 3 U1SMR3 506 0255h UART1 Special Mode Register 2 U1SMR 505 0257h UART1 Special Mode Register U1SMR 504 0258h UART1 Iransmit/Receive Mode Register U1MR 498 0259h UART1 Bit Rate Register U1BRG 498 0258h UART1 Transmit/Receive Control Register U1C0 499 0259h UART1 Transmit/Receive Control Register 0 U1C0 499 0250h UART1 Receive Buffer Register U1RB 496 0250h UART1 Receive Buffer Register U1RB 496 0256h UART2 Special Mode Register 4 U2SMR4 507 0263h UART2 Special Mode Register 3 U2SMR3 506 0264h UART2 Special Mode Register U2SMR 2 505 0265h UART2 Special Mode Register U2SMR 2 505 <		UART Transmit/Receive Control Register 2	UCON	503
0253h U254h UART1 Special Mode Register 4 U1SMR4 507 0255h UART1 Special Mode Register 3 U1SMR3 506 0256h UART1 Special Mode Register 2 U1SMR2 505 0257h UART1 Special Mode Register U1SMR 504 0258h UART1 Transmit/Receive Mode Register U1MR 498 0259h UART1 Bit Rate Register U1BRG 498 0259h UART1 Transmit Buffer Register U1TB 495 0259h UART1 Transmit/Receive Control Register 0 U1C0 499 0250h UART1 Transmit/Receive Control Register 1 U1C1 501 025bh UART1 Receive Buffer Register U1RB 496 025bh UART1 Receive Buffer Register U1RB 496 025bh UART2 Receive Buffer Register U1RB 496 0266h U2RT1 Receive Buffer Register U2RB 496 0267h U2RT2 Special Mode Register 4 U2SMR3 506 0268h U2RT2 Special Mode Register 9 U2SMR2 505 <		HART Olask Oaks at Resistan	HOLKOELO	10.1
0254h UART1 Special Mode Register 4 U1SMR3 506 0255h UART1 Special Mode Register 3 U1SMR3 506 0256h UART1 Special Mode Register 2 U1SMR2 505 0257h UART1 Special Mode Register U1SMR 504 0258h UART1 Special Mode Register U1MR 498 0259h UART1 Bit Rate Register U1BRG 498 0258h UART1 Transmit/Receive Control Register U1C 498 0258h UART1 Transmit/Receive Control Register 0 U1C0 499 0258h UART1 Transmit/Receive Control Register 1 U1C1 501 0258h UART1 Transmit/Receive Control Register 1 U1C1 501 0259h UART1 Receive Buffer Register U1RB 496 0256h UART1 Receive Buffer Register U1RB 496 0257h UART2 Special Mode Register U2SMR4 507 0263h UART2 Special Mode Register 3 U2SMR3 506 0264h UART2 Special Mode Register U2SMR2 505 <t< td=""><td></td><td>UART Clock Select Register</td><td>UCLKSELU</td><td>494</td></t<>		UART Clock Select Register	UCLKSELU	494
0255h UART1 Special Mode Register 3 U1SMR3 506 0256h UART1 Special Mode Register 2 U1SMR2 505 0257h UART1 Special Mode Register U1SMR 504 0258h UART1 Special Mode Register U1MR 498 0259h UART1 Bit Rate Register U1BRG 498 025Ah UART1 Transmit/Receive Control Register U1C0 499 025Bh UART1 Transmit/Receive Control Register 0 U1C0 499 025Dh UART1 Transmit/Receive Control Register 1 U1C1 501 025Dh UART1 Receive Buffer Register U1RB 496 025Dh UART1 Receive Buffer Register U1RB 496 025Dh UART1 Receive Buffer Register U1RB 496 0261h U261h U278 496 0262h UART2 Special Mode Register 3 U25MR4 507 0263h UART2 Special Mode Register 3 U25MR3 506 0266h UART2 Special Mode Register U25MR2 504 0267h UART2 Spec		LIART1 Special Mode Posictor 4	111CMD4	E07
0256h UART1 Special Mode Register 2 U1SMR2 505 0257h UART1 Special Mode Register U1SMR 504 0258h UART1 Transmit/Receive Mode Register U1MR 498 0259h UART1 Brate Register U1BRG 498 0258h UART1 Transmit Buffer Register U1BRG 498 025Dh UART1 Transmit/Receive Control Register 0 U1C0 499 025Dh UART1 Transmit/Receive Control Register 1 U1C1 501 025Eh UART1 Receive Buffer Register U1RB 496 026Eh UART2 Receive Buffer Register U2RM 507 026Bh UART2 Special Mode Register 3 U2SMR3 506 026Bh UART2 Special Mode Register U2SMR2 505 026Bh UART2 Transmit/Receive Mode Register U2BRG 498 026Bh </td <td></td> <td></td> <td></td> <td></td>				
0257h UART1 Special Mode Register U1SMR 504 0258h UART1 Transmit/Receive Mode Register U1MR 498 0259h UART1 Bit Rate Register U1BRG 498 0254h UART1 Transmit Buffer Register U1TB 495 0255h UART1 Transmit/Receive Control Register 0 U1C0 499 0255h UART1 Transmit/Receive Control Register 1 U1C1 501 0255h UART1 Receive Buffer Register U1RB 496 0255h UART1 Receive Buffer Register U1RB 496 0255h UART1 Receive Buffer Register U1RB 496 0256h UART1 Receive Buffer Register U1RB 496 0267h UART2 Special Mode Register 4 U2SMR4 507 0268h UART2 Special Mode Register 3 U2SMR3 506 0266h UART2 Special Mode Register U2SMR 504 0267h UART2 Transmit/Receive Mode Register U2MR 498 0268h UART2 Transmit Buffer Register U2BR 496 0260h<				
0258h UART1 Transmit/Receive Mode Register U1MR 498 0259h UART1 Bit Rate Register U1BRG 498 025Ah UART1 Transmit Buffer Register U1TB 495 025Bh UART1 Transmit Buffer Register U1C0 499 025Ch UART1 Transmit/Receive Control Register 0 U1C1 501 025Eh UART1 Receive Buffer Register U1RB 496 025Fh UART1 Receive Buffer Register U2RM4 507 0261h U2ART2 U2C1 507 0262h U2ART2 Special Mode Register 4 U2SMR2 505 0266h UART2 Special Mode Register U2MR 498 0269h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Transmit/Rec		-		
0259h UART1 Bit Rate Register U1BRG 498 025Ah UART1 Transmit Buffer Register U1TB 495 025Bh UART1 Transmit Buffer Register U1C0 499 025Ch UART1 Transmit/Receive Control Register 0 U1C0 499 025Dh UART1 Receive Buffer Register U1RB 496 025Fh UART1 Receive Buffer Register U1RB 496 025Ch UART1 Receive Buffer Register U1RB 496 025Ch UART1 Receive Buffer Register U1RB 496 0260h U2RT1 Receive Buffer Register U1RB 496 0261h U2RT1 Receive Buffer Register U2SMR4 507 0262h U2ART2 Special Mode Register 3 U2SMR3 506 0265h UART2 Special Mode Register 2 U2SMR2 505 0266h UART2 Special Mode Register 3 U2SMR2 505 0267h UART2 Special Mode Register 4 U2BMR 498 498 0269h UART2 Transmit Buffer Register 4 U2BMR 498 U2BMR 498 0269h<				
025Ah UART1 Transmit Buffer Register U1TB 495 025Bh U2SCh UART1 Transmit/Receive Control Register 0 U1C0 499 025Dh UART1 Transmit/Receive Control Register 1 U1C1 501 025Eh UART1 Receive Buffer Register U1RB 496 025Fh U2RT1 Receive Buffer Register U1RB 496 0260h U2RT1 Receive Buffer Register U1RB 496 0260h U2RT1 Receive Buffer Register U1RB 496 0260h U2RT1 496 496 0261h U2RT1 Receive Buffer Register U2SMR 507 0263h U2RT2 U2SMR3 506 0264h UART2 Special Mode Register 2 U2SMR2 505 0267h UART2 Special Mode Register U2MR 498 0268h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Transmit Buffer Register U2RB 496 0260h UART2 Transmit Buffer Register U2C0 499 0260h UART2 Tra		·		
025Bh UART1 Transmit/Receive Control Register 0 U1C0 499 025Dh UART1 Transmit/Receive Control Register 1 U1C1 501 025Bh UART1 Receive Buffer Register U1RB 496 025Bh UART1 Receive Buffer Register U1RB 496 025Bh U2RT1 Receive Buffer Register U1RB 496 026Dh U2C0 U2C0 496 026Dh U2C0 U2C0 496 026Dh U2C0 U2C0 496 026Dh U2C0 U2C0 498 026Dh UART2 Special Mode Register 2 U2SMR2 505 026Bh UART2 Special Mode Register 2 U2SMR2 505 026Bh UART2 Special Mode Register 2 U2MR 498 026Bh UART2 Transmit/Receive Mode Register 2 U2MR 498 026Bh UART2 Transmit/Receive Control Register 3 U2C0 499 026Bh UART2 Transmit/Receive Control Register 1 U2C1 501 026Bh UART2 Transmit/Receive Register 2 U2RB <td></td> <td>· ·</td> <td></td> <td></td>		· ·		
025Ch UART1 Transmit/Receive Control Register 0 U1C0 499 025Dh UART1 Transmit/Receive Control Register 1 U1C1 501 025Eh UART1 Receive Buffer Register U1RB 496 025Eh UART1 Receive Buffer Register U1RB 496 025Fh U2RT1 Receive Buffer Register U1RB 496 025Fh UART1 Receive Buffer Register U1RB 496 0260h U260h U28DR 496 0261h U28DR 496 496 0262h U28DR 507 498 0263h U2RT2 Special Mode Register 3 U2SMR3 506 0266h UART2 Special Mode Register 2 U2SMR2 505 0267h UART2 Special Mode Register 2 U2SMR2 505 0268h UART2 Transmit/Receive Mode Register U2SMR 504 0269h UART2 Transmit/Receive Register U2RB 496 0260h UART2 Transmit/Receive Control Register 0 U2C0 499 0260h UART2 Receive Buffer Register		UARTI Transmit Buffer Register	UTIB	495
025Dh UART1 Transmit/Receive Control Register 1 U1C1 501 025Eh UART1 Receive Buffer Register U1RB 496 025Fh U2SFh U1RB 496 0260h U2SIh U2SIh U2SIN 496 0262h U263h U2SIN 507 0263h U2SINR3 506 0263h UART2 Special Mode Register 4 U2SINR3 506 0266h U2SINR3 506 0266h UART2 Special Mode Register 3 U2SINR3 506 0266h U2SINR3 506 0266h UART2 Special Mode Register 2 U2SINR2 505 0267h U2SINR3 506 0266h UART2 Special Mode Register 2 U2SINR3 504 048 0268h U2SINR3 504 048 0268h U2SINR3 504 048 0268h U2RIR 498 0269 0268h UART2 Transmit/Receive Register U2C0 498 0268h 0268h UART2 Transmit/Receive Control Register 1 U2C1 501 0268h 0268h 0269h		LIADTA Transmit/Deceive Central Decister O	11400	400
025Eh 025Fh UART1 Receive Buffer Register U1RB 496 025Fh 0260h 0261h 0262h 0263h 0264h 0264h 0265h 0266h UART2 Special Mode Register 4 0265h UART2 Special Mode Register 3 0266h UART2 Special Mode Register 2 0267h UART2 Special Mode Register 2 0267h UART2 Special Mode Register 9 0267h UART2 Special Mode Register U2SMR2 0268h UART2 Transmit/Receive Mode Register U2MR 0269h UART2 Bit Rate Register U2BRG 0269h UART2 Bit Rate Register U2BRG 0260h UART2 Transmit/Receive Control Register 0 0260h UART2 Transmit/Receive Control Register 0 0260h UART2 Transmit/Receive Control Register 1 0266h UART2 Transmit/Receive Register U2RB 0266h UART2 Transmit/Receive Register U2RB 0266h UART2 Transmit/Receive Register U2RB 02670h SI/O3 Transmit/Receive Register S3TRR 0270h SI/O3 Control Register S3C 0271h SI/O3 Control Register S3C 0273h SI/O3 Bit Rate Register S3BRG 0274h SI/O4 Transmit/Receive Register S4TRR 0275h 0276h SI/O4 Control Register S4C 0276h SI/O4 Dit Rate Register S4BRG 0277h SI/O4 Bit Rate Register S4BRG 0278h SI/O3, 4 Control Register 2 0278h SI/O3, 4 Control Register 2 0278h 0278h 0		· · · · · · · · · · · · · · · · · · ·		
025Fh 0260h 0261h 0262h 0263h 0264h 0264h UART2 Special Mode Register 4 U2SMR3 506 0265h UART2 Special Mode Register 3 U2SMR3 506 0266h UART2 Special Mode Register 2 U2SMR2 505 0267h UART2 Special Mode Register U2SMR 504 0268h UART2 Transmit/Receive Mode Register U2SMR 498 0269h UART2 Transmit/Receive Mode Register U2BRG 498 0269h UART2 Bit Rate Register U2BRG 498 0260h UART2 Transmit/Receive Control Register U2C0 499 0260h UART2 Transmit/Receive Control Register 1 U2C1 501 026bh UART2 Receive Buffer Register U2RB 496 026h UART2 Receive Register S3TRR 557 0271h U2C1 501 558 0271h U2C1 501 558 0273h SI/O3 Control Register S3C 558 0274h <td></td> <td>·</td> <td></td> <td></td>		·		
0260h 0261h 0262h 0263h 0264h UART2 Special Mode Register 4 U2SMR4 507 0265h UART2 Special Mode Register 3 U2SMR3 506 0266h UART2 Special Mode Register 2 U2SMR2 505 0267h UART2 Special Mode Register U2SMR 504 0268h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Bit Rate Register U2BRG 498 026Ah UART2 Transmit/Receive Control Register U2TB 495 026Bh UART2 Transmit/Receive Control Register 0 U2C0 499 026Dh UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh U2RB 496 496 026Fh U2RB 496 496 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Control Register		OART Receive Buller Register	UIRB	496
0261h 0262h 0263h 0264h UART2 Special Mode Register 4 U2SMR4 507 0265h UART2 Special Mode Register 3 U2SMR3 506 0266h UART2 Special Mode Register 2 U2SMR2 505 0267h UART2 Special Mode Register U2SMR 504 0268h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Bit Rate Register U2BRG 498 026Ah UART2 Transmit/Receive Control Register U2TB 495 026Bh UART2 Transmit/Receive Control Register 0 U2C0 499 026Bh UART2 Transmit/Receive Control Register 1 U2C1 501 026Ch UART2 Transmit/Receive Register U2RB 496 026Fh UART2 Receive Buffer Register U2RB 496 026Fh U2RB 496 496 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h SI/O3 Bit Rate Register S3BRG 559 0275h SI/O4 Control Register S4C				
0262h 0263h 0264h UART2 Special Mode Register 4 U2SMR4 507 0265h UART2 Special Mode Register 3 U2SMR3 506 0266h UART2 Special Mode Register 2 U2SMR2 505 0267h UART2 Special Mode Register U2SMR 504 0268h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Bit Rate Register U2BRG 498 026Ah UART2 Transmit/Receive Control Register U2TB 495 026Bh UART2 Transmit/Receive Control Register 0 U2C0 499 026Dh UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh UART2 Receive Register S3TRR 557 0271h SI/O3 Transmit/Receive Register S3TRR 557 0271h S1/O3 Sit Rate Register S3BRG 559 0273h SI/O3 Bit Rate Register S4TRR 557 0275h SI/O4 Control Register S4C 558 <td></td> <td></td> <td></td> <td></td>				
0263h UART2 Special Mode Register 4 U2SMR4 507 0265h UART2 Special Mode Register 3 U2SMR3 506 0266h UART2 Special Mode Register 2 U2SMR2 505 0267h UART2 Special Mode Register U2SMR 504 0268h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Bit Rate Register U2BRG 498 026Ah UART2 Transmit Buffer Register U2TB 495 026Bh UART2 Transmit/Receive Control Register 0 U2C0 499 026Ch UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh U3RT2 Receive Register S3TRR 557 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h S1/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0276h SI/O4 Control Register S4C 558 0278h S				
0264h UART2 Special Mode Register 4 U2SMR4 507 0265h UART2 Special Mode Register 3 U2SMR3 506 0266h UART2 Special Mode Register 2 U2SMR 505 0267h UART2 Special Mode Register U2SMR 504 0268h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Bit Rate Register U2BRG 498 026Ah UART2 Transmit Buffer Register U2TB 495 026Bh UART2 Transmit/Receive Control Register 0 U2C0 499 026Dh UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh U3RB 496 496 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h S1/O3 Control Register S3C 558 0273h SI/O3 Sit Rate Register S4TRR 557 0275h S1/O4 Transmit/Receive Register S4C 558 0277h S1/O4 Bit Rate Register<				
0265h UART2 Special Mode Register 3 U2SMR3 506 0266h UART2 Special Mode Register 2 U2SMR2 505 0267h UART2 Special Mode Register U2SMR 504 0268h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Bit Rate Register U2BRG 498 026Ah UART2 Transmit Buffer Register U2TB 495 026Bh UART2 Transmit/Receive Control Register 0 U2C0 499 026Dh UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh U3RB 496 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h S1/O3 Control Register S3C 558 0273h SI/O3 Sit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0276h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG		1140700	LICOMO	
0266h UART2 Special Mode Register 2 U2SMR2 505 0267h UART2 Special Mode Register U2SMR 504 0268h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Bit Rate Register U2BRG 498 026Ah UART2 Transmit Buffer Register U2TB 495 026Bh UART2 Transmit/Receive Control Register 0 U2C0 499 026Ch UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh U2RB 496 026Fh U2RB 496 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h SI/O3 Control Register S3C 558 0273h SI/O3 Bit Rate Register S4TRR 557 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 <				
0267h UART2 Special Mode Register U2SMR 504 0268h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Bit Rate Register U2BRG 498 026Ah UART2 Transmit Buffer Register U2TB 495 026Bh UART2 Transmit/Receive Control Register 0 U2C0 499 026Ch UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh UART2 Receive Buffer Register S3TRR 557 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h SI/O3 Control Register S3BRG 559 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h SI/O4 Bit Rate Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 027Bh 027Ch				
0268h UART2 Transmit/Receive Mode Register U2MR 498 0269h UART2 Bit Rate Register U2BRG 498 026Ah UART2 Transmit Buffer Register U2TB 495 026Bh UART2 Transmit/Receive Control Register 0 U2C0 499 026Ch UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh UART2 Receive Buffer Register S3TRR 557 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h SI/O3 Control Register S3BRG 559 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h SI/O4 Bit Rate Register S4BRG 559 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 027Bh 027Ch 027Dh 027Eh 027Fh 0280h 0281h<		, ,		
0269h UART2 Bit Rate Register U2BRG 498 026Ah UART2 Transmit Buffer Register U2TB 495 026Bh UART2 Transmit Buffer Register U2C0 499 026Ch UART2 Transmit/Receive Control Register 1 U2C1 501 026Dh UART2 Receive Buffer Register U2RB 496 026Fh UART2 Receive Buffer Register U2RB 496 026Fh U3RB 496 496 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h SI/O3 Control Register S3C 558 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 027Bh 027Ch 027Dh 027Eh 027Fh 0280h 027Fh 0280h 0281h				
026Ah UART2 Transmit Buffer Register U2TB 495 026Bh U2C0 499 026Ch UART2 Transmit/Receive Control Register 0 U2C0 499 026Dh UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh U2RB 496 026Fh U2RB 496 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h SI/O3 Control Register S3C 558 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h 027Ah 027Ch 027Ch 027Ch 027Fh 027Fh 0280h 027Fh 0280h 0281h 0281h <t< td=""><td></td><td>-</td><td></td><td></td></t<>		-		
026Bh UART2 Transmit/Receive Control Register 0 U2C0 499 026Ch UART2 Transmit/Receive Control Register 1 U2C1 501 026Dh UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh UART2 Receive Buffer Register U2RB 496 026Fh UART2 Receive Buffer Register S3TRR 557 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h SI/O3 Sit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h O27Ah O27Ch O27Dh 027Fh O27Fh O27Fh O27Fh O27Fh 0280h O281h O281h O281h				
026Ch UART2 Transmit/Receive Control Register 0 U2C0 499 026Dh UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh UART2 Receive Buffer Register U2RB 496 026Fh UART2 Receive Buffer Register U2RB 496 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h SI/O3 Control Register S3C 558 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h O27Ah O27Bh O27Ch O27Ch 027Fh O27Fh O27Fh O280h O280h 0281h O281h O281h O280h O280h		UART2 Transmit Buffer Register	U2TB	495
026Dh UART2 Transmit/Receive Control Register 1 U2C1 501 026Eh UART2 Receive Buffer Register U2RB 496 026Fh UART2 Receive Buffer Register U2RB 496 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h U2RB 496 0272h SI/O3 Control Register S3TRR 557 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h 027Ah 027Bh 027Ch 027Ch 027Fh 027Fh 027Fh 0280h 0280h 0281h				
026Eh 026Fh UART2 Receive Buffer Register U2RB 496 0270h 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h 0272h SI/O3 Control Register S3C 558 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h 027Ah 027Bh 027Ch 027Dh 027Th 027Th 027Th 027Th 027Eh 027Fh 0280h 0281h 0281h				
026Fh 0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h 0272h SI/O3 Control Register S3C 558 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h 0276h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h 027Ah 027Bh 027Ch 027Dh 027Ch 027Ch 027Fh 027Fh 0280h 0281h 0281h				
0270h SI/O3 Transmit/Receive Register S3TRR 557 0271h 0272h SI/O3 Control Register S3C 558 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h 0276h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h 027Ah 027Bh 027Ch 027Dh 027Ch 027Fh 027Fh 0280h 0281h 0281h 0281h		UART2 Receive Buffer Register	U2RB	496
0271h SI/O3 Control Register S3C 558 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h 0274h 0274h 0274h 027Dh 027Ch 027Dh 027Eh 027Fh 0280h 0280h 0281h		01/00 7	0	
0272h SI/O3 Control Register S3C 558 0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h 0276h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h 027Ah 027Bh 027Ch 027Fh 0280h 0281h		SI/U3 Transmit/Receive Register	S3TRR	557
0273h SI/O3 Bit Rate Register S3BRG 559 0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h 0276h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h 027Ah 027Bh 027Ch 027Fh 0280h 0281h				
0274h SI/O4 Transmit/Receive Register S4TRR 557 0275h 0276h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h 027Ah 027Bh 027Ch 027Dh 027Fh 0280h 0281h		-		
0275h 0276h SI/O4 Control Register \$4C 558 0277h \$I/O4 Bit Rate Register \$4BRG 559 0278h \$I/O3, 4 Control Register 2 \$34C2 559 0279h 027Ah 027Bh 027Bh 027Ch 027Dh 027Eh 027Fh 027Fh 0280h 0281h 0281h		•		
0276h SI/O4 Control Register S4C 558 0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 S34C2 559 0279h 027Ah 027Bh 027Bh 027Ch 027Dh 027Eh 027Eh 027Fh 0280h 0281h 0281h		SI/U4 Transmit/Receive Register	S4TRR	557
0277h SI/O4 Bit Rate Register S4BRG 559 0278h SI/O3, 4 Control Register 2 \$34C2 559 0279h 027Ah 027Bh 027Bh 027Ch 027Dh 027Eh 027Fh 027Fh 0280h 0281h 0281h				
0278h SI/O3, 4 Control Register 2 S34C2 559 0279h		-		
0279h 027Ah 027Bh 027Ch 027Dh 027Eh 027Fh 0280h 0281h		_		
027Ah		SI/O3, 4 Control Register 2	S34C2	559
027Bh				
027Ch				
027Dh				
027Eh				
027Fh				
0280h				
0281h				
0282h	0281h			
	0282h			

Note: 1. Blank columns are all reserved space. No access is allowed.

Address	Register	Symbol	Page
0283h			
0284h	UART5 Special Mode Register 4	U5SMR4	507
0285h	UART5 Special Mode Register 3	U5SMR3	506
0286h	UART5 Special Mode Register 2	U5SMR2	505
0287h	UART5 Special Mode Register	U5SMR	504
0288h	UART5 Transmit/Receive Mode Register	U5MR	498
0289h	UART5 Bit Rate Register	U5BRG	498
028Ah	UART5 Transmit Buffer Register	U5TB	495
028Bh			
028Ch	UART5 Transmit/Receive Control Register 0	U5C0	499
028Dh	UART5 Transmit/Receive Control Register 1	U5C1	501
028Eh	UART5 Receive Buffer Register	U5RB	496
028Fh	· ·		
0290h			
0291h			
0292h			
0293h			
0293h	LIADTO Chariel Mada Desister 4	LICCMD4	507
	UART6 Special Mode Register 4	U6SMR4	507
0295h	UART6 Special Mode Register 3	U6SMR3	506
0296h	UART6 Special Mode Register 2	U6SMR2	505
0297h	UART6 Special Mode Register	U6SMR	504
0298h	UART6 Transmit/Receive Mode Register	U6MR	498
0299h	UART6 Bit Rate Register	U6BRG	498
029Ah	UART6 Transmit Buffer Register	U6TB	495
029Bh			
029Ch	UART6 Transmit/Receive Control Register 0	U6C0	499
029Dh	UART6 Transmit/Receive Control Register 1	U6C1	501
029Eh	UART6 Receive Buffer Register	U6RB	496
029Fh			
02A0h			
02A1h			
02A2h			
02A3h			
02A4h	UART7 Special Mode Register 4	U7SMR4	507
02A4h 02A5h	UART7 Special Mode Register 4 UART7 Special Mode Register 3	U7SMR4 U7SMR3	507 506
02A5h	UART7 Special Mode Register 3	U7SMR3	506
02A5h 02A6h	UART7 Special Mode Register 3 UART7 Special Mode Register 2	U7SMR3 U7SMR2	506 505
02A5h 02A6h 02A7h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register	U7SMR3 U7SMR2 U7SMR	506 505 504
02A5h 02A6h 02A7h 02A8h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register	U7SMR3 U7SMR2 U7SMR U7MR	506 505 504 498
02A5h 02A6h 02A7h 02A8h 02A9h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Bit Rate Register	U7SMR3 U7SMR2 U7SMR U7MR U7MR	506 505 504 498 498
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register	U7SMR3 U7SMR2 U7SMR U7MR	506 505 504 498
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Bit Rate Register UART7 Transmit Buffer Register	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7MR U7BRG U7TB	506 505 504 498 498 495
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Bit Rate Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7MR U7BRG U7TB	506 505 504 498 498 495
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ADh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1	U7SMR3 U7SMR2 U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1	506 505 504 498 498 495 499 501
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ADh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Bit Rate Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7MR U7BRG U7TB	506 505 504 498 498 495
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ADh 02AEh 02AFh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register	U7SMR3 U7SMR2 U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB	506 505 504 498 498 495 499 501 496
02A5h 02A6h 02A7h 02A8h 02A9h 02A9h 02AAh 02ACh 02ACh 02ADh 02AEh 02AFh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1	U7SMR3 U7SMR2 U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1	506 505 504 498 498 495 499 501
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02AEh 02AFh 02BOh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register	U7SMR3 U7SMR2 U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB	506 505 504 498 498 495 499 501 496
02A5h 02A6h 02A7h 02A8h 02A9h 02A9h 02AAh 02ACh 02ACh 02ADh 02AEh 02AFh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register	U7SMR3 U7SMR2 U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB	506 505 504 498 498 495 499 501 496
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02AEh 02AFh 02BOh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register	U7SMR3 U7SMR2 U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00	506 505 504 498 498 495 499 501 496
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02AAh 02ACh 02ACh 02ACh 02AEh 02AFh 02B0h 02B1h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register	U7SMR3 U7SMR2 U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00	506 505 504 498 498 495 499 501 496 573
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02AEh 02AFh 02B0h 02B1h 02B2h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register	U7SMR3 U7SMR2 U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S0D0 S1D0	506 505 504 498 498 495 499 501 496 573 574 575
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02AEh 02AFh 02B0h 02B1h 02B2h 02B3h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Bit Rate Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register	U7SMR3 U7SMR2 U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S0D0 S1D0 S20	506 505 504 498 498 495 499 501 496 573 574 575 578
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02AEh 02AFh 02B0h 02B1h 02B2h 02B3h 02B4h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register 12C0 Data Shift Register 12C0 Control Register 0 12C0 Control Register 12C0 Clock Control Register 12C0 Start/Stop Condition Control Register	U7SMR3 U7SMR2 U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S0D0 S1D0 S20 S2D0	506 505 504 498 498 495 499 501 496 573 574 575 578 581
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02AEh 02AEh 02BOh 02B1h 02B2h 02B3h 02B4h 02B4h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Start/Stop Condition Control Register I2C0 Control Register	U7SMR3 U7SMR2 U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S0D0 S1D0 S20 S2D0 S3D0	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02AEh 02AEh 02B1h 02B2h 02B3h 02B4h 02B4h 02B3h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Clock Control Register I2C0 Control Register I2C0 Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 2 I2C0 Status Register 0	U7SMR3 U7SMR2 U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02AEh 02BOh 02B1h 02B2h 02B3h 02B4h 02B3h 02B4h 02B3h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Bit Rate Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Start/Stop Condition Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 2 I2C0 Status Register 0 I2C0 Status Register 0 I2C0 Status Register 1	U7SMR3 U7SMR2 U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0 S10 S11	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02AEh 02BOh 02B1h 02B3h 02B3h 02B4h 02B5h 02B6h 02B7h 02B8h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Cotrol Register I2C0 Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Status Register 0 I2C0 Status Register 0 I2C0 Status Register 1 I2C0 Address Register 1	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0 S10 S11 S0D1	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02AEh 02BOh 02B1h 02B3h 02B3h 02B4h 02B6h 02B7h 02B8h 02B8h 02B8h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Bit Rate Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Start/Stop Condition Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 2 I2C0 Status Register 0 I2C0 Status Register 0 I2C0 Status Register 1	U7SMR3 U7SMR2 U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0 S10 S11	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02AEh 02AFh 02BOh 02B1h 02B3h 02B4h 02B5h 02B6h 02B7h 02B8h 02B8h 02B8h 02B8h	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Cotrol Register I2C0 Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Status Register 0 I2C0 Status Register 0 I2C0 Status Register 1 I2C0 Address Register 1	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0 S10 S11 S0D1	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02ACh 02AEh 02BCh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Cotrol Register I2C0 Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Status Register 0 I2C0 Status Register 0 I2C0 Status Register 1 I2C0 Address Register 1	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0 S10 S11 S0D1	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02ACh 02AEh 02BCh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Cotrol Register I2C0 Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Status Register 0 I2C0 Status Register 0 I2C0 Status Register 1 I2C0 Address Register 1	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0 S10 S11 S0D1	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02AAh 02ABh 02ACh 02ACh 02AFh 02BOh 02BSh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Cotrol Register I2C0 Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Status Register 0 I2C0 Status Register 0 I2C0 Status Register 1 I2C0 Address Register 1	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0 S10 S11 S0D1	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02ACh 02ACh 02ACh 02ACh 02ACh 02ACh 02BCh 02CDCh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Cotrol Register I2C0 Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Status Register 0 I2C0 Status Register 0 I2C0 Status Register 1 I2C0 Address Register 1	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0 S10 S11 S0D1	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02AAh 02ABh 02ACh 02ACh 02AFh 02BOh 02BSh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Cotrol Register I2C0 Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Status Register 0 I2C0 Status Register 0 I2C0 Status Register 1 I2C0 Address Register 1	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0 S10 S11 S0D1	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02AAh 02ABh 02ACh 02ACh 02ACh 02AEh 02AEh 02AEh 02BCh	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Address Register 0 I2C0 Control Register I2C0 Clock Control Register I2C0 Cotrol Register I2C0 Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Status Register 0 I2C0 Status Register 0 I2C0 Status Register 1 I2C0 Address Register 1	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S4D0 S10 S11 S0D1	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02AAh 02ACh 02ACh 02ACh 02ACh 02ACh 02ACh 02AEh 02AFh 02BCh 02COh 00CAC	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Control Register I2C0 Control Register I2C0 Clock Control Register I2C0 Statt/Stop Condition Control Register I2C0 Status Register 1 I2C0 Status Register 0 I2C0 Status Register 1 I2C0 Address Register 1 I2C0 Address Register 1 I2C0 Address Register 1	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S1D0 S11 S0D1 S11 S0D1	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574 574
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02ABh 02ACh 02ACh 02ACh 02ACh 02AEh 02AFh 02BCh 03BCh 03Ch 03Ch 03Ch 03Ch	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Bit Rate Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Data Shift Register I2C0 Control Register I2C0 Control Register I2C0 Control Register I2C0 Control Register I2C0 Control Register I2C0 Control Register 1 I2C0 Control Register 1 I2C0 Address Register 0 I2C0 Status Register 1 I2C0 Address Register 2	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S11 S0D1 S0D2 TBSR	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574 574 574
02A5h 02A6h 02A7h 02A8h 02A9h 02AAh 02AAh 02ABh 02ACh 02ACh 02ACh 02AEh 02AFh 02BCh 02CO	UART7 Special Mode Register 3 UART7 Special Mode Register 2 UART7 Special Mode Register 2 UART7 Special Mode Register UART7 Transmit/Receive Mode Register UART7 Transmit Buffer Register UART7 Transmit Buffer Register UART7 Transmit/Receive Control Register 0 UART7 Transmit/Receive Control Register 1 UART7 Receive Buffer Register I2C0 Data Shift Register I2C0 Control Register I2C0 Control Register I2C0 Clock Control Register I2C0 Statt/Stop Condition Control Register I2C0 Status Register 1 I2C0 Status Register 0 I2C0 Status Register 1 I2C0 Address Register 1 I2C0 Address Register 1 I2C0 Address Register 1	U7SMR3 U7SMR2 U7SMR U7SMR U7MR U7MR U7BRG U7TB U7C0 U7C1 U7RB S00 S1D0 S20 S2D0 S3D0 S4D0 S1D0 S11 S0D1 S11 S0D1	506 505 504 498 498 495 499 501 496 573 574 575 578 581 582 587 589 594 574 574

Address	Register	Symbol	Page
0304h	Timer A2-1 Register	TA21	295
0305h	Times v Z v v v gradev		200
0306h	Timer A4-1 Register	TA41	295
0307h	3		
0308h	Three-Phase PWM Control Register 0	INVC0	369
0309h	Three-Phase PWM Control Register 1	INVC1	371
030Ah	Three-Phase Output Buffer Register 0	IDB0	373
030Bh	Three-Phase Output Buffer Register 1	IDB1	373
030Ch	Dead Time Timer	DTT	373
030Dh	Timer B2 Interrupt Generation Frequency Set	ICTB2	374
030Eh	Counter Position-Data-Retain Function Control	PDRF	
OSOLII	Register	FDIXI	376
030Fh			
0310h	Timer B3 Register	TB3	340
0311h			
0312h	Timer B4 Register	TB4	340
0313h			
0314h	Timer B5 Register	TB5	340
0315h			
0316h			
0317h	Part Franctice On 1 1 1 2 1 1	5505	
0318h	Port Function Control Register	PFCR	377
0319h			
031Ah 031Bh	Timer B3 Mode Register	TB3MR	246
031Bh	Timer B3 Mode Register Timer B4 Mode Register	TB4MR	346 346
031Ch	Timer B5 Mode Register Timer B5 Mode Register	TB5MR	346
031Eh	Si Do Modo Register	, DOIVIIX	340
031Fh			
0320h	Count Start Flag	TABSR	296
0321h	l com com com		200
0322h	One-Shot Start Flag	ONSF	297
0323h	Trigger Select Register	TRGSR	298
0324h	Up/Down Flag	UDF	299
0325h			
0326h	Timer A0 Register	TA0	294
0327h			
0328h	Timer A1 Register	TA1	294
0329h			
032Ah	Timer A2 Register	TA2	294
032Bh			
032Ch	Timer A3 Register	TA3	294
032Dh	Trans A4 Desistes	TA 4	
032Eh	Timer A4 Register	IA4	294
032Fh 0330h	Timer B0 Register	TB0	340
0330h 0331h	Timor Do Negrater	יט ו	340
0331h	Timer B1 Register	TB1	340
0333h			3.5
0334h	Timer B2 Register	TB2	340
0335h	_		
0336h	Timer A0 Mode Register	TAOMR	300
0337h	Timer A1 Mode Register	TA1MR	300
0338h	Timer A2 Mode Register	TA2MR	300
0339h	Timer A3 Mode Register	TA3MR	300
033Ah	Timer A4 Mode Register	TA4MR	300
033Bh	Timer B0 Mode Register	TB0MR	346
033Ch	Timer B1 Mode Register	TB1MR	346
033Dh	Timer B2 Mode Register	TB2MR	346
033Eh	Timer B2 Special Mode Register	TB2SC	375
033Fh	Peal Time Clark Second Det S	DTOOLO	
0340h	Real-Time Clock Second Data Register	RTCSEC	406
0341h	Real-Time Clock Minute Data Register	RTCHR	407
0342h	Real-Time Clock Hour Data Register	RTCHR	408
0343h	Real-Time Clock Control Register 1	RTCWK	409
0344h	Real-Time Clock Control Register 1	RTCCR1	410
0345h	Real-Time Clock Control Register 2	RTCCR2	412

Note: 1. Blank columns are all reserved space. No access is allowed.

0346h Real-Time Clock Count Source Select Register 4 0347h 4 0348h Real-Time Clock Second Compare Data Register 4 0349h Real-Time Clock Minute Compare Data Register RTCCMIN 034Ah Real-Time Clock Hour Compare Data Register RTCCHR 034Bh 034Ch 4 034Ch 034Dh 034Eh 0350h CEC Function Control Register 1 CECC1 622 0351h CEC Function Control Register 2 CECC2 623 0352h CEC Function Control Register 3 CECC3 625 0353h CEC Function Control Register 4 CECC4 66 0354h CEC Flag Register CECFLG 66 0355h CEC Interrupt Source Select Register CISEL 66 0356h CEC Transmit Buffer Register 1 CCTB1 66 0357h CEC Receive Buffer Register 1 CCRB1 66	14 15 16
Register	15 16
0347h Real-Time Clock Second Compare Data Register RTCCSEC 4* 0348h Real-Time Clock Minute Compare Data Register RTCCMIN 4* 0349h Real-Time Clock Minute Compare Data Register RTCCHR 4* 034Ah Real-Time Clock Hour Compare Data Register RTCCHR 4* 034Bh 034Ch 035Ch 02CC 622 623 035Th 02CC Function Control Register 1 04CCC 622 623 625 <td>16</td>	16
Register 4 0349h Real-Time Clock Minute Compare Data RTCCMIN A: Register RTCCHR 034Ah Real-Time Clock Hour Compare Data RTCCHR Register 4: 034Bh 034Ch 034Dh 034Eh 035h CEC Function Control Register 1 CECC1 0351h CEC Function Control Register 2 CECC2 0352h CEC Function Control Register 3 CECC3 0353h CEC Function Control Register 4 CECC4 0354h CEC Flag Register CECFLG 0355h CEC Interrupt Source Select Register CISEL 0356h CEC Transmit Buffer Register 1 CCTB1 0357h CEC Transmit Buffer Register 2 CCTB2 0358h CEC Receive Buffer Register 1 CCRB1	16
Register	16
Register	
034Ah Real-Time Clock Hour Compare Data Register RTCCHR 4 034Bh 034Ch 034Ch 034Dh 034Fh 034Fh 034Fh 0350h	17
Register 4* 034Bh 034Ch 034Dh 034Bh 034Eh 034Fh 0350h CEC Function Control Register 1 CECC1 0351h CEC Function Control Register 2 CECC2 0352h CEC Function Control Register 3 CECC3 0353h CEC Function Control Register 4 CECC4 0354h CEC Flag Register CECFLG 0355h CEC Interrupt Source Select Register CISEL 0356h CEC Transmit Buffer Register 1 CCTB1 0357h CEC Transmit Buffer Register 2 CCTB2 0358h CEC Receive Buffer Register 1 CCRB1 65	17
034Bh 034Ch 034Dh 034Dh 034Fh 034Fh 0350h CEC Function Control Register 1 CECC1 622 0351h CEC Function Control Register 2 CECC2 623 0352h CEC Function Control Register 3 CECC3 625 0353h CEC Function Control Register 4 CECC4 66 0354h CEC Flag Register CECFLG 66 0355h CEC Interrupt Source Select Register CISEL 66 0356h CEC Transmit Buffer Register 1 CCTB1 66 0357h CEC Transmit Buffer Register 2 CCTB2 66 0358h CEC Receive Buffer Register 1 CCRB1 66	
034Ch 034Dh 034Eh 034Fh 034Fh 0350h 0350h CEC Function Control Register 1 CECC1 0351h CEC Function Control Register 2 CECC2 0352h CEC Function Control Register 3 CECC3 0353h CEC Function Control Register 4 CECC4 0354h CEC Flag Register CECFLG 0355h CEC Interrupt Source Select Register CISEL 0356h CEC Transmit Buffer Register 1 CCTB1 0357h CEC Transmit Buffer Register 2 CCTB2 0358h CEC Receive Buffer Register 1 CCRB1	
034Dh 034Eh 034Fh 034Fh 0350h CEC Function Control Register 1 CECC1 622 0351h CEC Function Control Register 2 CECC2 623 0352h CEC Function Control Register 3 CECC3 625 0353h CEC Function Control Register 4 CECC4 66 0354h CEC Flag Register CECFLG 66 0355h CEC Interrupt Source Select Register CISEL 66 0356h CEC Transmit Buffer Register 1 CCTB1 66 0357h CEC Transmit Buffer Register 2 CCTB2 66 0358h CEC Receive Buffer Register 1 CCRB1 66	
034Eh 034Fh 034Fh 034Fh 0350h CEC Function Control Register 1 CECC1 622 0351h CEC Function Control Register 2 CECC2 623 0352h CEC Function Control Register 3 CECC3 625 0353h CEC Function Control Register 4 CECC4 66 0354h CEC Flag Register CECFLG 66 0355h CEC Interrupt Source Select Register CISEL 66 0356h CEC Transmit Buffer Register 1 CCTB1 66 0357h CEC Transmit Buffer Register 2 CCTB2 66 0358h CEC Receive Buffer Register 1 CCRB1 66	
034Fh 0350h CEC Function Control Register 1 CECC1 622 0351h CEC Function Control Register 2 CECC2 623 0352h CEC Function Control Register 3 CECC3 625 0353h CEC Function Control Register 4 CECC4 66 0354h CEC Flag Register CECFLG 66 0355h CEC Interrupt Source Select Register CISEL 66 0356h CEC Transmit Buffer Register 1 CCTB1 66 0357h CEC Transmit Buffer Register 2 CCTB2 66 0358h CEC Receive Buffer Register 1 CCRB1 66	
0350h CEC Function Control Register 1 CECC1 622 0351h CEC Function Control Register 2 CECC2 623 0352h CEC Function Control Register 3 CECC3 625 0353h CEC Function Control Register 4 CECC4 66 0354h CEC Flag Register CECFLG 66 0355h CEC Interrupt Source Select Register CISEL 66 0356h CEC Transmit Buffer Register 1 CCTB1 66 0357h CEC Transmit Buffer Register 2 CCTB2 66 0358h CEC Receive Buffer Register 1 CCRB1 66	
0351h CEC Function Control Register 2 CECC2 623 0352h CEC Function Control Register 3 CECC3 625 0353h CEC Function Control Register 4 CECC4 66 0354h CEC Flag Register CECFLG 66 0355h CEC Interrupt Source Select Register CISEL 66 0356h CEC Transmit Buffer Register 1 CCTB1 66 0357h CEC Transmit Buffer Register 2 CCTB2 66 0358h CEC Receive Buffer Register 1 CCRB1 66	
0352h CEC Function Control Register 3 CECC3 625 0353h CEC Function Control Register 4 CECC4 66 0354h CEC Flag Register CECFLG 66 0355h CEC Interrupt Source Select Register CISEL 66 0356h CEC Transmit Buffer Register 1 CCTB1 66 0357h CEC Transmit Buffer Register 2 CCTB2 66 0358h CEC Receive Buffer Register 1 CCRB1 66	2619
0353h CEC Function Control Register 4 CECC4 63 0354h CEC Flag Register CECFLG 63 0355h CEC Interrupt Source Select Register CISEL 63 0356h CEC Transmit Buffer Register 1 CCTB1 63 0357h CEC Transmit Buffer Register 2 CCTB2 63 0358h CEC Receive Buffer Register 1 CCRB1 63	3620
0354h CEC Flag Register CECFLG 66 0355h CEC Interrupt Source Select Register CISEL 66 0356h CEC Transmit Buffer Register 1 CCTB1 66 0357h CEC Transmit Buffer Register 2 CCTB2 65 0358h CEC Receive Buffer Register 1 CCRB1 65	621
0355h CEC Interrupt Source Select Register CISEL 65 0356h CEC Transmit Buffer Register 1 CCTB1 65 0357h CEC Transmit Buffer Register 2 CCTB2 65 0358h CEC Receive Buffer Register 1 CCRB1 65	27
0355h CEC Interrupt Source Select Register CISEL 65 0356h CEC Transmit Buffer Register 1 CCTB1 65 0357h CEC Transmit Buffer Register 2 CCTB2 65 0358h CEC Receive Buffer Register 1 CCRB1 65	29
0356h CEC Transmit Buffer Register 1 CCTB1 66 0357h CEC Transmit Buffer Register 2 CCTB2 66 0358h CEC Receive Buffer Register 1 CCRB1 66	
0357h CEC Transmit Buffer Register 2 CCTB2 63 0358h CEC Receive Buffer Register 1 CCRB1 63	
0358h CEC Receive Buffer Register 1 CCRB1 63	
3.0	
	32
ű –	32
035Ah CEC Receive Follower Address Set Register 1 CRADRI1 63	33
035Bh CEC Receive Follower Address Set Register 2 CRADRI2 63	33
035Ch	
035Dh	
035Eh	
035Fh	
, , , , , , , , , , , , , , , , , , ,	05
	06
0362h Pull-Up Control Register 2 PUR2 20	07
0363h Pull-Up Control Register 3 PUR3 26	08
0364h	
0365h	
0366h Port Control Register PCR 26	09
0367h	
0368h	
	40
ů ů	13
036Ah	
036Bh	
036Ch	
036Dh	
036Eh	
036Fh	
	32
037th	J
	22
	33
	34
	33
-	34
0376h PWM Control Register 1 PWMCON1 43	35
0377h	
0378h	
0379h	
037Ah	
037Bh	
	F 7
	57
	58
,	58
037Fh Watchdog Timer Control Register WDC 25	59
0380h	
0381h	
0382h	
0383h	
0384h	
000711	
02054	
0385h	
0385h 0386h 0387h	

Address	Register	Symbol	Page
0388h	•		
0389h			
038Ah			
038Bh			
038Ch			
038Dh			
038Eh			
038Fh			
0390h	DMA2 Source Select Register	DM2SL	271
0391h			
0392h	DMA3 Source Select Register	DM3SL	271
0393h			
0394h			
0395h			
0396h			
0397h			
0398h	DMA0 Source Select Register	DM0SL	271
0399h			
039Ah	DMA1 Source Select Register	DM1SL	271
039Bh			
039Ch			
039Dh			
039Eh			
039Fh			
03A0h			
03A1h			
03A2h	Open-Circuit Detection Assist Function Register	AINRST	655
03A3h	register	+	
03A4h		1	
03A5h			
03A6h		1	
03A7h		1	
03A8h			
03A9h		1	
03AAh			
03ABh		1	
03ACh			
03ADh			
03AEh			
03AFh			
03B0h			
03B1h			
03B2h		1	
03B3h			
03B4h	SFR Snoop Address Register	CRCSAR	690
03B5h	_		
03B6h	CRC Mode Register	CRCMR	690
03B7h			
03B8h			
03B9h			
03BAh			
03BBh			
03BCh	CRC Data Register	CRCD	689
03BDh		<u> </u>	
03BEh	CRC Input Register	CRCIN	689
03BFh			
03C0h	A/D Register 0	AD0	661
03C1h			
03C2h	A/D Register 1	AD1	661
03C3h		<u> </u>	
03C4h	A/D Register 2	AD2	661
03C5h		<u> </u>	l
03C6h	A/D Register 3	AD3	661
03C7h		<u> </u>	
03C8h	A/D Register 4	AD4	661
03C9h		<u> </u>	l
Note: 1. E	Blank columns are all reserved space. No acce	aa ia allausad	

Note: 1. Blank columns are all reserved space. No access is allowed.

Address	Register	Symbol	Page
03CAh	A/D Register 5	AD5	661
03CBh	-		
03CCh	A/D Register 6	AD6	661
03CDh			
03CEh	A/D Register 7	AD7	661
03CFh	· ·		
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	657
03D5h			
03D6h	A/D Control Register 0	ADCON0	658
03D7h	A/D Control Register 1	ADCON1	660
03D8h	D/A0 Register	DA0	685
03D9h			
03DAh	D/A1 Register	DA1	685
03DBh	-3		-30
03DCh	D/A Control Register	DACON	685
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	210
03E1h	Port P1 Register	P1	210
03E2h	Port P0 Direction Register	PD0	212
03E3h	Port P1 Direction Register	PD1	212
03E4h	Port P2 Register	P2	210
03E5h	Port P3 Register	P3	210
03E6h	Port P2 Direction Register	PD2	212
03E7h	Port P3 Direction Register	PD3	212
03E8h	Port P4 Register	P4	210
03E9h	Port P5 Register	P5	210
03EAh	Port P4 Direction Register	PD4	212
03EBh	Port P5 Direction Register	PD5	212
03ECh	Port P6 Register	P6	210
03EDh	Port P7 Register	P7	210
03EEh	Port P6 Direction Register	PD6	212
03EFh	Port P7 Direction Register	PD7	212
03F0h	Port P8 Register	P8	210
03F1h	Port P9 Register	P9	210
03F2h	Port P8 Direction Register	PD8	212
03F3h	Port P9 Direction Register	PD9	212
03F4h	Port P10 Register	P10	210
03F5h	Port P11 Register	P11	210
03F6h	Port P10 Direction Register	PD10	212
03F7h	Port P11 Direction Register	PD11	212
03F8h	Port P12 Register	P12	210
03F9h	Port P13 Register	P13	210
03FAh	Port P12 Direction Register	PD12	212
03FBh	Port P13 Direction Register	PD13	212
03FCh	Port P14 Register	P14	210
03FDh	-3		
03FEh	Port P14 Direction Register	PD14	212
03FFh			-12
D000h			
to			
D07Fh			

Address	Register	Symbol	Page
D080h	PMC0 Header Pattern Set Register (Min)	PMC0HDPMIN	456
D081h			
D082h	PMC0 Header Pattern Set Register (Max)	PMC0HDPMAX	456
D083h			
D084h	PMC0 Data0 Pattern Set Register (Min)	PMC0D0PMIN	457
D085h	PMC0 Data0 Pattern Set Register (Max)	PMC0D0PMAX	457
D086h	PMC0 Data1 Pattern Set Register (Min)	PMC0D1PMIN	457
D087h	PMC0 Data1 Pattern Set Register (Max)	PMC0D1PMAX	457
D088h	PMC0 Measurements Register	PMC0TIM	458
D089h			
D08Ah	PMC0 Counter Value Register	PMC0BC	458
D08Bh			
D08Ch	PMC0 Receive Data Store Register 0	PMC0DAT0	459
D08Dh	PMC0 Receive Data Store Register 1	PMC0DAT1	459
D08Eh	PMC0 Receive Data Store Register 2	PMC0DAT2	459
D08Fh	PMC0 Receive Data Store Register 3	PMC0DAT3	459
D090h	PMC0 Receive Data Store Register 4	PMC0DAT4	459
D091h	PMC0 Receive Data Store Register 5	PMC0DAT5	459
D092h	PMC0 Receive Bit Count Register	PMC0RBIT	458
D093h			
D094h	PMC1 Hedder Pattern Set Register (Min)	PMC1HDPMIN	456
D095h			
D096h	PMC1 Header Pattern Set Register (Max)	PMC1HDPMAX	456
D097h			
D098h	PMC1 Data0 Pattern Set Register (Min)	PMC1D0PMIN	457
D099h	PMC1 Data0 Pattern Set Register (Max)	PMC1D0PMAX	457
D09Ah	PMC1 Data1 Pattern Set Register (Min)	PMC1D1PMIN	457
D09Bh	PMC1 Data1 Pattern Set Register (Max)	PMC1D1PMAX	457
D09Ch	PMC1 Measurements Register	PMC1TIM	458
D09Dh			
D09Eh	PMC1 Counter Value Register	PMC1BC	458
D09Fh			

Note: 1. Blank columns are all reserved space. No access is allowed.

FFFFFh	Optional Function Select Address 1	OFS1	63

Note: 1. OFS1 address is not an SFR

M16C/65 Group **RENESAS MCU**

1. Overview

1.1 **Features**

The M16C/65 Group microcomputer (MCU) incorporates the M16C/60 Series CPU core and flash memory, employing sophisticated instructions for a high level of efficiency. This MCU has 1 Mbyte of address space (expandable to 4 Mbytes), and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the M16C/65 Group supports operating modes that allow additional power control. The MCU also uses an anti-noise configuration to reduce emissions of electromagnetic noise and is designed to withstand electromagnetic interference (EMI). By integrating many of the peripheral functions, including the multifunction timer and serial interface, the number of system components has been reduced.

1.1.1 **Applications**

Audio components, cameras, televisions, household appliances, office equipment, communication devices, mobile devices, industrial equipment, etc.

Information in this manual is beleived to be accurate, but is not guaranteed to be entirely free of error.

Specifications in this manual are subject to change for functional or performance improvements. Please make sure your manual is the latest edition.

Specifications 1.2

The M16C/65 Group includes 128-pin, 100-pin, and 80-pin packages. Table 1.1 to Table 1.6 list specifications.

Table 1.1 Specifications (128-Pin Package) (1/2)

Item	Function	Specification		
CPU	Central processing unit	M16C/60 core (multiplier: 16-bit × 16-bit → 32-bit, multiply and accumulate instruction: 16-bit × 16-bit + 32-bit → 32-bit) • Number of basic instructions: 91 • Minimum instruction execution time: 31.25 ns (f(BCLK) = 32 MHz, VCC1 = 3.0 to 5.5 V) • Operating modes: Single-chip, memory expansion, and microprocessor		
Memory	ROM, RAM, data flash	See Table 1.7 "Product List".		
Voltage Detection	Voltage detector	 Power-on reset 3 voltage detection points (detection level of voltage detection 0 and 1 selectable) 		
Clock	Clock generator	 5 circuits: Main clock, sub clock, low-speed on-chip oscillator (125 kHz), high-speed on-chip oscillator (40 MHz ± 10%), PLL frequency synthesizer Oscillation stop detection: Main clock oscillation stop detection and reoscillation detection function Frequency divider circuit: Divide ratio selectable from 1, 2, 4, 8, and 16 Power save: Wait mode, stop mode Real time clock 		
External Bus Expansion	Bus and memory expansion	 Address space: 1 Mbyte External bus interface: 0 to 8 wait states, 4 chip select outputs, memory area expansion function (extension enable up to 4 Mbytes), 3 V and 5 V interfaces Bus format: Separate bus or multiplexed bus selectable, data bus width selectable (8 or 16 bits), number of address buses selectable (12, 16, 020) 		
I/O Ports	Programmable I/O ports	CMOS I/O ports: 111, selectable pull-up resistor N-channel open drain ports: 3		
Interrupts		 Interrupt vectors: 70 External interrupt input: 13 (NMI, NT x 8, key input x 4) Interrupt priority levels: 7 		
Watchdog Tir	mer	15 bits × 1 (with prescaler) Automatic reset start function selectable		
DMA DMAC		 4 channels, cycle steal mode Trigger sources: 43 Transfer modes: 2 (single transfer, repeat transfer) 		

Table 1.2 Specifications (128-Pin Package) (2/2)

Item	Function	Specification			
Timer	Timer A	16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode Event counter two-phase pulse signal processing (two-phase encoder input) × 3			
	T: 0	Programmable output mode × 3			
	Timer B	16-bit timer × 6 Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode			
	Three-phase motor control timer function	Three-phase inverter control (timer A1, timer A2, timer A4, timer B2), on-chip dead time timer			
	Real-time clock	Count: second, minute, hour, day of week			
	PWM function	8 bits × 2			
	Remote control signal receiver	 2 circuits 4 wave pattern matchings (differentiate wave pattern for headers, data 0, data 1, and special data) 6-byte receive buffer (1 circuit) Operating frequency of 32 kHz 			
Serial Interface	UART0 to UART2, UART5 to UART7	Clock synchronous/asynchronous × 6 channels I ² C-bus, IEBus ⁽¹⁾ , special mode 2 SIM (UART2)			
	SI/O3, SI/O4	Clock synchronization only × 2 channels			
	Multi-master I ² C bus interface	1 channel			
	CEC function (3)	CEC transmit/receive, arbitration lost detection, ACK signal generation operation frequency of 32 kHz			
A/D Conver	ter	10-bit resolution × 26 channels, including sample and hold function Conversion time: 1.72 μs			
D/A Conver	ter	8-bit resolution × 2			
CRC Calcul	lator	CRC-CCITT $(X^{16} + X^{12} + X^5 + 1)$, CRC-16 $(X^{16} + X^{15} + X^2 + 1)$ compliant			
Flash Memo	ory	Programming and erasure power supply voltage: 2.7 to 5.5 V Programming and erasure endurance: 1,000 times (program ROM 1, program ROM 2)/10,000 times (data flash) Program security: ROM code protect, ID code check			
Debug Fund	ction	Functions on-chip debug, on-board flash rewrite function, address match × 4			
Operation F	requency/Supply Voltage	25 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC1 32 MHz/VCC1 = 3.0 to 5.5 V, VCC2 = 2.7 V to VCC1			
Current Cor	nsumption	TBD (32 MHz/VCC1 = VCC2 = 3 V) TBD (VCC1 = VCC2 = 3 V, in stop mode)			
Operating T	emperature	-20°C to 85°C, -40°C to 85°C (2)			
Package		128-pin LQFP: PLQP0128KB-A (Previous package code: 128P6Q-A)			

- IEBus is a registered trademark of NEC Electronics Corporation. 1.
- See Table 1.7 "Product List" for the operating temperature.
- The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

Table 1.3 Specifications (100-Pin Package) (1/2)

Item	Function	Specification		
CPU	Central processing unit	M16C/60 core (multiplier: 16-bit × 16-bit → 32-bit, multiply and accumulate instruction: 16-bit × 16-bit + 32-bit → 32-bit) • Number of basic instructions: 91 • Minimum instruction execution time:		
		31.25 ns (f(BCLK) = 32 MHz, VCC1 = 3.0 to 5.5 V) • Operating modes: Single-chip, memory expansion, and microprocessor		
Memory	ROM, RAM, data flash	See Table 1.7 "Product List".		
Voltage Detection	Voltage detector	 Power-on reset 3 voltage detection points (detection level of voltage detection 0 and 1 selectable) 		
Clock	Clock generator	 5 circuits: Main clock, sub clock, low-speed on-chip oscillator (125 kHz), high-speed on-chip oscillator (40 MHz ± 10%), PLL frequency synthesizer Oscillation stop detection: Main clock oscillation stop detection and reoscillation detection function Frequency divider circuit: Divide ratio selectable from 1, 2, 4, 8, and 16 Power save: Wait mode, stop mode Real time clock 		
External Bus Expansion	Bus and memory expansion	 Address space: 1 Mbyte External bus interface: 0 to 8wait states, 4 chip select outputs, memory area expansion function (extension enable up to 4-Mbyte), 3 V, 5 V interface Bus format: Separate bus or multiplexed bus selectable, data bus width selectable (8 or 16 bits), number of address buses selectable (12, 16, or 20) 		
I/O Ports	Programmable I/O ports	CMOS I/O ports: 85, selectable pull-up resistor N-channel open drain ports: 3		
Interrupts		 Interrupt vectors: 70 External interrupt input: 13 (NMI, NT × 8, key input × 4) Interrupt priority levels: 7 		
Watchdog Tir	ner	15 bits × 1 (with prescaler) Automatic reset start function selectable		
DMA	DMAC	 4 channels, cycle steal mode Trigger sources: 43 Transfer modes: 2 (single transfer, repeat transfer) 		

Table 1.4 Specifications (100-Pin Package) (2/2)

Item	Function	Specification			
Timer	Timer A	16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode Event counter two-phase pulse signal processing (two-phase encoder input) × 3 Programmable output mode × 3			
	Timer B	16-bit timer × 6 Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode			
	Three-phase motor control timer function	Three-phase inverter control (timer A1, timer A2, timer A4, timer B2), on-chip dead time timer			
	Real-time clock	Count: second, minute, hour, day of week			
	PWM function	8 bits × 2			
	Remote control signal receiver	 2 circuits 4 wave pattern matchings (differentiate wave pattern for headers, data 0, data 1, and special data) 6-byte receive buffer (1 circuit) Operating frequency of 32 kHz 			
Serial Interface	UART0 to UART2, UART5 to UART7	Clock synchronous/asynchronous × 6 channels I ² C-bus, IEBus ⁽¹⁾ , special mode 2 SIM (UART2)			
	SI/O3, SI/O4	Clock synchronization only × 2 channels			
	Multi-master I ² C bus interface	1 channel			
	CEC function (3)	CEC transmit/receive, arbitration lost detection, ACK signal generation operation frequency of 32 kHz			
A/D Conver	ter	10-bit resolution × 26 channels, including sample and hold function Conversion time: 1.72 μs			
D/A Conver	ter	8-bit resolution × 2			
CRC Calcul	lator	CRC-CCITT $(X^{16} + X^{12} + X^5 + 1)$, CRC-16 $(X^{16} + X^{15} + X^2 + 1)$ compliant			
Flash Memo	ory	Programming and erasure power supply voltage: 2.7 to 5.5 V Programming and erasure endurance: 1,000 times (program ROM 1, program ROM 2)/10,000 times (data flash) Program security: ROM code protect, ID code check			
Debug Fund	ction	Functions on-chip debug, on-board flash rewrite function, address match × 4			
Operation F	requency/Supply Voltage	25 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC132 MHz/VCC1 = 3.0 to 5.5 V, VCC2 = 2.7 V to VCC1			
Current Cor	nsumption	TBD (32 MHz/VCC1 = VCC2 = 3 V) TBD (VCC1 = VCC2 = 3 V, in stop mode)			
Operating T	emperature	-20°C to 85°C, -40°C to 85°C (2)			
Package		100-pin QFP: PRQP0100JD-B (Previous package code: 100P6F-A) 100-pin LQFP: PLQP0100KB-A (Previous package code: 100P6Q-A)			

- IEBus is a registered trademark of NEC Electronics Corporation. 1.
- See Table 1.7 "Product List" for the operating temperature.
- The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

Under development

Table 1.5 Specifications (80-Pin Package) (1/2)

Item	Function	Specification				
CPU	Central processing unit	M16C/60 core (multiplier: 16-bit × 16-bit → 32-bit, multiply and accumulate instruction: 16-bit × 16-bit + 32-bit → 32-bit) • Number of basic instructions: 91 • Minimum instruction execution time: 31.25 ns (f(BCLK) = 32 MHz, VCC1 = 3.0 to 5.5 V)				
		• Operating modes: Single-chip				
Memory	ROM, RAM, data flash	See Table 1.7 "Product List".				
Voltage	Voltage detector	Power-on reset				
Detection		• 3 voltage detection points (detection level of voltage detection 0 and 1 selectable)				
Clock	Clock generator	 5 circuits: Main clock, sub clock, low-speed on-chip oscillator (125 kHz), high-speed on-chip oscillator (40 MHz ± 10%), PLL frequency synthesizer Oscillation stop detection: Main clock oscillation stop detection and reoscillation detection function Frequency divider circuit: Divide ratio selectable from 1, 2, 4, 8, and 16 Power save: Wait mode, stop mode Real time clock 				
I/O Ports	Programmable I/O ports	CMOS I/O ports: 68, selectable pull-up resistor N-channel open drain ports: 3				
Interrupts		 Interrupt vectors: 70 External interrupt input: 10 (NMI, INT x 5, key input x 4) Interrupt priority levels: 7 				
Watchdog T	īmer	15 bits x 1 (with prescaler) Automatic reset start function selectable				
DMA	DMAC	 4 channels, cycle steal mode Trigger sources: 43 Transfer modes: 2 (single transfer, repeat transfer) 				
Timer	Timer A	16-bit timer x 5 Timer mode x 5 Event counter mode, one shot timer mode, pulse width modulation (PWM) mode x 3 Event counter two-phase pulse signal processing (two-phase encoder input) x 2 Programmable output mode x 1				
	Timer B	16-bit timer × 6 Timer mode × 6 Event counter mode, pulse period measurement mode, pulse width measurement mode × 5				
	Real-time clock	Count: second, minute, hour, day of week				
	PWM function	8 bits × 2				
	Remote control signal receiver	 2 circuits 4 wave pattern matchings (differentiate wave pattern for headers, data 0, data 1, and special data) 6-byte receive buffer (1 circuit) Operating frequency of 32 kHz 				

Table 1.6 Specifications (80-Pin Package) (2/2)

Item	Function	Specification			
Serial Interface	UART0 to UART2, UART5	Clock synchronous/asynchronous × 3 channels I ² C-bus, IEBus ⁽¹⁾ , special mode 2 SIM (UART2) Clock asynchronous × 1 channel I ² C-bus, IEBus ⁽¹⁾			
	SI/O3, SI/O4	Clock synchronization only × 2 channels (SI/O3 is used for transmission only)			
	Multi-master I ² C bus interface	1 channel			
	CEC function (3)	CEC transmit/receive, arbitration lost detection, ACK signal generation, operation frequency of 32 kHz			
A/D Converte	er	10-bit resolution × 26 channels, including sample and hold function Conversion time: 1.72 μs			
D/A Converte	er	8-bit resolution × 2			
CRC Calcula	itor	CRC-CCITT $(X^{16} + X^{12} + X^5 + 1)$, CRC-16 $(X^{16} + X^{15} + X^2 + 1)$ compliant			
Flash Memor	ту	Programming and erasure power supply voltage: 2.7 to 5.5 V Programming and erasure endurance: 1,000 times (program ROM 1, program ROM 2)/10,000 times (data flash) Program security: ROM code protect, ID code check			
Debug Funct	ion	Functions on-chip debug, on-board flash rewrite function, address match x 4			
Operation Frequency/Supply Voltage		25 MHz/VCC1 = 2.7 to 5.5 V 32 MHz/VCC1 = 3.0 to 5.5 V			
Current Cons	sumption	TBD (32 MHz/VCC1 = 3 V) TBD (VCC1 = 3 V, in stop mode)			
Operating Te	mperature	-20°C to 85°C, -40°C to 85°C (2)			
Package		80-pin LQFP: PLQP080JA-A (Previous package code: FP-80W)			

- 1. IEBus is a registered trademark of NEC Electronics Corporation.
- See Table 1.7 "Product List" for the operating temperature.
- The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

1.3 **Product List**

Table 1.7 lists product information. Figure 1.1 shows Correspondence of Part No., with Memory Size and Package, and Figure 1.2 shows Marking Diagram of Flash Memory Package (Top View).

Table 1.7 **Product List**

		ROM Capacity			RAM		Remarks	
Part No.	Part No.		Program ROM2	Data Flash	Capacity	Package Code		
R5F36506NFA	(P)					PRQP0100JD-B	Operating	
R5F36506NFB	(P)					PLQP0100KB-A	temperature	
R5F36526NFP	(P)	128 Kbytes	16 Kbytes	4 Kbytes	12 Kbytes	PLQP0080JA-A	-20°C to 85°C	
R5F36506DFA	(P)	120 Kbytes	10 Kbytes	× 2 blocks	12 Kbytes	PRQP0100JD-B	Operating	
R5F36506DFB	(P)					PLQP0100KB-A	temperature	
R5F36526DFP	(P)					PLQP0080JA-A	-40°C to 85°C	
R5F3651ENFC	(P)					PLQP0128KB-A	Operating	
R5F3650ENFA	(P)					PRQP0100JD-B	temperature	
R5F3650ENFB	(P)	256 Kbytes	16 Kbytes	4 Kbytes	20 Kbytes	PLQP0100KB-A	-20°C to 85°C	
R5F3651EDFC	(P)	256 Rbytes	16 Kbytes	× 2 blocks	20 Kbytes	PLQP0128KB-A	Operating	
R5F3650EDFA	(D)					PRQP0100JD-B	temperature	
R5F3650EDFB	(D)					PLQP0100KB-A	-40°C to 85°C	
R5F3651KNFC	(P)					PLQP0128KB-A	Operating	
R5F3650KNFB	(P)		16 Kbytes	4 Kbytes × 2 blocks	31 Kbytes	PRQP0100JD-B	temperature	
R5F3650KNFA	(P)	004 Khataa				PLQP0100KB-A	-20°C to 85°C	
R5F3651KDFC	(P)	384 Kbytes				PLQP0128KB-A	Operating	
R5F3650KDFB	(P)					PRQP0100JD-B	temperature	
R5F3650KDFA	(P)					PLQP0100KB-A	-40°C to 85°C	
R5F3651MNFC	(P)				31 Kbytes	PLQP0128KB-A	Operating	
R5F3650MNFA	(P)					PRQP0100JD-B	temperature	
R5F3650MNFB	(P)	512 Kbytes	16 Kbytes	4 Kbytes		PLQP0100KB-A	-20°C to 85°C	
R5F3651MDFC	(P)	512 Rbytes	TO Noyles	× 2 blocks	31 Nbytes	PLQP0128KB-A	Operating	
R5F3650MDFA	(P)					PRQP0100JD-B	temperature	
R5F3650MDFB	(P)					PLQP0100KB-A	-40°C to 85°C	
R5F3651RNFC	(P)					PLQP0128KB-A	Operating	
R5F3650RNFB	(P)					PRQP0100JD-B	temperature	
R5F3650RNFA	(P)	640 Kbytes	16 Kbytes	4 Kbytes	47 Kbytes	PLQP0100KB-A	-20°C to 85°C	
R5F3651RDFC	(P)	040 Rbytes	TO NOVICS	× 2 blocks	47 Noyles	PLQP0128KB-A	Operating	
R5F3650RDFB	(P)					PRQP0100JD-B	temperature	
R5F3650RDFA	(P)					PLQP0100KB-A	-40°C to 85°C	
R5F3651TNFC	(D)					PLQP0128KB-A	Operating	
R5F3650TNFA	(P)					PRQP0100JD-B	temperature	
R5F3650TNFB	(P)	768 Kbytes	16 Kbytes	4 Kbytes	47 Kbytes	PLQP0100KB-A	-20°C to 85°C	
R5F3651TDFC	(D)	100 NDYIES	10 KDyteS	× 2 blocks	+1 Noyles	PLQP0128KB-A	Operating temperature	
R5F3650TDFA	(P)					PRQP0100JD-B		
R5F3650TDFB	(P)					PLQP0100KB-A	-40°C to 85°C	

⁽D): Under development

Note:

PLQP0128KB-A: 128P6Q-A, PRQP0100JD-B: 100P6F-A, PLQP0100KB-A: 100P6Q-A,

PLQP0080JA-A: FP-80W

⁽P): Planning

Previous package codes are as follows.

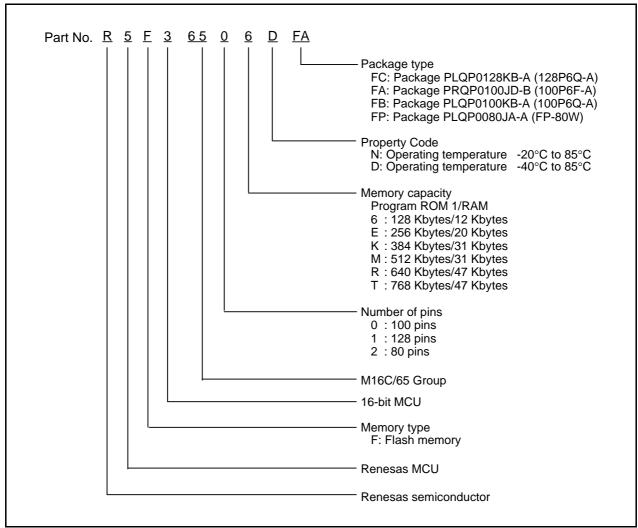
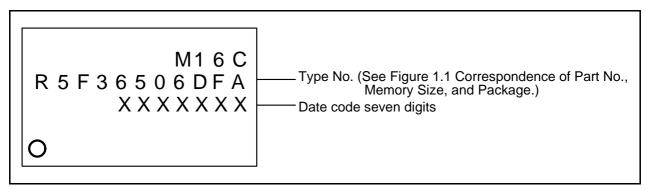



Figure 1.1 Correspondence of Part No., with Memory Size and Package

Marking Diagram of Flash Memory Package (Top View) Figure 1.2

1.4 **Block Diagram**

Figure 1.3 to Figure 1.5 show block diagrams.

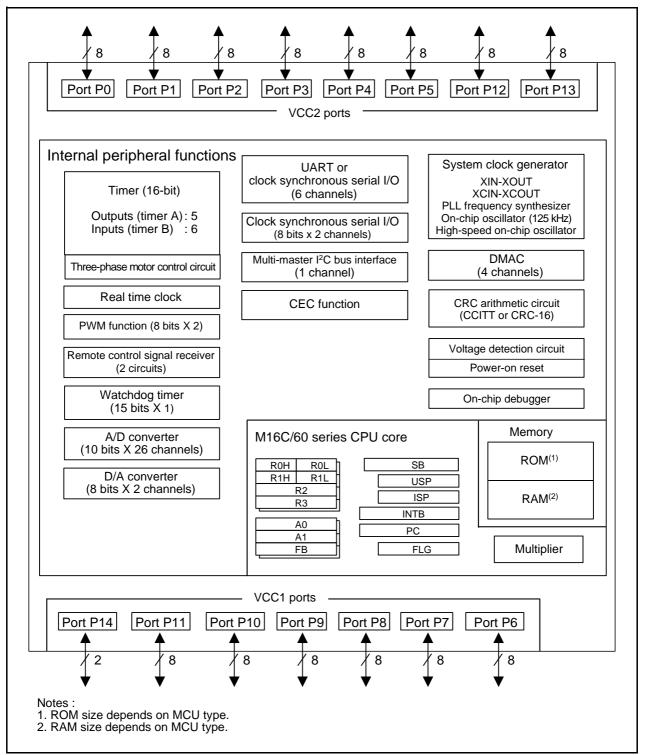


Figure 1.3 **Block Diagram (128 pins)**

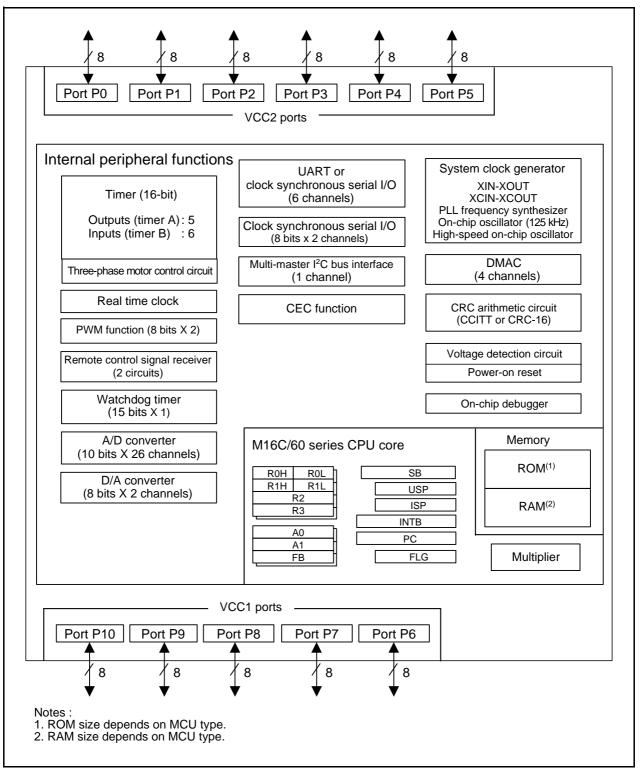


Figure 1.4 **Block Diagram (100 pins)**

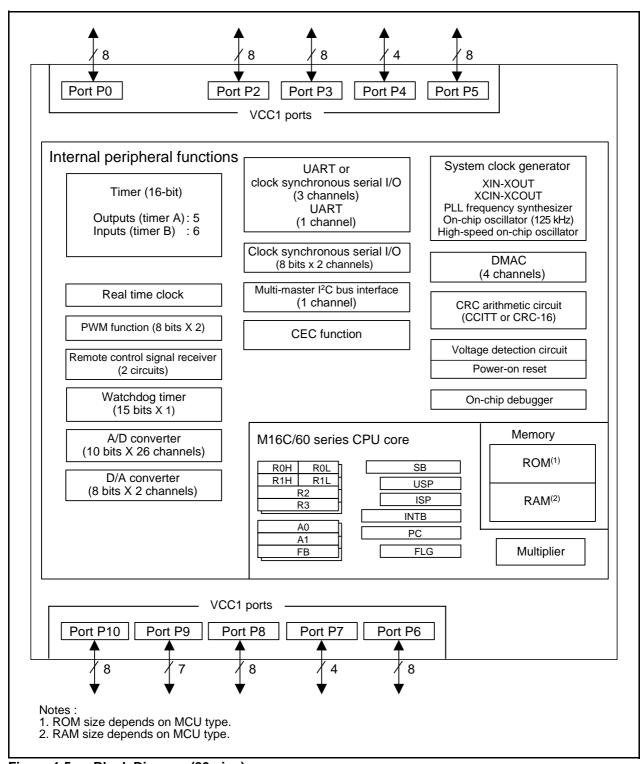


Figure 1.5 **Block Diagram (80 pins)**

1.5 **Pin Assignments**

Figure 1.6 to Figure 1.9 show pin assignments (top view). Table 1.8 to Table 1.14 list pin names.

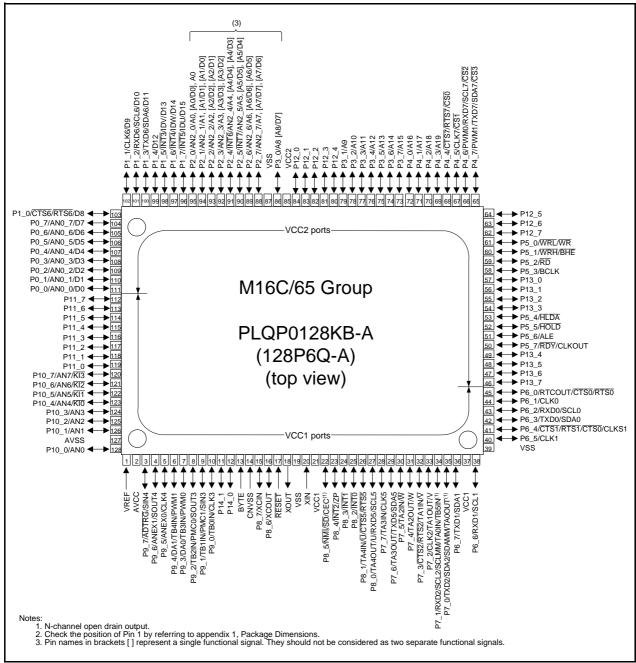


Figure 1.6 Pin Assignment (128 pins) (Top View)

Table 1.8 Pin Names, 128-Pin Package (1/3)

Table 1.6 Pili Names,							
Pin No.	Control Pin	Port			or Peripheral Function	A/D converter,	Bus Control Pin
			Interrupt	Timer	Serial interface	D/A converter	
1	VREF						
2	AVCC						
3		P9_7			SIN4	ADTRG	
4		P9_6			SOUT4	ANEX1	
5		P9_5			CLK4	ANEX0	
6		P9_4		TB4IN/PWM1		DA1	
7		P9_3		TB3IN/PWM0		DA0	
8		P9_2		TB2IN/PMC0	SOUT3		
9		P9_1		TB1IN/PMC1	SIN3		
10		P9_0		TB0IN	CLK3		
11		P14_1					
12	D) (TE	P14_0					
13	BYTE						
14	CNVSS	D0 7					
15	XCIN	P8_7					
16	XCOUT	P8_6					
17	RESET						
18	XOUT						
19	VSS						
20	XIN						
21	VCC1	D0 5	l		050		
22		P8_5	NMI	SD	CEC		
23		P8_4	INT2	ZP			
24		P8_3	INT1				
25		P8_2	ĪNT0				
26		P8_1		TA4IN/Ū	CTS5/RTS5		
27		P8_0		TA4IN/U	RXD5/SCL5		
28		P7_7		TA3IN	CLK5		
29		P7_6		TA3OUT	TXD5/SDA5		
30		P7_5		TA2IN/W	17/20/02/10		
31		P7_4		TA20UT/W			
32		P7_ 4			OTOO/DTOO		
				TA1IN/V	CTS2/RTS2		
33 34		P7_2		TA1OUT/V TA0IN/TB5IN	CLK2 RXD2/SCL2/SCLMM		
35		P7_1		TAUIN/165IN	TXD2/SDA2/SDAMM		
36		P7_0 P6_7		170001	TXD1/SDA1	 	
37	VCC1	1 0_1			I AD I/SDA I		
38	V 0 0 1	P6_6			RXD1/SCL1	+	
39	VSS	1 0_0			INDI/OOLI	1	
40	7.00	P6_5			CLK1	1	
41		P6_4			CTS1/RTS1/CTS0/CLKS1	 	
42		P6_3			TXD0/SDA0		
43		P6_2			RXD0/SCL0	1	
44		P6_1			CLK0		
45		P6_0		RTCOUT	CTS0/RTS0		
46		P13_7			0130/N130		
47		P13_6					
48		P13_5				1	
49		P13_4					
50	CLKOUT	P5_7				+	RDY
	32.1001	'					ו טוון

M16C/65 Group

Table 1.		T Ttallio	1	n Package	1		
Pin No.	Control	Port			Pin for Peripheral Func	A/D converter,	Bus Control Pin
	Pin		Interrupt	Timer	Serial interface	D/A converter	
51		P5_6					ALE
52		P5_5					HOLD
53		P5_4					HLDA
54		P13_3					
55		P13_2					
56		P13_1					
57		P13_0					
58		P5_3					BCLK
59		P5_2					RD
60		P5_1					WRH/BHE
61		P5_0					WRL/WR
62		P12_7					
63		P12_6					
64		P12_5					
65		P4_7		PWM1	TXD7/SDA7		CS3
66		P4_6		PWM0	RXD7/SCL7		CS2
67		P4_5			CLK7		CS1
68		P4_4			CTS7/RTS7		CS0
69		P4_3			0107/11107		A19
70		P4_2					A18
71		P4_1					A17
72		P4_0					A16
73		P3_7					A15
74		P3_6					A14
75		P3_5					A13
76		P3_4					A12
77		P3_3					A11
78		P3_2					A10
79		P3_1					A9
80		P12_4					
81 82		P12_3 P12_2					
83		P12_1					
84		P12_0					
85	VCC2	1 12_0					
86		P3_0					A8, [A8/D7]
87	VSS						,,,
88		P2_7				AN2_7	A7, [A7/D7], [A7/D6]
89		P2_6				AN2_6	A6, [A6/D6], [A6/D5]
90		P2_5	ĪNT7			AN2_5	A5, [A5/D5], [A5/D4]
91		P2_4	ĪNT6			AN2_4	A4[A4/D4], [A4/D3]
92		P2_3				AN2_3	A3, [A3/D3], [A3/D2]
93		P2_2				AN2_2	A2, [A2/D2], [A2/D1]
94		P2_1				AN2_1	A1, [A1/D1], [A1/D0]
95		P2_0				AN2_0	A0, [A0/D0], A0
96		P1_7	INT5	IDU			D15
97		P1_6	ĪNT4	IDW			D14
98		P1_5	INT3	IDV		1	D13
99		P1_4				+	D12
100		P1_3			TXD6/SDA6		D11

Pin Names, 128-Pin Package (3/3) **Table 1.10**

Pin	Control			I/O F	Pin for Peripheral Fund		
No.	Pin	Port	Interrupt	Timer	Serial interface	A/D converter, D/A converter	Bus Control Pin
101		P1_2			RXD6/SCL6		D10
102		P1_1			CLK6		D9
103		P1_0			CTS6/RTS6		D8
104		P0_7				AN0_7	D7
105		P0_6				AN0_6	D6
106		P0_5				AN0_5	D5
107		P0_4				AN0_4	D4
108		P0_3				AN0_3	D3
109		P0_2				AN0_2	D2
110		P0_1				AN0_1	D1
111		P0_0				AN0_0	D0
112		P11_7					
113		P11_6					
114		P11_5					
115		P11_4					
116		P11_3					
117		P11_2					
118		P11_1					
119		P11_0					
120		P10_7	KI3			AN7	
121		P10_6	KI2			AN6	
122		P10_5	KI1			AN5	
123		P10_4	KIO			AN4	
124		P10_3				AN3	
125		P10_2				AN2	
126		P10_1				AN1	
127	AVSS						
128		P10_0				AN0	

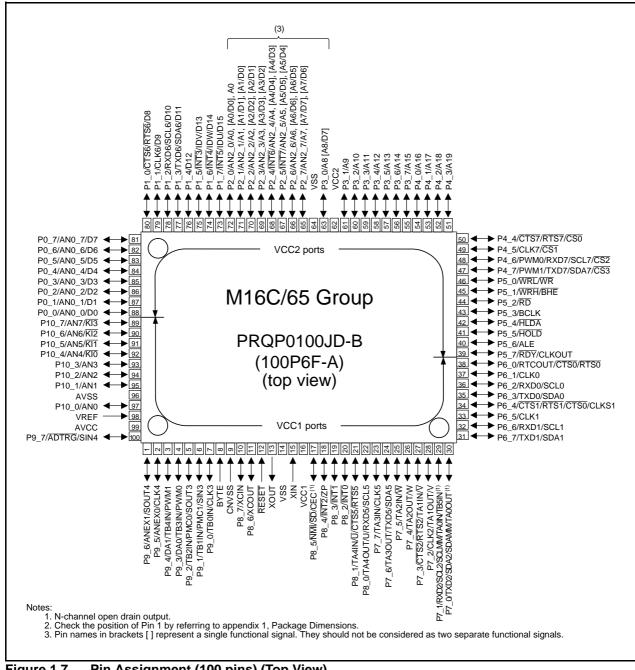


Figure 1.7 Pin Assignment (100 pins) (Top View)

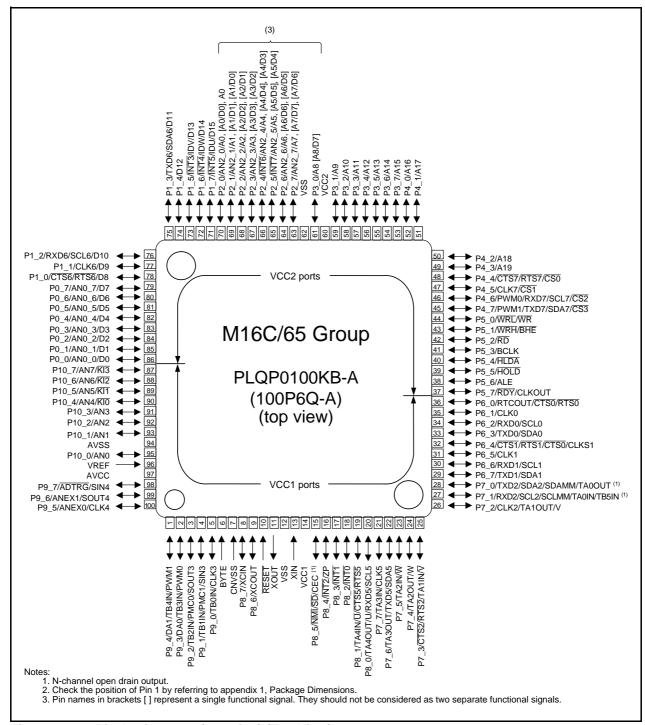


Figure 1.8 Pin Assignment (100 pins) (Top View)

Pin Names, 100-Pin Package (1/2) **Table 1.11**

Pin	No.				I/O Pin	for Peripheral Function		Bus Control
FA	FB	Control Pin	Port	Interrupt	Timer	Serial interface	A/D converter, D/A converter	Pin
1	99		P9_6			SOUT4	ANEX1	
2	100		P9_5			CLK4	ANEX0	
3	1		P9_4		TB4IN/PWM1		DA1	
4	2		P9_3		TB3IN/PWM0		DA0	
5	3		P9_2		TB2IN/PMC0	SOUT3		
6	4		P9_1		TB1IN/PMC1	SIN3		
7	5		P9_0		TB0IN	CLK3		
8	6	BYTE						
9	7	CNVSS						
10	8	XCIN	P8_7					
11	9	XCOUT	P8_6					
12	10	RESET						
13	11	XOUT						
14	12	VSS						
15	13	XIN						
16	14	VCC1	D0 F			050		
17	15		P8_5	NMI	SD	CEC		
18	16		P8_4	INT2	ZP			
19	17		P8_3	INT1				
20	18		P8_2	ĪNT0				
21	19		P8_1		TA4IN/Ū	CTS5/RTS5		
22	20		P8_0		TA4OUT/U	RXD5/SCL5		
23	21		P7_7		TA3IN	CLK5		
24	22		P7_6		TA3OUT	TXD5/SDA5		
25	23		P7_5		TA2IN/W			
26	24		P7_4		TA2OUT/W			
27	25		P7_3		TA1IN/V	CTS2/RTS2		
28	26		P7_2		TA10UT/V	CLK2		
29	27		P7_1		TA0IN/TB5IN	RXD2/SCL2/SCLMM		
30	28		P7_0		TA0OUT	TXD2/SDA2/SDAMM		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6_4			CTS1/RTS1/CTS0/ CLKS1		
35	33		P6_3			TXD0/SDA0		
36	34		P6_2			RXD0/SCL0		
37	35		P6_1			CLK0		<u> </u>
38	36		P6_0		RTCOUT	CTS0/RTS0		1
39	37	CLKOUT	P5_7			2.00,11100		RDY
40	38		P5_6					ALE
41	39		P5_5					HOLD
42	40		P5_4					
								HLDA
43 44	41 42		P5_3 P5_2	1				BCLK
								RD
45	43		P5_1					WRH/BHE
46	44		P5_0					WRL/WR
47	45		P4_7		PWM1	TXD7/SDA7		CS3
48	46		P4_6		PWM0	RXD7/SCL7		CS2
49	47		P4_5			CLK7		CS1
50	48		P4_4					CS0
50	70		· ¬_ -			CTS7/RTS7		USU

Pin Names, 100-Pin Package (2/2) **Table 1.12**

Iable	able 1.12 Fill Names,		100-1111					
Pin	Pin No. Control Dark				I/O P			
FA	FB	Pin	Port	Interrupt	Timer	Serial interface	A/D converter, D/A converter	Bus Control Pin
51	49		P4_3					A19
52	50		P4_2					A18
53	51		P4_1					A17
54	52		P4_0					A16
55	53		P3_7					A15
56	54		P3_6					A14
57	55		P3_5					A13
58	56		P3_4					A12
59	57		P3_3					A11
60 61	58 59		P3_2 P3_1					A10 A9
62	60	VCC2	P3_1					A9
63	61	VCC2	P3_0					A8, [A8/D7]
64	62	VSS	F3_0					A6, [A6/D7]
65	63	700	P2_7				AN2_7	A7, [A7/D7], [A7/D6]
66	64		P2 6				AN2_6	A6, [A6/D6], [A6/D5]
67	65		P2_5	INT7			AN2_5	A5, [A5/D5], [A5/D4]
68	66		P2_4	INT6			AN2_4	A4, [A4/D4], [A4/D3]
69	67		P2_3	IINIO			AN2 3	A3, [A3/D3], [A3/D2]
70	68		P2_2				AN2_3 AN2_2	A2, [A2/D2], [A2/D1]
70 71	69		P2_1				AN2_1	A1, [A1/D1], [A1/D0]
72	70		P2_0				AN2_0	A0, [A0/D0], A0
73	71		P1_7	INT5	IDU		7.1.12_0	D15
74	72		P1_6	INT4	IDW			D14
75	73		P1_5	INT3	IDV			D13
76	74		P1_4	11410				D12
77	75		P1_3			TXD6/SDA6		D11
78	76		P1_2			RXD6/SCL6		D10
79	77		P1_1			CLK6		D9
80	78		P1_0			CTS6/RTS6		D8
81	79		P0_7				AN0_7	D7
82	80		P0_6				AN0_6	D6
83	81		P0_5				AN0_5	D5
84	82		P0_4				AN0_4	D4
85	83		P0_3				AN0_3	D3
86	84		P0_2				AN0_2	D2
87	85		P0_1			1	AN0_1	D1
88	86		P0_0			1	AN0_0	D0
89	87		P10_7	KI3			AN7	
90	88		P10_6	KI2			AN6	
91	89		P10_5	KI1			AN5	
92	90		P10_4	KI0			AN4	
93	91		P10_3				AN3	
94	92		P10_2				AN2	
95	93	AV/CC	P10_1				AN1	
96 97	94 95	AVSS	P10_0				AN0	
97 98	96	VREF	r 10_0				VINO	
98	96	AVCC						
100	98	,	P9_7			SIN4	ADTRG	
100	00	<u> </u>	'		<u> </u>	5.111	ADING	

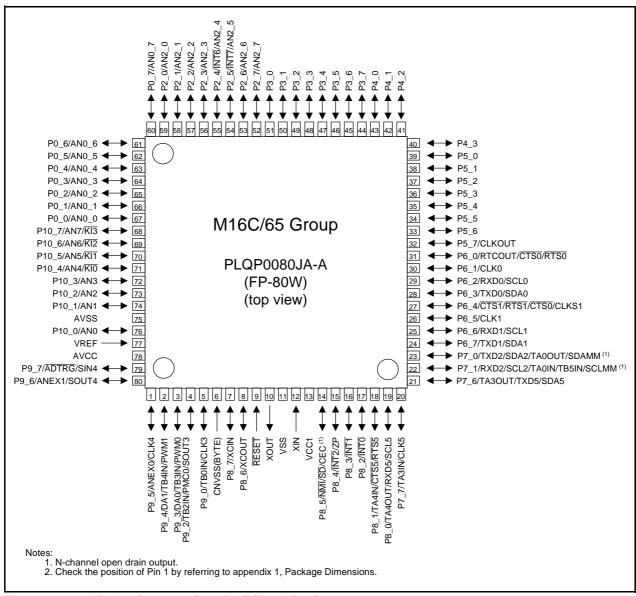


Figure 1.9 Pin Assignment (80 pins) (Top View)

M16C/65 Group

			I/O Pin for Peripheral Function			
Pin No.	Control Pin	Port	Interrupt	Timer	Serial interface	A/D converter, D/A converter
1		P9_5			CLK4	ANEX0
2		P9_4		TB4IN/PWM1		DA1
3		P9_3		TB3IN/PWM0		DA0
4		P9_2		TB2IN/PMC0	SOUT3	
5		P9_0		TB0IN	CLK3	
6	CNVSS					
7	XCIN	P8_7				
8	XCOUT	P8_6				
9	RESET					
10	XOUT					
11	VSS					
12	XIN					
13	VCC1					
14		P8_5	NMI	SD	CEC	
15		P8_4	ĪNT2	ZP		
16		P8_3	INT1			
17		P8_2	INT0			
18		P8_1		TA4IN	CTS5/RTS5	
19		P8_0		TA4OUT	RXD5/SCL5	
20		P7_7		TA3IN	SCL5	
21		P7_6		TA3OUT	TXD5/SDA5	
22		P7_1		TA0IN/TB5IN	RXD2/SCL2/SCLMM	
23		P7_0		TA0OUT	TXD2/SDA2/SDAMM	
24		P6_7			TXD1/SDA1	
25		P6_6			RXD1/SCL1	
26		P6_5			CLK1	
27		P6_4			CTS1/RTS1/CTS0/	
					CLKS1	
28		P6_3			TXD0/SDA0	
29		P6_2			RXD0/SCL0	
30		P6_1			CLK0	
31		P6_0		RTCOUT	CTS0/RTS0	
32	CLKOUT	P5_7				
33		P5_6				
34		P5_5				
35		P5_4				
36		P5_3				
37		P5_2				
38		P5_1				
39		P5_0				
40		P4_3				

Pin Names, 80-Pin Package (2/2) **Table 1.14**

			I/O Pin for Peripheral Function							
Pin No.	Control Pin	Port	Interrupt	Timer	Serial interface	A/D converter,				
			interrupt	Tilliei	Ochar interiace	D/A converter				
41		P4_2								
42		P4_1								
43		P4_0								
44		P3_7								
45		P3_6								
46		P3_5								
47		P3_4								
48		P3_3								
49		P3_2								
50		P3_1								
51		P3_0				ANIO 7				
52 53		P2_7	+			AN2_7				
53 54		P2_6 P2_5				AN2_6 AN2_5				
			ĪNT7							
55		P2_4	ĪNT6			AN2_4				
56		P2_3				AN2_3				
57		P2_2				AN2_2				
58		P2_1				AN2_1				
59		P2_0				AN2_0				
60		P0_7				AN0_7				
61		P0_6				AN0_6				
62		P0_5				AN0_5				
63		P0_4				AN0_4				
64		P0_3				AN0_3				
65		P0_2				AN0_2				
66		P0_1				AN0_1				
67		P0_0				AN0_0				
68		P10_7	KI3			AN7				
69		P10_6	KI2			AN6				
70		P10_5	KI1			AN5				
71		P10_4	KI0			AN4				
72		P10_3	1			AN3				
73		P10_2				AN2				
74		P10_1	+			AN1				
75	AVSS		+			·				
76		P10_0	1			AN0				
77	VREF									
78	AVCC									
79		P9_7			SIN4	ADTRG				
80		P9_6			SOUT4	ANEX1				

1.6 **Pin Functions**

Pin Functions (128-Pin Package) (1/3) **Table 1.15**

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1 VCC2 VSS	I	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \geq VCC2) and 0 V to the VSS pin. (1)
Analog power supply input	AVCC AVSS	I	VCC1	Apply the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	Low active input pin. Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor mode. Connect the CNVSS pin to VSS via a resistor to start up after a reset in single-chip mode. To start up in microprocessor mode, connect it to VCC1.
External data bus width select input	BYTE	I	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.
Bus control pins	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with separate bus
	D8 to D15	I/O	VCC2	Inputs or outputs data (D8 to D15) while accessing an external area with 16-bit separate bus
	A0 to A19	0	VCC2	Outputs address bits A0 to A19
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with 8-bit multiplexed bus
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with 16-bit multiplexed bus
	CS0 to CS3	0	VCC2	Outputs chip-select signals CS0 to CS3 to specify an external area
	WRL/WR WRH/BHE RD	0	VCC2	Low active output pins. Outputs WRI, WRH, (WR, BHE), RD signals. WRL and WRH can be switched with BHE and WR by a program. • WRL, WRH and RD selected If the external data bus is 16 bits, data is written to an even address in external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. • WR, BHE and RD selected Data is written to external area when WR is driven low. Data in external area is read when RD is driven low. An odd address is accessed when BHE is driven low. Select WR, BHE, and RD for external 8-bit data bus.
	ALE	0	VCC2	Output ALE signal to latch address.
	HOLD	I	VCC2	Low active input pin. The MCU is placed in hold state while the HOLD pin is driven low.
	HLDA	0	VCC2	Low active output pin. In a hold state, HLDA outputs a low-level signal.
	RDY	I	VCC2	Low active input pin. The MCU bus is placed in wait state while the RDY pin is driven low.

Power supply: VCC2 is used to supply power to external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

Note:

VCC1 is hereinafter referred to as VCC unless otherwise noted.

Signal Name	Pin Name	I/O	Power Supply	Description
Main clock input	XIN	I	VCC1	I/O pins for the main clock oscillator. Connect a ceramic resonator or crystal oscillator between XIN
Main clock output	XOUT	0	VCC1	and XOUT ⁽¹⁾ . To apply an external clock, connect it to XIN and leave XOUT open.
Sub clock input	XCIN	I	VCC1	I/O pins for a sub clock oscillator. Connect a crystal oscillator between XCIN and XCOUT (1).
Sub clock output	XCOUT	0	VCC1	To apply an external clock, connect it to XCIN and leave XCOUT open.
BCLK output	BCLK	0	VCC2	Outputs BCLK signal
Clock output	CLKOUT	0	VCC2	This pin outputs the clock having the same frequency as fC, f8, or f32.
INT interrupt input	INTO to INT2	ı	VCC1	Input pins for INT interrupt
	INT3 to INT7	ı	VCC2	
NMI interrupt input	NMI	ı	VCC1	Input pin for NMI interrupt
Key input interrupt input	KIO to KI3	I	VCC1	Input pins for key input interrupt
Timer A	TA0OUT to TA4OUT	I/O	VCC1	Timer A0 to A4 I/O pins (TA0OUT as an output pin is N-channel open drain output)
	TA0IN to TA4IN	ı	VCC1	Timer A0 to A4 input pins
	ZP	ı	VCC1	Input pin for Z-phase
Timer B	TB0IN to TB5IN	ı	VCC1	Timer B0 to B5 input pins
Three-phase motor	$\overline{U}, \overline{U}, V, \overline{V}, W, \overline{W}$	0	VCC1	Output pins for three-phase motor control timer output
control timer	SD	I	VCC1	Forced cutoff input
	IDU, IDV, IDW	I	VCC2	Input for position data
Real time clock output	RTCOUT	0	VCC1	Output for real time clock
PWM output	PWM0, PWM1	0	VCC1, VCC2	PWM output
Remote control signal receiver input	PMC0, PMC1	I	VCC1	Input for remote control signal receiver
Serial interface UART0 to UART2,	CTS0 to CTS2, CTS5	I	VCC1	Input pins to control data transmission
UART5 to UART7	CTS6, CTS7	I	VCC2	
	RTS0 to RTS2, RTS5	0	VCC1	Output pins to control data reception
	RTS6, RTS7	0	VCC2	
	CLK0 to CLK2, CLK5	I/O	VCC1	Transmit/receive clock I/O pins
	CLK6, CLK7	I/O	VCC2	
	RXD0 to RXD2, RXD5	I	VCC1	Serial data input pins
	RXD6, RXD7	I	VCC2	
	TXD0 to TXD2, TXD5	0	VCC1	Serial data output pins (2)
	TXD6, TXD7	0	VCC2	
	CLKS1	0	VCC1	Output pin for transmit/receive clock multiple-pin output function

Contact the oscillator manufacturer regarding the oscillation characteristics. TXD2, SDA2, and SCL2 are N-channel open drain output pins. TXDi (i = 0, 1, 5 to 7), SDAi, and SCLi can be selected as CMOS output pins or N-channel open drain output pins by a program.

Pin Functions (128-Pin Package) (3/3) **Table 1.17**

Signal Name	Pin Name	I/O	Power Supply	Description
UART0 to UART2,	SDA0 to SDA2, SDA5	I/O	VCC1	I ² C mode serial data I/O pins
UART5 to UART7	SDA6, SDA7	I/O	VCC2	
I ² C mode	SCL0 to SCL2, SCL5	1/0	VCC1	I ² C mode transmit/receive clock I/O pins
	SCL6, SCL7	I/O	VCC2	
Serial	CLKS3, CLKS4	I/O	VCC1	Transmit/receive clock I/O pins
interface SI/03, SI/04	SIN3, SIN4	I	VCC1	Serial data input pins
31/03, 31/04	SOUT3, SOUT4	0	VCC1	Serial data output pins
Multi-master	SDAMM	I/O	VCC1	Serial data I/O pin (Output is N-channel open drain)
I ² C-bus Interface	SCLMM	I/O	VCC1	Transmit/receive clock I/O pin (Output is N-channel open drain)
CEC I/O	CEC	I/O	VCC1	CEC I/O pin (Output is N-channel open drain)
Reference voltage input	VREF	I	VCC1	Reference voltage input pins for the A/D converter and D/A converter
converter	AN0 to AN7	I	VCC1	Analog input pins for the A/D converter
	AN0_0 to AN0_7 AN2_0 to AN2_7	I	VCC2	
	ADTRG	I	VCC1	Input pin for an external A/D trigger
	ANEX0, ANEX1	I	VCC1	Extended analog input pin for the A/D converter
D/A converter	DA0, DA1	0	VCC1	Output pin for the D/A converter
I/O port	P0_0 to P0_7 P1_0 to P1_7 P2_0 to P2_7 P3_0 to P3_7 P4_0 to P4_7 P5_0 to P5_7 P12_0 to P12_7 P13_0 to P13_7	I/O	VCC2	8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units.
	P6_0 to P6_7 P7_0 to P7_7 P8_0 to P8_7 P9_0 to P9_7 P10_0 to P10_7 P11_0 to P11_7	1/0	VCC1	8-bit I/O ports having equivalent functions to P0. However, P7_0, P7_1, and P8_5 are N-channel open drain output ports. No pull-up resistor is provided. P8_5 is an input port for verifying the \$\overline{NMI}\$ pin level and shares a pin with \$\overline{NMI}\$.
1	P14_0, P14_1	I/O	VCC1	I/O ports having equivalent functions to P0

Table 1.18 Pin Functions (100-Pin Package) (1/3)

Signal Name	Pin Name	I/O	Power Supply	•
Power supply input	VCC1 VCC2 VSS	I	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \geq VCC2) and 0 V to the VSS pin. $^{(1)}$
Analog power supply input	AVCC AVSS	I	VCC1	Apply the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	Low active input pin. Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor mode. Connect the CNVSS pin to VSS via a resistor to start up after a reset in single-chip mode. To start up in microprocessor mode, connect it to VCC1.
External data bus width select input	ВУТЕ	I	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low, and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.
Bus control pins	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with separate bus
	D8 to D15	I/O	VCC2	Inputs or outputs data (D8 to D15) while accessing an external area with 16-bit separate bus
	A0 to A19	0	VCC2	Outputs address bits A0 to A19
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with 8-bit multiplexed bus
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with 16-bit multiplexed bus
	CS0 to CS3	0	VCC2	Outputs chip-select signals CS0 to CS3 to specify an external area
	WRL/WR WRH/BHE RD	0	VCC2	Low active output pins. Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR by a program. • WRL, WRH and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. • WR, BHE and RD selected Data is written to external area when WR is driven low. Data in an external area is read when RD is driven low. An odd address is accessed when BHE is driven low. Select WR, BHE, and RD for external 8-bit data bus.
	ALE	0	VCC2	Outputs ALE signal to latch address.
	HOLD	I	VCC2	Low active input pin. The MCU is placed in a hold state while the HOLD pin is driven low.
	HLDA	0	VCC2	Low active output pin. In a hold state, HLDA outputs a low-level signal.
	RDY	I	VCC2	Low active input pin. The MCU bus is placed in a wait state while the RDY pin is driven low.

Power supply: VCC2 is used to supply power to external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

Note:

VCC1 is hereinafter referred to as VCC unless otherwise noted.

Table 1.19 Pin Functions (100-Pin Package) (2/3)

Signal Name	Pin Name	I/O	Power Supply	Description
Main clock input	XIN	I	VCC1	I/O pins for the main clock oscillator. Connect a ceramic resonator or crystal oscillator between XIN
Main clock output	XOUT	0	VCC1	and XOUT ⁽¹⁾ . To apply an external clock, connect it to XIN and leave XOUT open.
Sub clock input	XCIN	I	VCC1	I/O pins for a sub clock oscillator. Connect a crystal oscillator between XCIN and XCOUT (1).
Sub clock output	XCOUT	0	VCC1	To apply an external clock, connect it to XCIN and leave XCOUT open.
BCLK output	BCLK	0	VCC2	Outputs BCLK signal
Clock output	CLKOUT	0	VCC2	This pin outputs the clock having the same frequency as fC, f8, or f32.
INT interrupt input	INT0 to INT2	1	VCC1	Input pins for INT interrupt
	INT3 to INT7	I	VCC2	
NMI interrupt input	NMI	1	VCC1	Input pin for NMI interrupt
Key input interrupt input	KI0 to KI3	I	VCC1	Input pins for key input interrupt
Timer A	TA0OUT to TA4OUT	I/O	VCC1	Timer A0 to A4 I/O pins (TA0OUT as an output pin is N-channel open drain output)
	TA0IN to TA4IN	1	VCC1	Timer A0 to A4 input pins
	ZP	I	VCC1	Input pin for Z-phase
Timer B	TB0IN to TB5IN	1	VCC1	Timer B0 to B5 input pins
Three-phase motor	$U, \overline{U}, V, \overline{V}, W, \overline{W}$	0	VCC1	Output pins for three-phase motor control timer output
control timer	SD	I	VCC1	Forced cutoff input
	IDU, IDV, IDW	I	VCC2	Input for position data
Real time clock output	RTCOUT	0	VCC1	Output for real time clock
PWM output	PWM0, PWM1	0	VCC1, VCC2	PWM output
Remote control signal receiver input	PMC0, PMC1	I	VCC1	Input for remote control signal receiver
Serial interface UART0 to UART2,	CTS0 to CTS2, CTS5	I	VCC1	Input pins to control data transmission
UART5 to UART7	CTS6, CTS7	- 1	VCC2	
	RTS0 to RTS2, RTS5	0	VCC1	Output pins to control data reception
	RTS6, RTS7	0	VCC2	
	CLK0 to CLK2, CLK5	I/O	VCC1	Transmit/receive clock I/O pins
	CLK6, CLK7	I/O	VCC2	
	RXD0 to RXD2, RXD5	I	VCC1	Serial data input pins
	RXD6, RXD7	I	VCC2	
	TXD0 to TXD2, TXD5	0	VCC1	Serial data output pins (2)
	TXD6, TXD7	0	VCC2	
	CLKS1	0	VCC1	Output pin for transmit/receive clock multiple-pin output function

- 1.
- Contact the oscillator manufacturer regarding the oscillation characteristics. TXD2, SDA2, and SCL2 are N-channel open drain output pins. TXDi (i = 0, 1, 5 to 7), SDAi, and SCLi can be selected as CMOS output pins or N-channel open drain output pins by a program.

Pin Functions (100-Pin Package) (3/3) **Table 1.20**

Signal Name	Pin Name	I/O	Power Supply	Description
UART0 to UART2,	SDA0 to SDA2, SDA5	I/O	VCC1	I ² C mode serial data I/O pins
UART5 to UART7	SDA6, SDA7	I/O	VCC2	
I ² C mode	SCL0 to SCL2, SCL5	I/O	VCC1	I ² C mode transmit/receive clock I/O pins
	SCL6, SCL7	I/O	VCC2	
Serial	CLKS3, CLKS4	I/O	VCC1	Transmit/receive clock I/O pins
interface SI/03, SI/04	SIN3, SIN4	ı	VCC1	Serial data input pins
31/03, 31/04	SOUT3, SOUT4	0	VCC1	Serial data output pins
Multi-master	SDAMM	I/O	VCC1	Serial data I/O pin (output is N-channel open drain)
I ² C-bus Interface	SCLMM	I/O	VCC1	Transmit/receive clock I/O pin (output is N-channel open drain)
CEC I/O	CEC	I/O	VCC1	CEC I/O pin (output is N-channel open drain)
Reference voltage input	VREF	I	VCC1	Reference voltage input pins for the A/D converter and D/A converter
A/D	AN0 to AN7	I	VCC1	Analog input pins for the A/D converter
converter	AN0_0 to AN0_7 AN2_0 to AN2_7	I	VCC2	
	ADTRG		VCC1	Input pin for an external A/D trigger
	ANEX0, ANEX1	I	VCC1	Extended analog input pin for the A/D converter
D/A converter	DA0, DA1	0	VCC1	Output pin for the D/A converter
I/O port	P0_0 to P0_7 P1_0 to P1_7 P2_0 to P2_7 P3_0 to P3_7 P4_0 to P4_7 P5_0 to P5_7	I/O	VCC2	8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units.
	P6_0 to P6_7 P7_0 to P7_7 P8_0 to P8_7 P9_0 to P9_7 P10_0 to P10_7	I/O	VCC1	8-bit I/O ports having equivalent functions to P0. However, P7_0, P7_1, and P8_5 are N-channel open drain output ports. No pull-up resistor is provided. P8_5 is an input port for verifying the \$\overline{NMI}\$ pin level and shares a pin with \$\overline{NMI}\$.

M16C/65 Group

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1 VSS	I	-	Apply 2.7 to 5.5 V to the VCC1 pin and 0 V to the VSS pin.
Analog power supply input	AVCC AVSS	I	VCC1	Apply the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	Low active input pin. Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor mode. Connect the CNVSS pin to VSS via a resistor to start up after a reset in single-chip mode.
Main clock input	XIN	I	VCC1	I/O pins for the main clock oscillator. Connect a ceramic resonator or crystal oscillator between XIN and XOUT (1). To
Main clock output	XOUT	0	VCC1	apply an external clock, connect it to XIN and leave XOUT open.
Sub clock input	XCIN	I	VCC1	I/O pins for a sub clock oscillator. Connect a crystal oscillator between XCIN and XCOUT (1).
Sub clock output	XCOUT	0	VCC1	To apply an external clock, connect it to XCIN and leave XCOUT open.
Clock output	CLKOUT	0	VCC1	This pin outputs the clock having the same frequency as fC, f8, or f32.
INT interrupt input	INT0 to INT2	I	VCC1	Input pins for INT interrupt
	INT6, INT7	I	VCC1	
NMI interrupt input	NMI	I	VCC1	Input pin for NMI interrupt
Key input interrupt input	KI0 to KI3	I	VCC1	Input pins for key input interrupt
Timer A	TA0OUT TA3OUT TA4OUT	I/O	VCC1	Timer A0, timer A3, timer A4 I/O pins (TA0OUT as an output pin is N-channel open drain output)
	TAOIN, TA3IN, TA4IN	I	VCC1	Timer A0, timer A3, timer A4 input pins
	ZP	I	VCC1	Input pin for Z-phase
Timer B	TB0IN, TB2IN to TB5IN	I	VCC1	Timer B0, timers B2 to B5 input pins
Real time clock output	RTCOUT	0	VCC1	Output for real time clock
PWM output	PWM0, PWM1	0	VCC1	PWM output
Remote control signal receiver input	PMC0	I	VCC1	Input for remote control signal receiver

Note:

Contact the oscillator manufacturer regarding oscillation characteristics.

Signal Name	Pin Name	I/O	Power Supply	Description
Serial interface UART0 to UART2,	CTS0, CTS1, CTS5	I	VCC1	Input pins to control data transmission
UART5	RTS0, RTS1, RTS5	0	VCC1	Output pins to control data reception
	CLK0, CLK1, CLK5	I/O	VCC1	Transmit/receive clock I/O pins
	RXD0 to RXD2, RXD5	I	VCC1	Serial data input pins
	TXD0 to TXD2, TXD5	0	VCC1	Serial data output pins (1)
	CLKS1	0	VCC1	Output pin for transmit/receive clock multiple-pin output function
UART0 to UART2, UART5	SDA0 to SDA2, SDA5	I/O	VCC1	I ² C mode serial data I/O pins
I ² C mode	SCL0 to SCL2, SCL5	I/O	VCC1	I ² C mode transmit/receive clock I/O pins
Serial	CLKS3, CLKS4	I/O	VCC1	Transmit/receive clock I/O pins
interface	SIN4	I	VCC1	Serial data input pins
SI/03, SI/04	SOUT3, SOUT4	0	VCC1	Serial data output pins
Multi-master I ² C-bus	SDAMM	I/O	VCC1	Serial data I/O pin (output is N-channel open drain)
Interface	SCLMM	I/O	VCC1	Transmit/receive clock I/O pin (output is N-channel open drain)
CEC I/O	CEC	I/O	VCC1	CEC I/O pin (output is N-channel open drain)
Reference voltage input	VREF	I	VCC1	Reference voltage input pins for the A/D converter and D/A converter
A/D	AN0 to AN7	ı	VCC1	Analog input pins for the A/D converter
converter	AN0_0 to AN0_7 AN2_0 to AN2_7	I	VCC1	
	ADTRG	I	VCC1	Input pin for an external A/D trigger
	ANEX0, ANEX1	I	VCC1	Extended analog input pin for the A/D converter
D/A converter	DA0, DA1	0	VCC1	Output pin for the D/A converter
I/O port	P0_0 to P0_7 P2_0 to P2_7 P3_0 to P3_7 P5_0 to P5_7 P6_0 to P6_7 P8_0 to P8_7 P10_0 to P10_7	I/O	VCC1	8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units. P8_5 is an N-channel open drain output port. No pull-up resistor is provided. P8_5 is an input port for verifying the NMI pin level and shares a pin with NMI.
	P4_0 to P4_3 P7_0, P7_1 P7_6, P7_7 P9_0, P9_2 to P9_7	I/O	VCC1	I/O ports having equivalent functions to P0. However, P7_0 and P7_1 are N-channel open drain output ports. No pull-up resistor is provided.

TXD2, SDA2, and SCL2 are N-channel open drain output pins. TXDi (i = 0, 1, 5), SDAi, and SCLi can be selected as CMOS output pins or N-channel open drain output pins by a program.

2. **Central Processing Unit (CPU)**

Figure 2.1 shows the CPU registers. Seven registers (R0, R1, R2, R3, A0, A1, and FB) out of thirteen compose a register bank. There are two sets of register banks.

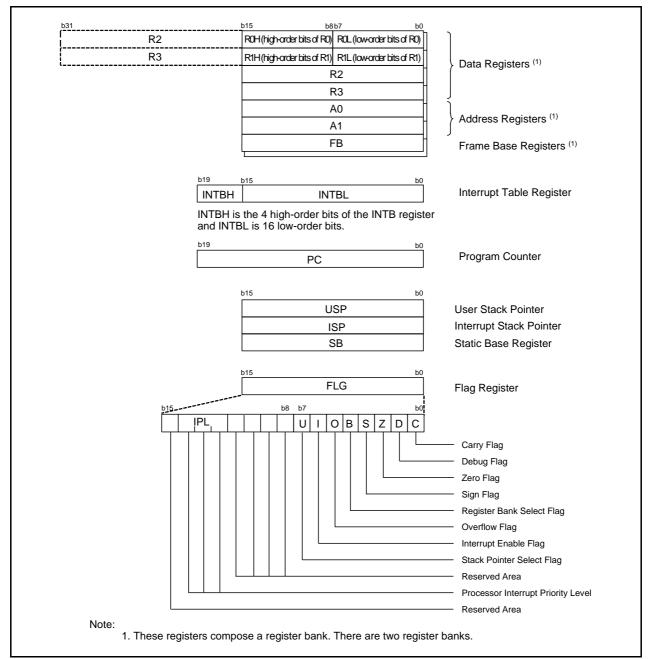


Figure 2.1 **Central Processing Unit Register**

2.1 Data Registers (R0, R1, R2, and R3)

R0, R1, R2, and R3 are 16-bit registers used for transfer, arithmetic and logic operations. R0 and R1 can be split into high-order (R0H/R1H) and low-order (R0L/R1L) bits to be used separately as 8-bit data registers. R0 can be combined with R2 and used as a 32-bit data register (R2R0). Also, R3R1 is the combination of R3 and R1.

2.2 Address Registers (A0 and A1)

A0 and A1 are 16-bit registers used for indirect addressing, relative addressing, transfer, arithmetic and logic operations. A0 can be combined with A1 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

The FB is a 16-bit register that is used for FB relative addressing.

2.4 **Interrupt Table Register (INTB)**

The INTB is a 20-bit register that indicates the start address of a relocatable interrupt vector table.

2.5 **Program Counter (PC)**

The PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 **User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)**

The stack pointers (SP), USP, and ISP are each comprised of 16 bits. The U flag is used to switch between USP and ISP.

2.7 Static Base Register (SB)

The SB is a 16-bit register used for SB-relative addressing.

2.8 Flag Register (FLG)

The FLG is an 11-bit register that indicates the CPU state.

2.8.1 Carry Flag (C Flag)

The C flag retains a carry, borrow, or shift-out bit generated by the arithmetic/logic unit.

Debug Flag (D Flag) 2.8.2

The D flag is for debugging only. Set it to 0.

Zero Flag (Z Flag)

The Z flag becomes 1 when an arithmetic operation results in 0. Otherwise it becomes 0.

2.8.4 Sign Flag (S Flag)

The S flag is set to 1 when an arithmetic operation results in a negative value. Otherwise it is set to 0.

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when the B flag is set to 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O Flag)

The O flag is set to 1 when an arithmetic operation results in an overflow. Otherwise it is set to 0.

2.8.7 Interrupt Enable Flag (I Flag)

The I flag enables maskable interrupts.

Maskable interrupts are disabled when the I flag is set to 0, and enabled when it is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is set to 0. USP is selected when the U flag is set to 1.

The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt number 0 to 31 is executed.

2.8.9 **Processor Interrupt Priority Level (IPL)**

IPL is 3 bits wide and assigns processor interrupt priority levels from 0 to 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 **Reserved Space**

Only write 0 to bits assigned as reserved bits. The read value is undefined.

3. **Address Space**

M16C/65 Group

3.1 **Address Space**

The M16C/65 Group has a 1 Mbyte address space from address 00000h to FFFFFh. Address space is expandable to 4 Mbytes with the memory capacity-enhancing feature. Address 40000h to BFFFFh can be used as external areas from bank 0 to bank 7. Figure 3.1 shows Address Space. The accessible area depends on processor mode and control bit status.

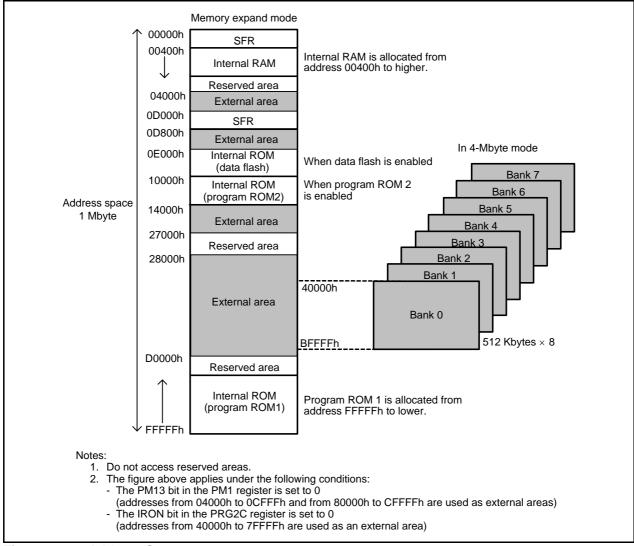


Figure 3.1 **Address Space**

M16C/65 Group 3. Address Space

3.2 **Memory Map**

Special Function Registers (SFRs) are allocated from address 00000h to 003FFh and from 0D000h to 0D7FFh. Peripheral function control registers are located here. All blank spaces within SFRs are reserved, and should not be accessed by the user.

Internal RAM is allocated from address 00400h and higher, with 10 Kbytes of internal RAM addressed from 00400h to 02BFFh. Internal RAM is used not only for data storage, but also for the stack area when subroutines are called or when an interrupt request is acknowledged.

The internal ROM is flash memory. Three internal ROM areas are available: data flash, program ROM 1, and program ROM 2.

The data flash is addressed from 0E000h to 0FFFFh. This data flash space is used not only for data storage, but also for program storage.

Program ROM 2 is assigned addresses 10000h to 13FFFh. Program ROM 1 is assigned addresses FFFFFh and lower, with the 64-Kbyte program ROM 1 space addressed to F0000h to FFFFFh.

The special page vectors are assigned addresses FFE00h to FFFD7h. They are used for the JMPS instruction and JSRS instruction. Refer to the M16C/60, M16C/20, M16C/Tiny Series Software Manual for details.

The fixed vector table for interrupts is assigned addresses FFFDCh to FFFFFh.

The 256 bytes beginning with the start address set in the INTB register compose the relocatable vector table for interrupts.

Figure 3.2 shows the Memory Map.

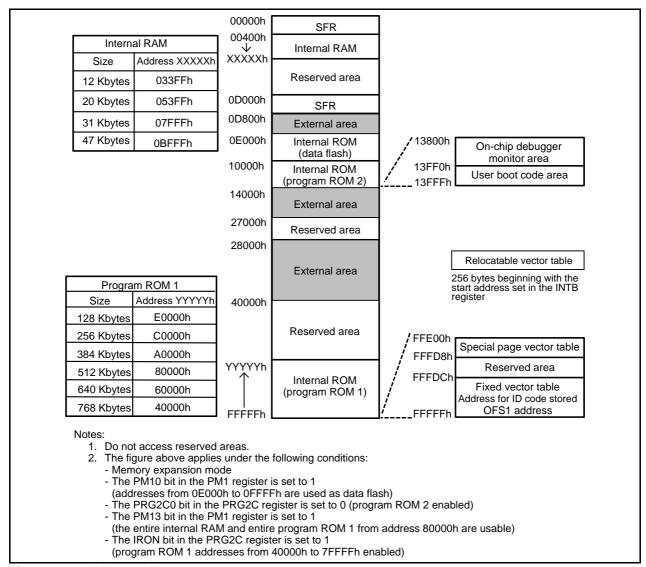
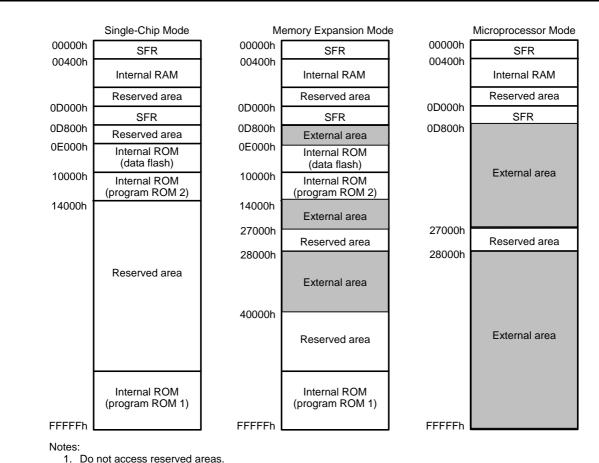


Figure 3.2 Memory Map


3.3 **Accessible Area in Each Mode**

The accessible area varies depending on processor mode and control bit status. Figure 3.3 shows Accessible Area in Each Mode.

In single-chip mode, the SFRs, internal RAM, and internal ROM can be accessed.

In memory expansion mode, the SFRs, internal RAM, internal ROM, and external areas can be accessed. Address space is expandable to 4 Mbytes with the memory capacity-enhancing feature.

In microprocessor mode, the SFRs, internal RAM, and external areas can be accessed. Address space is expandable to 4 Mbytes with the memory capacity-enhancing feature. Assign ROM to the fixed vector table addresses from FFFDCh to FFFFFh.

- 1. Do not access reserved areas.
- 2. The figure above applies under the following conditions:

Single-chip mode and memory expansion mode

- The PM10 bit in the PM1 register is set to 1
- (addresses from 0E000h to 0FFFFh are used as data flash)
- The PRG2C0 bit in the PRG2C register is set to 0 (program ROM 2 enabled)
- The PM13 bit in the PM1 register is set to 1
- (the entire internal RAM and entire program ROM 1 from address 80000h are usable)
- The IRON bit in the PRG2C register is set to 1
- (program ROM 1 addresses from 40000h to 7FFFh enabled)

Microprocessor mode

- The PM10 bit is set to 0 (addresses from 0E000h to 0FFFFh are used as CS2 area)
- The PRG2C0 bit is set to 1 (program ROM 2 disabled)

Figure 3.3 **Accessible Area in Each Mode**

Special Function Registers (SFRs)

4.1 **SFRs**

An SFR is a control register for a peripheral function. Table 4.1 to Table 4.15 list SFR information.

Table 4.1 SFR Information (1/16) (1)

Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	0000 0000b (CNVSS pin is low)
			0000 0011b (CNVSS pin is high) (2)
0005h	Processor Mode Register 1	PM1	0000 1000b
0006h	System Clock Control Register 0	CM0	0100 1000b
0007h	System Clock Control Register 1	CM1	0010 0000b
0008h	Chip Select Control Register	CSR	01h
0009h	External Area Recovery Cycle Control Register	EWR	XXXX XX00b
000Ah	Protect Register	PRCR	00h
000Bh	Data Bank Register	DBR	00h
000Ch	Oscillation Stop Detection Register	CM2	0X00 0010b (3)
000Dh			
000Eh			
000Fh			
0010h	Program 2 Area Control Register	PRG2C	XXXX XX00b
0011h	External Area Wait Control Expansion Register	EWC	00h
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
0013h			
0014h			
0015h	Clock Prescaler Reset Flag	CPSRF	0XXX XXXXb
0016h			
0017h			
0018h	Reset Source Determine Register	RSTFR	XX00 001Xb (hardware reset) (4)
0019h	Voltage Detection 2 Circuit Flag Register	VCR1	0000 X000b (2)
001Ah	Voltage Detection Circuit Operation Enable Register	VCR2	000X 0000b (2), (5)
			001X 0000b (2), (6)
001Bh	Chip Select Expansion Control Register	CSE	00h
001Ch	PLL Control Register 0	PLC0	0X01 X010b
001Dh			
001Eh	Processor Mode Register 2	PM2	XX00 0X01b
001Fh			

Notes:

X: Undefined

- The blank areas are reserved. No access is allowed.
- 2. Software reset, watchdog timer reset, oscillation stop detection reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect the following bits: Bits PM01 and PM00 in the PM0 register, VCR1 register, and VCR2 register.
- Oscillation stop detection reset does not affect bits CM20, CM21, and CM27.
- The state of bits in the RSTFR register depends on a reset type.
- When the LVDAS bit of address OFS1 is 1 at hardware reset
- This value shows the value after any of the following resets.
 - Voltage monitor 0 reset
 - When the LVDAS bit of address OFS1 is 0 at hardware reset
 - Power-on reset

Table 4.2 SFR Information (2/16) (1)

Address	Register	Symbol	After Reset
0020h			
0021h			
0022h	40 MHz On-Chip Oscillator Control Register 0	FRA0	XXXX XX00b
0023h			
0024h			
0025h			
0026h	Voltage Monitor Function Select Register	VWCE	00h ⁽⁵⁾
0027h			
0028h	Voltage Detection 1 Level Select Register	VD1LS	0000 1010b ⁽⁵⁾
0029h			
002Ah	Voltage Monitor 0 Circuit Control Register	VW0C	1100 1X10b ^{(2), (3)} 1100 1X11b ^{(2), (4)}
002Bh	Voltage Monitor 1 Circuit Control Register	VW1C	1000 XX10b (6)
002Ch	Voltage Monitor 2 Circuit Control Register	VW2C	1000 0X10b (6)
002Dh			
002Eh			
002Fh			
0030h			
0031h			
0032h			
0033h			
0034h			
0035h			
0036h			
0037h			
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh 003Eh			
003En			
003FII			
0040H			
0041h	INT7 Interrupt Control Register	INT7IC	XX00 X000b
0043h	INT6 Interrupt Control Register	INT6IC	XX00 X000b
0044h	INT3 Interrupt Control Register	INT3IC	XX00 X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	XXXX X000b
0046h	Timer B4 Interrupt Control Register UART1 Bus Collision Detection Interrupt Control Register	TB4IC U1BCNIC	XXXX X000b
0047h	Timer B3 Interrupt Control Register UART0 Bus Collision Detection Interrupt Control Register	TB3IC U0BCNIC	XXXX X000b
0048h	SI/O4 Interrupt Control Register INT5 Interrupt Control Register	S4IC INT5IC	XX00 X000b
0049h	SI/O3 Interrupt Control Register INT4 Interrupt Control Register	S3IC INT4IC	XX00 X000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	XXXX X000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXX X000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXX X000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXX X000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXX X000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXX X000b

X: Undefined

- The blank areas are reserved. No access is allowed. 1.
- 2. Software reset, watchdog timer reset, oscillation stop detection reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect the following register or bit: VW0C register and VW2C3 bit in the VW2C register.
- When the LVDAS bit of address OFS1 is 1 at hardware reset
- This value shows the value after any of the following resets.
 - Voltage monitor 0 reset
 - When the LVDAS bit of address OFS1 is 0 at hardware reset
 - Power-on reset
- Hardware reset, power-on reset, voltage monitor 0 reset, voltage monitor 1 reset, or voltage monitor 2 reset
- Hardware reset, power-on reset, or voltage monitor 0 reset

Table 4.3 SFR Information (3/16) (1)

Address	Register	Symbol	After Reset
0050h	5	S2RIC	XXXX X000b
0050h	UART2 Receive Interrupt Control Register	SOTIC	
0051h	UART0 Transmit Interrupt Control Register UART0 Receive Interrupt Control Register	SORIC	XXXX X000b XXXX X000b
0053h	UART1 Transmit Interrupt Control Register	SITIC	XXXX X000b
	. 5		
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXX X000b
0055h	Timer A0 Interrupt Control Register	TAOIC	XXXX X000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXX X000b
0058h	Timer A3 Interrupt Control Register	TA3IC	XXXX X000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXX X000b
005Ah	Timer B0 Interrupt Control Register	TB0IC	XXXX X000b
005Bh	Timer B1 Interrupt Control Register	TB1IC	XXXX X000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b
005Dh	INTO Interrupt Control Register	INT0IC	XX00 X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00 X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00 X000b
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h	DMA2 Interrupt Control Register	DM2IC	XXXX X000b
006Ah	DMA3 Interrupt Control Register	DM3IC	XXXX X000b
006Bh	UART5 Bus Collision Detection Interrupt Control Register	U5BCNIC	XXXX X000b
	CEC1 Interrupt Control Register	CEC1IC	
006Ch	UART5 Transmit Interrupt Control Register CEC2 Interrupt Control Register	S5TIC, CEC2IC	XXXX X000b
006Dh	UART5 Receive Interrupt Control Register	S5RIC	XXXX X000b
006Eh	UART6 Bus Collision Detection Interrupt Control Register	U6BCNIC	XXXX X000b
22251	Real-Time Clock Period Interrupt Control Register	RTCTIC	WWW York
006Fh	UART6 Transmit Interrupt Control Register	S6TIC RTCCIC	XXXX X000b
0070h	Real-Time Clock Compare Match Interrupt Control Register UART6 Receive Interrupt Control Register	S6RIC	VVVV VOOOL
0070h	UART7 Bus Collision Detection Interrupt Control Register	U7BCNIC	XXXX X000b XXXX X000b
007 III	Remote Control Signal Receiver 0 Interrupt Control Register	PMC0IC	XXX X000b
0072h	UART7 Transmit Interrupt Control Register	S7TIC	XXXX X000b
	Remote Control Signal Receiver 1 Interrupt Control Register	PMC1IC	
0073h	UART7 Receive Interrupt Control Register	S7RIC	XXXX X000b
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh	IICBus Interface Interrupt Control Register	IICIC	XXXX X000b
007Ch	SCL/SDA Interrupt Control Register	SCLDAIC	XXXX X000b
007Dh			
007Eh			
007Fh			

X: Undefined

SFR Information (4/16) (1) Table 4.4

Address	Register	Symbol	After Reset
0180h	DMA0 Source Pointer	SAR0	XXh
0181h			XXh
0182h			0Xh
0183h			
0184h	DMA0 Destination Pointer	DAR0	XXh
0185h			XXh
0186h			0Xh
0187h			
0188h	DMA0 Transfer Counter	TCR0	XXh
0189h			XXh
018Ah			
018Bh			
018Ch	DMA0 Control Register	DM0CON	0000 0X00b
018Dh			
018Eh			
018Fh			
0190h	DMA1 Source Pointer	SAR1	XXh
0191h			XXh
0192h			0Xh
0193h			
0194h	DMA1 Destination Pointer	DAR1	XXh
0195h			XXh
0196h			0Xh
0197h			
0198h	DMA1 Transfer Counter	TCR1	XXh
0199h			XXh
019Ah			
019Bh			
019Ch	DMA1 Control Register	DM1CON	0000 0X00b
019Dh			
019Eh			
019Fh			
01A0h	DMA2 Source Pointer	SAR2	XXh
01A1h			XXh
01A2h			0Xh
01A3h			
01A4h	DMA2 Destination Pointer	DAR2	XXh
01A5h			XXh
01A6h			0Xh
01A7h			
01A8h	DMA2 Transfer Counter	TCR2	XXh
01A9h			XXh
01AAh			
01ABh			
01ACh	DMA2 Control Register	DM2CON	0000 0X00b
01ADh			
01AEh			
01AFh			+

X: Undefined

4. Special Function Registers (SFRs)

SFR Information (5/16) (1) Table 4.5

Address	Register	Symbol	After Reset
01B0h	DMA3 Source Pointer	SAR3	XXh
01B1h			XXh
01B2h			0Xh
01B3h			
01B4h	DMA3 Destination Pointer	DAR3	XXh
01B5h			XXh
01B6h			0Xh
01B7h			
01B8h	DMA3 Transfer Counter	TCR3	XXh
01B9h			XXh
01BAh			
01BBh			
01BCh	DMA3 Control Register	DM3CON	0000 0X00b
01BDh			
01BEh			
01BFh			
01C0h	Timer B0-1 Register	TB01	XXh
01C1h	Ĭ		XXh
01C2h	Timer B1-1 Register	TB11	XXh
01C3h	3		XXh
01C4h	Timer B2-1 Register	TB21	XXh
01C5h	, and the second		XXh
01C6h	Pulse Period/Pulse Width Measurement Mode Function Select Register 1	PPWFS1	XXXX X000b
01C7h			
01C8h	Timer B Count Source Select Register 0	TBCS0	00h
01C9h	Timer B Count Source Select Register 1	TBCS1	X0h
01CAh			-
01CBh	Timer AB Division Control Register 0	TCKDIVC0	0000 X000b
01CCh	5		
01CDh			
01CEh			
01CFh			
01D0h	Timer A Count Source Select Register 0	TACS0	00h
01D1h	Timer A Count Source Select Register 1	TACS1	00h
01D2h	Timer A Count Source Select Register 2	TACS2	X0h
01D3h	,		
01D4h	16-Bit Pulse Width Modulation Mode Function Select Register	PWMFS	0XX0 X00Xb
01D5h	Timer A Waveform Output Function Select Register	TAPOFS	XXX0 0000b
01D6h		-	
01D7h			
01D8h	Timer A Output Waveform Change Enable Register	TAOW	XXX0 X00Xb
01D9h	1		
01DAh	Three-Phase Protect Control Register	TPRC	00h
01DBh		-	1
01DCh			
01DDh			
	1		1
01DEh			

X: Undefined

SFR Information (6/16) (1) Table 4.6

Address	Register	Symbol	After Reset
D1E0h	Timer B3-1 Register	TB31	XXh
01E1h			XXh
)1E2h	Timer B4-1 Register	TB41	XXh
01E3h			XXh
01E4h	Timer B5-1 Register	TB51	XXh
01E5h			XXh
01E6h	Pulse Period/Pulse Width Measurement Mode Function Select Register 2	PPWFS2	XXXX X000b
01E7h			
01E8h	Timer B Count Source Select Register 2	TBCS2	00h
01E9h	Timer B Count Source Select Register 3	TBCS3	X0h
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
01F0h	PMC0 Function Select Register 0	PMC0CON0	00h
01F1h	PMC0 Function Select Register 1	PMC0CON1	00XX 0000b
01F2h	PMC0 Function Select Register 2	PMC0CON2	00h
01F3h	PMC0 Function Select Register 3	PMC0CON3	00h
01F4h	PMC0 Status Register	PMC0STS	00h
01F5h	PMC0 Interrupt Source Select Register	PMC0INT	00h
01F6h	PMC0 Compare Control Register	PMC0CPC	XXX0 X000b
01F7h	PMC0 Compare Data Register	PMC0CPD	00h
01F8h	PMC1 Function Select Register 0	PMC1CON0	XXX0 X000b
01F9h	PMC1 Function Select Register 1	PMC1CON1	XXXX 0X00b
01FAh	PMC1 Function Select Register 2	PMC1CON2	00h
01FBh	PMC1 Function Select Register 3	PMC1CON3	00h
01FCh	PMC1 Status Register	PMC1STS	X000 X00Xb
01FDh	PMC1 Interrupt Source Select Register	PMC1INT	X000 X00Xb
01FEh	The Financial Council Counci		7,000 7,007,0
01FFh			
0200h			
0201h			
0202h			
0203h			
0204h			
020411 0205h	Interrupt Source Select Register 3	IFSR3A	00h
0206h	Interrupt Source Select Register 2	IFSR2A	00h
0200H 0207h	Interrupt Source Select Register	IFSR	00h
020711 0208h	Interrupt Course Collect Register	II OIX	5011
0209h			+
0209H 020Ah			+
020An 020Bh			
020Bn 020Ch			
020Ch 020Dh			
020Dh 020Eh	Address Motel Intervient Englis Desigter	AIER	VVVV VV00b
	Address Match Interrupt Enable Register		XXXX XX00b
020Fh	Address Match Interrupt Enable Register 2	AIER2	XXXX XX00b

X: Undefined

SFR Information (7/16) (1) Table 4.7

Address	Register	Symbol	After Reset
0210h	Address Match Interrupt Register 0	RMAD0	00h
0211h	1		00h
0212h			X0h
0213h			
0214h	Address Match Interrupt Register 1	RMAD1	00h
0215h			00h
0216h			X0h
0217h			
0218h	Address Match Interrupt Register 2	RMAD2	00h
0219h			00h
021Ah			X0h
021Bh			
021Ch	Address Match Interrupt Register 3	RMAD3	00h
021Dh			00h
021Eh			X0h
021Fh			
0220h	Flash Memory Control Register 0	FMR0	0000 0001b
			(Other than user boot mode)
			0010 0001b
			(User boot mode)
0221h	Flash Memory Control Register 1	FMR1	00X0 XX0Xb
0222h	Flash Memory Control Register 2	FMR2	XXXX 0000b
0223h	Flash Memory Control Register 3	FMR3	XXXX 0000b
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
022Eh			
022Fh			
0230h	Flash Memory Control Register 6	FMR6	XX0X XX00b
0231h			
0232h			
0233h			
0234h			
0235h			
0236h			
0237h			
0238h			
0239h			
023Ah			
023Bh			
023Ch			
023Dh			
023Eh			
023Fh			

Note:

X: Undefined

SFR Information (8/16) (1) Table 4.8

Address	Register	Symbol	After Reset
0240h			
0241h			
0242h			
0243h			
0244h	UART0 Special Mode Register 4	U0SMR4	00h
0245h	UART0 Special Mode Register 3	U0SMR3	000X 0X0Xb
0246h	UART0 Special Mode Register 2	U0SMR2	X000 0000b
0247h	UARTO Special Mode Register	U0SMR	X000 0000b
0248h	UART0 Transmit/Receive Mode Register	U0MR	00h
0249h	UART0 Bit Rate Register	U0BRG	XXh
024Ah	UART0 Transmit Buffer Register	U0TB	XXh
024Bh			XXh
024Ch	UART0 Transmit/Receive Control Register 0	U0C0	0000 1000b
024Dh	UART0 Transmit/Receive Control Register 1	U0C1	00XX 0010b
024Eh	UART0 Receive Buffer Register	U0RB	XXh
024Fh			XXh
0250h	UART Transmit/Receive Control Register 2	UCON	X000 0000b
0251h	Ť		
0252h	UART Clock Select Register	UCLKSEL0	X0h
0253h			
0254h	UART1 Special Mode Register 4	U1SMR4	00h
0255h	UART1 Special Mode Register 3	U1SMR3	000X 0X0Xb
0256h	UART1 Special Mode Register 2	U1SMR2	X000 0000b
0257h	UART1 Special Mode Register	U1SMR	X000 0000b
0258h	UART1 Transmit/Receive Mode Register	U1MR	00h
0259h	UART1 Bit Rate Register	U1BRG	XXh
025Ah	UART1 Transmit Buffer Register	U1TB	XXh
025Bh			XXh
025Ch	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
025Dh	UART1 Transmit/Receive Control Register 1	U1C1	00XX 0010b
025Eh	UART1 Receive Buffer Register	U1RB	XXh
025Fh	3		XXh
0260h			
0261h			
0262h			
0263h			
0264h	UART2 Special Mode Register 4	U2SMR4	00h
0265h	UART2 Special Mode Register 3	U2SMR3	000X 0X0Xb
0266h	UART2 Special Mode Register 2	U2SMR2	X000 0000b
0267h	UART2 Special Mode Register	U2SMR	X000 0000b
0268h	UART2 Transmit/Receive Mode Register	U2MR	00h
0269h	UART2 Bit Rate Register	U2BRG	XXh
026Ah	UART2 Transmit Buffer Register	U2TB	XXh
026Bh	The state of the s	02.5	XXh
026Ch	UART2 Transmit/Receive Control Register 0	U2C0	0000 1000b
026Ch 026Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000 1000b
026Eh	UART2 Receive Buffer Register	U2RB	XXh
OZULII	OTATE INSCRING Duller INSGREE	UZND	XXh

The blank areas are reserved. No access is allowed.

X: Undefined

Table 4.9 SFR Information (9/16) (1)

Address	Register	Symbol	After Reset
0270h	SI/O3 Transmit/Receive Register	S3TRR	XXh
0271h			
0272h	SI/O3 Control Register	S3C	0100 0000b
0273h	SI/O3 Bit Rate Register	S3BRG	XXh
0274h	SI/O4 Transmit/Receive Register	S4TRR	XXh
0275h	-		
0276h	SI/O4 Control Register	S4C	0100 0000b
0277h	SI/O4 Bit Rate Register	S4BRG	XXh
0278h	SI/O3, 4 Control Register 2	S34C2	00XX X0X0b
0279h			
027Ah			
027Bh			
027Ch			
027Dh			
027Eh			
027Fh			
0280h			
0281h			
0282h			
0283h			
0284h	UART5 Special Mode Register 4	U5SMR4	00h
0285h	UART5 Special Mode Register 3	U5SMR3	000X 0X0Xb
0286h	UART5 Special Mode Register 2	U5SMR2	X000 0000b
0287h	UART5 Special Mode Register	U5SMR	X000 0000b
0288h	UART5 Transmit/Receive Mode Register	U5MR	00h
0289h	UART5 Bit Rate Register	U5BRG	XXh
028Ah	UART5 Transmit Buffer Register	U5TB	XXh
028Bh			XXh
028Ch	UART5 Transmit/Receive Control Register 0	U5C0	0000 1000b
028Dh	UART5 Transmit/Receive Control Register 1	U5C1	0000 0010b
028Eh	UART5 Receive Buffer Register	U5RB	XXh
028Fh			XXh
0290h			
0291h			
0292h			
0293h			
0294h	UART6 Special Mode Register 4	U6SMR4	00h
0295h	UART6 Special Mode Register 3	U6SMR3	000X 0X0Xb
0296h	UART6 Special Mode Register 2	U6SMR2	X000 0000b
0297h	UART6 Special Mode Register	U6SMR	X000 0000b
0298h	UART6 Transmit/Receive Mode Register	U6MR	00h
0299h	UART6 Bit Rate Register	U6BRG	XXh
029Ah	UART6 Transmit Buffer Register	U6TB	XXh
029Bh			XXh
029Ch	UART6 Transmit/Receive Control Register 0	U6C0	0000 1000b
029Dh	UART6 Transmit/Receive Control Register 1	U6C1	0000 0010b
029Eh	UART6 Receive Buffer Register	U6RB	XXh
029Fh			XXh

Note:

X: Undefined

SFR Information (10/16) (1) **Table 4.10**

Address	Register	Symbol	After Reset
02A0h			
02A1h			
02A2h			
02A3h			
02A4h	UART7 Special Mode Register 4	U7SMR4	00h
02A5h	UART7 Special Mode Register 3	U7SMR3	000X 0X0Xb
02A6h	UART7 Special Mode Register 2	U7SMR2	X000 0000b
02A7h	UART7 Special Mode Register	U7SMR	X000 0000b
02A8h	UART7 Transmit/Receive Mode Register	U7MR	00h
02A9h	UART7 Bit Rate Register	U7BRG	XXh
02AAh	UART7 Transmit Buffer Register	U7TB	XXh
02ABh			XXh
02ACh	UART7 Transmit/Receive Control Register 0	U7C0	0000 1000b
02ADh	UART7 Transmit/Receive Control Register 1	U7C1	0000 0010b
02AEh	UART7 Receive Buffer Register	U7RB	XXh
02AFh	_		XXh
02B0h	I2C0 Data Shift Register	S00	XXh
02B1h			
02B2h	I2C0 Address Register 0	S0D0	0000 000Xb
02B3h	I2C0 Control Register	S1D0	00h
02B4h	I2C0 Clock Control Register	\$20	00h
02B5h	I2C0 Start/Stop Condition Control Register	S2D0	0001 1010b
02B6h	I2C0 Control Register 1	S3D0	0011 0000b
02B7h	I2C0 Control Register 2	S4D0	00h
02B8h	I2C0 Status Register 0	\$10	0001 000Xb
02B9h	I2C0 Status Register 1	S11	00h
02BAh	I2C0 Address Register 1	S0D1	0000 000Xb
02BBh	I2C0 Address Register 2	S0D2	0000 000Xb
02BCh			
02BDh			
02BEh			
02BFh			
02C0h to			
02FFh			
0300h	Timer B3/B4/B5 Count Start Flag	TBSR	000X XXXXb
0301h			
0302h	Timer A1-1 Register	TA11	XXh
0303h			XXh
0304h	Timer A2-1 Register	TA21	XXh
0305h	5		XXh
0306h	Timer A4-1 Register	TA41	XXh
0307h	5		XXh
0308h	Three-Phase PWM Control Register 0	INVC0	00h
0309h	Three-Phase PWM Control Register 1	INVC1	00h
030Ah	Three-Phase Output Buffer Register 0	IDB0	XX11 1111b
030Bh	Three-Phase Output Buffer Register 1	IDB1	XX11 1111b
030Ch	Dead Time Timer	DTT	XXh
030Dh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XXh
030Eh	Position-Data-Retain Function Control Register	PDRF	XXXX 0000b
030Fh	. 33 Data restain randion control register	1 510	7.5001 00000

X: Undefined

SFR Information (11/16) ⁽¹⁾ **Table 4.11**

Address	Register	Symbol	After Reset
0310h	Timer B3 Register	TB3	XXh
0311h			XXh
0312h	Timer B4 Register	TB4	XXh
0313h			XXh
0314h	Timer B5 Register	TB5	XXh
0315h			XXh
0316h			
0317h			
0318h	Port Function Control Register	PFCR	0011 1111b
0319h			
031Ah			
031Bh	Timer B3 Mode Register	TB3MR	00XX 0000b
031Ch	Timer B4 Mode Register	TB4MR	00XX 0000b
031Dh	Timer B5 Mode Register	TB5MR	00XX 0000b
031Eh			
031Fh			
0320h	Count Start Flag	TABSR	00h
0321h			
0322h	One-Shot Start Flag	ONSF	00h
0323h	Trigger Select Register	TRGSR	00h
0324h	Up/Down Flag	UDF	00h
0325h			
0326h	Timer A0 Register	TAO	XXh
0327h	3		XXh
0328h	Timer A1 Register	TA1	XXh
0329h			XXh
032Ah	Timer A2 Register	TA2	XXh
032Bh			XXh
032Ch	Timer A3 Register	TA3	XXh
032Dh			XXh
032Eh	Timer A4 Register	TA4	XXh
032Fh			XXh
0330h	Timer B0 Register	TB0	XXh
0331h			XXh
0332h	Timer B1 Register	TB1	XXh
0333h			XXh
0334h	Timer B2 Register	TB2	XXh
0335h			XXh
0336h	Timer A0 Mode Register	TAOMR	00h
0337h	Timer A1 Mode Register	TA1MR	00h
0338h	Timer A2 Mode Register	TA2MR	00h
0339h	Timer A3 Mode Register	TA3MR	00h
033Ah	Timer A4 Mode Register	TA4MR	00h
033Bh	Timer B0 Mode Register	TB0MR	00XX 0000b
033Ch	Timer B1 Mode Register	TB1MR	00XX 0000b
033Dh	Timer B2 Mode Register	TB2MR	00XX 0000b
033Eh	Timer B2 Special Mode Register	TB2SC	XXXX XX00b
033Fh	oposiaioao / togistoi	15200	

X: Undefined

Table 4.12 SFR Information (12/16) (1)

Address	Register	Symbol	After Reset
0340h	Real-Time Clock Second Data Register	RTCSEC	00h
0341h	Real-Time Clock Minute Data Register	RTCMIN	X000 0000b
0342h	Real-Time Clock Hour Data Register	RTCHR	XX00 0000b
0343h	Real-Time Clock Day Data Register	RTCWK	XXXX X000b
0344h	Real-Time Clock Control Register 1	RTCCR1	0000 X00Xb
0345h	Real-Time Clock Control Register 2	RTCCR2	X000 0000b
0346h	Real-Time Clock Count Source Select Register	RTCCSR	XXX0 0000b
0347h			
0348h	Real-Time Clock Second Compare Data Register	RTCCSEC	X000 0000b
0349h	Real-Time Clock Minute Compare Data Register	RTCCMIN	X000 0000b
034Ah	Real-Time Clock Hour Compare Data Register	RTCCHR	X000 0000b
034Bh			
034Ch			
034Dh			
034Eh			
034Fh			
0350h	CEC Function Control Register 1	CECC1	XXXX X000b
0351h	CEC Function Control Register 2	CECC2	00h
0352h	CEC Function Control Register 3	CECC3	XXXX 0000b
0353h	CEC Function Control Register 4	CECC4	00h
0354h	CEC Flag Register	CECFLG	00h
0355h	CEC Interrupt Source Select Register	CISEL	00h
)356h	CEC Transmit Buffer Register 1	CCTB1	00h
0357h	CEC Transmit Buffer Register 2	CCTB2	XXXX XX00b
)358h	CEC Receive Buffer Register 1	CCRB1	00h
0359h	CEC Receive Buffer Register 2	CCRB2	XXXX X000b
035Ah	CEC Receive Follower Address Set Register 1	CRADRI1	00h
035Bh	CEC Receive Follower Address Set Register 2	CRADRI2	00h
035Ch			
035Dh			
035Eh			
035Fh			
0360h	Pull-Up Control Register 0	PUR0	00h
0361h	Pull-Up Control Register 1	PUR1	0000 0000b (2)
			0000 0010b
0362h	Pull-Up Control Register 2	PUR2	00h
0363h	Pull-Up Control Register 3	PUR3	00h
0364h			
0365h			
)366h	Port Control Register	PCR	0000 0XX0b
)367h			
)368h			
0369h	NMI/SD Digital Filter Register	NMIDF	XXXX X000b
036Ah			
036Bh			
036Ch			
036Dh			
036Eh			
036Fh			

X: Undefined

- 1. The blank areas are reserved. No access is allowed.
 - 2. Values after hardware reset, power-on reset, or voltage monitor 0 reset are as follows:
 - 00000000b when a low-level signal is input to the CNVSS pin $\,$
 - 00000010b when a high-level signal is input to the CNVSS pin

Values after voltage monitor 1 reset, voltage monitor 2 reset, software reset, watchdog timer reset, or oscillation stop detection reset are as follows:

- 00000000b when bits PM01 and PM00 in the PM0 register are 00b (single-chip mode).
- 00000010b when bits PM01 and PM00 in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode).

SFR Information (13/16) ⁽¹⁾ **Table 4.13**

Address	Register	Symbol	After Reset
0370h	PWM Control Register 0	PWMCON0	00h
0371h			
0372h	PWM0 Prescaler	PWMPRE0	00h
0373h	PWM0 Register	PWMREG0	00h
0374h	PWM1 Prescaler	PWMPRE1	00h
0375h	PWM1 Register	PWMREG1	00h
0376h	PWM Control Register 1	PWMCON1	00h
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Ch	Count Source Protection Mode Register	CSPR	00h ⁽²⁾
037Dh	Watchdog Timer Reset Register	WDTR	XXh
037Eh	Watchdog Timer Start Register	WDTS	XXh
037Eh	Watchdog Timer Control Register	WDC	00XX XXXXb
0380h	Trade and the state of the stat	***************************************	0.00000
0381h			
0382h			
0383h			
0384h			
0385h			
0386h			
0387h			
0388h			
0389h			
038Ah			
038Bh			
038Ch			
038Dh			
038Eh			
038Fh			
0390h	DMA2 Source Select Register	DM2SL	00h
0391h			
0392h	DMA3 Source Select Register	DM3SL	00h
0393h			
0394h			
0395h			
0396h			
0397h			
0398h	DMA0 Source Select Register	DM0SL	00h
0399h	-		
039Ah	DMA1 Source Select Register	DM1SL	00h
039Bh	5		
039Ch			
039Dh			
039Eh			
039Fh			

Notes:

X: Undefined

- The blank areas are reserved. No access is allowed.
- When the CSPROINT bit in the OFS1 address is 0, value after reset is 10000000b

SFR Information (14/16) (1) **Table 4.14**

Address	Register	Symbol	After Reset
03A0h			
03A1h			
03A2h	Open-Circuit Detection Assist Function Register	AINRST	XX00 0000b
03A3h			
03A4h			
03A5h			
03A6h			
03A7h			
03A8h			
03A9h			
03AAh			
03ABh			
03ACh			
03ADh			
03AEh			
03AFh			
03B0h			
03B1h			
03B2h			
03B3h			
03B4h	SFR Snoop Address Register	CRCSAR	XXXX XXXXb
03B5h			00XX XXXXb
03B6h	CRC Mode Register	CRCMR	0XXX XXX0b
03B7h			
03B8h			
03B9h			
03BAh			
03BBh			
03BCh	CRC Data Register	CRCD	XXh
03BDh			XXh
03BEh	CRC Input Register	CRCIN	XXh
03BFh			
03C0h	A/D Register 0	AD0	XXXX XXXXb
03C1h			0000 00XXb
03C2h	A/D Register 1	AD1	XXXX XXXXb
03C3h			0000 00XXb
03C4h	A/D Register 2	AD2	XXXX XXXXb
03C5h			0000 00XXb
03C6h	A/D Register 3	AD3	XXXX XXXXb
03C7h			0000 00XXb
03C8h	A/D Register 4	AD4	XXXX XXXXb
03C9h			0000 00XXb
03CAh	A/D Register 5	AD5	XXXX XXXXb
03CBh			0000 00XXb
03CCh	A/D Register 6	AD6	XXXX XXXXb
03CDh	_		0000 00XXb
03CEh	A/D Register 7	AD7	XXXX XXXXb
03CFh	Ĭ		0000 00XXb

The blank areas are reserved. No access is allowed.

X: Undefined

SFR Information (15/16) ⁽¹⁾ **Table 4.15**

Address	Register	Symbol	After Reset
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	0000 X00Xb
03D5h			
03D6h	A/D Control Register 0	ADCON0	0000 0XXXb
03D7h	A/D Control Register 1	ADCON1	0000 X000b
)3D8h	D/A0 Register	DA0	00h
)3D9h			
03DAh	D/A1 Register	DA1	00h
)3DBh			
03DCh	D/A Control Register	DACON	00h
)3DDh			
)3DEh			
)3DFh			
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
)3E4h	Port P2 Register	P2	XXh
)3E5h	Port P3 Register	P3	XXh
)3E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EBh	Port P5 Direction Register	PD5	00h
03ECh	Port P6 Register	P6	XXh
03EDh	Port P7 Register	P7	XXh
03EEh	Port P6 Direction Register	PD6	00h
03EFh	Port P7 Direction Register	PD7	00h
03F0h	Port P8 Register	P8	XXh
)3F1h	Port P9 Register	P9	XXh
)3F2h	Port P8 Direction Register	PD8	00h
)3F3h	Port P9 Direction Register	PD9	00h
)3F4h	Port P10 Register	P10	XXh
)3F4n)3F5h	Port P10 Register	P10	XXh
)3F6h	Port P10 Direction Register	PD10	00h
)3F7h	Port P11 Direction Register	PD10	00h
)3F8h	Port P11 Direction Register Port P12 Register	P12	XXh
)3F9h	Port P13 Register	P12	XXh
3FAh	Port P13 Register Port P12 Direction Register	P13	00h
3FBh		PD12 PD13	00h
	Port P13 Direction Register		
3FCh	Port P14 Register	P14	XXh
3FDh	Port P44 Direction Posicion	DD4.4	VVVV VV00I-
3FEh	Port P14 Direction Register	PD14	XXXX XX00b
03FFh			
0400h to			
D07Fh			

X: Undefined

SFR Information (16/16) (1) **Table 4.16**

Address	Register	Symbol	After Reset
D080h	PMC0 Header Pattern Set Register (Min)	PMC0HDPMIN	00h
D081h			XXXX X000b
D082h	PMC0 Header Pattern Set Register (Max)	PMC0HDPMAX	00h
D083h			XXXX X000b
D084h	PMC0 Data0 Pattern Set Register (Min)	PMC0D0PMIN	00h
D085h	PMC0 Data0 Pattern Set Register (Max)	PMC0D0PMAX	00h
D086h	PMC0 Data1 Pattern Set Register (Min)	PMC0D1PMIN	00h
D087h	PMC0 Data1 Pattern Set Register (Max)	PMC0D1PMAX	00h
D088h	PMC0 Measurements Register	PMC0TIM	0000h
D089h			
D08Ah	PMC0 Counter Value Register	PMC0BC	0000h
D08Bh			
D08Ch	PMC0 Receive Data Store Register 0	PMC0DAT0	00h
D08Dh	PMC0 Receive Data Store Register 1	PMC0DAT1	00h
D08Eh	PMC0 Receive Data Store Register 2	PMC0DAT2	00h
D08Fh	PMC0 Receive Data Store Register 3	PMC0DAT3	00h
D090h	PMC0 Receive Data Store Register 4	PMC0DAT4	00h
D091h	PMC0 Receive Data Store Register 5	PMC0DAT5	00h
D092h	PMC0 Receive Bit Count Register	PMC0RBIT	XX00 0000b
D093h			
D094h	PMC1 Hedder Pattern Set Register (Min)	PMC1HDPMIN	00h
D095h			XXXX X000b
D096h	PMC1 Header Pattern Set Register (Max)	PMC1HDPMAX	00h
D097h			XXXX X000b
D098h	PMC1 Data0 Pattern Set Register (Min)	PMC1D0PMIN	00h
D099h	PMC1 Data0 Pattern Set Register (Max)	PMC1D0PMAX	00h
D09Ah	PMC1 Data1 Pattern Set Register (Min)	PMC1D1PMIN	00h
D09Bh	PMC1 Data1 Pattern Set Register (Max)	PMC1D1PMAX	00h
D09Ch	PMC1 Measurements Register	PMC1TIM	00h
D09Dh			00h
D09Eh	PMC1 Counter Value Register	PMC1BC	00h
D09Fh			00h

X: Undefined

4.2 **Notes on SFRs**

4.2.1 **Register Settings**

Table 4.17 lists Registers with Write-Only Bits and registers whose function differs between reading and writing. Set these registers with immediate values. When establishing the next value by altering the existing value, write the existing value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM.

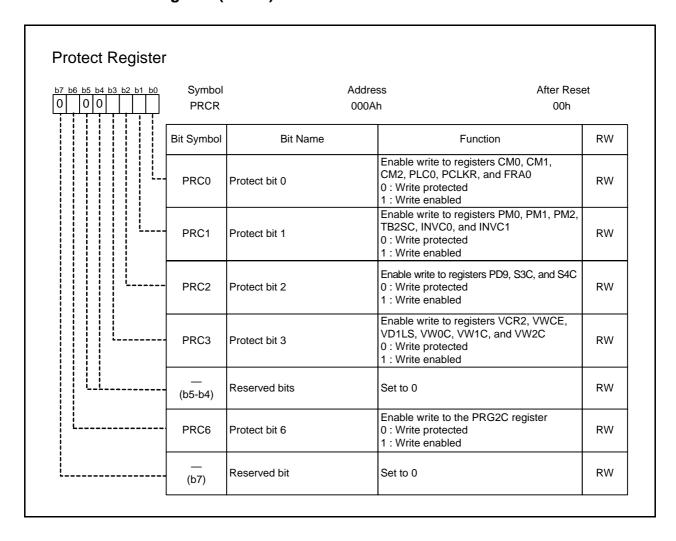
Table 4.17 Registers with Write-Only Bits

Register	Symbol	Address
Watchdog Timer Reset Register	WDTR	037Dh
Watchdog Timer Start Register	WDTS	037Eh
Timer A0 Register	TA0	0327h to 0326h
Timer A1 Register	TA1	0329h to 0328h
Timer A2 Register	TA2	032Bh to 032Ah
Timer A3 Register	TA3	032Dh to 032Ch
Timer A4 Register	TA4	032Fh to 032Eh
Timer A1-1 Register	TA11	0303h to 0302h
Timer A2-1 Register	TA21	0305h to 0304h
Timer A4-1 Register	TA41	0307h to 0306h
Three-Phase Output Buffer Register 0	IDB0	XX11 1111b
Three-Phase Output Buffer Register 1	IDB1	XX11 1111b
Dead Time Timer	DTT	030Ch
Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	030Dh
UART0 Bit Rate Register	U0BRG	0249h
UART1 Bit Rate Register	U1BRG	0259h
UART2 Bit Rate Register	U2BRG	0269h
UART5 Bit Rate Register	U5BRG	0289h
UART6 Bit Rate Register	U6BRG	0299h
UART7 Bit Rate Register	U7BRG	02A9h
UART0 Transmit Buffer Register	U0TB	024Bh to 024Ah
UART1 Transmit Buffer Register	U1TB	025Bh to 025Ah
UART2 Transmit Buffer Register	U2TB	026Bh to 026Ah
UART5 Transmit Buffer Register	U5TB	028Bh to 028Ah
UART6 Transmit Buffer Register	U6TB	029Bh to 029Ah
UART7 Transmit Buffer Register	U7TB	02ABh to 02AAh
SI/O3 Bit Rate Register	S3BRG	0273h
SI/O4 Bit Rate Register	S4BRG	0277h
I2C0 Control Register 1	S3D0	02B6h
I2C0 Status Register 0	S10	02B8h

M16C/65 Group 5. Protection

5. **Protection**

5.1 Introduction


In the event that a program runs out of control, this function protects the important registers listed below so that they will not be rewritten easily.

5.2 Register

Table 5.1 **Register Structure**

Address	Register Name	Register Symbol	After Reset
000Ah	Protect Register	PRCR	00h

5.2.1 **Protect Register (PRCR)**

PRC6, PRC3, PRC1, PRC0 (Protect Bits 6, 3, 1, 0) (b6, b3, b1, b0)

When setting bits PRC6, PRC3, PRC1, and PRC0 to 1 (write enabled) by a program, the bits remain 1 (write enabled). To change registers protected by these bits, follow the procedures below:

- (1) Set the PRCi (i = 0, 1, 3, 6) to 1.
- (2) Write to the register protected by the PRCi bit.
- (3) Set the PRCi bit to 0 (write protected).

PRC2 (Protect Bit 2) (b2)

After setting the PRC2 bit to 1 (write enabled), by writing to a given SFR, the PRC2 bit becomes 0. Change the registers protected by the PRC2 bit in the next instruction after setting the PRC2 bit to 1. The procedure is shown below. Make sure there are no interrupts or DMA transfers between procedure 1 and 2.

- (1) Set the PRC2 bit to 1.
- (2) Write to the register protected by the PRC2 bit.

M16C/65 Group 5. Protection

5.3 **Notes on Protection**

After setting the PRC2 bit to 1 (write enabled), by writing to a given SFR, the PRC2 bit becomes 0. Change the registers protected by the PRC2 bit in the next instruction after setting the PRC2 bit to 1. Make sure there are no interrupts or DMA transfers between the instruction that sets the PRC2 bit to 1 and the next instruction.

Resets 6.

6.1 Introduction

The following resets can be used to reset the MCU: hardware reset, power-on reset, voltage monitor 0 reset, voltage monitor 1 reset, voltage monitor 2 reset, oscillation stop detection reset, watchdog timer reset, and software reset.

Table 6.1 lists the Types of Resets, Figure 6.1 shows the Reset Circuit Block Diagram, and Table 6.2 lists the I/O Pins.

Table 6.1 **Types of Resets**

Reset Name	Trigger
Hardware reset	A low-level signal is applied to the RESET pin.
Power-on reset	The rise of the voltage on VCC1
Voltage monitor 0 reset	The drop of the voltage on VCC1 (reference voltage: Vdet0)
Voltage monitor 1 reset	The drop of the voltage on VCC1 (reference voltage: Vdet1)
Voltage monitor 2 reset	The drop of the voltage on VCC1 (reference voltage: Vdet2)
Oscillation stop detection reset	The main clock oscillator stop is detected.
Watchdog timer reset	Watchdog timer underflows.
Software reset	Setting the PM03 bit in the PM0 register to 1

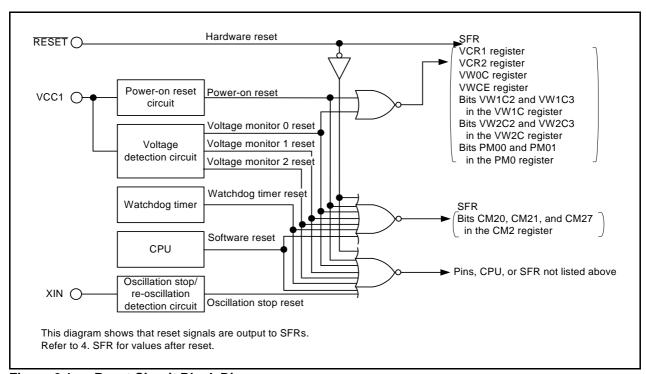


Figure 6.1 **Reset Circuit Block Diagram**

Table 6.2 I/O Pins

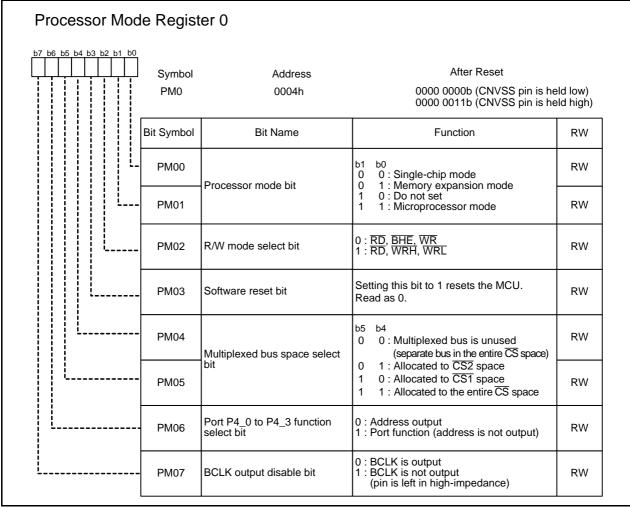
I/O Pin	I/O Type	Function
RESET	Input	Hardware reset input
VCC1	Input	Power input. The power-on reset, voltage monitor 0 reset, voltage monitor 1 reset, and voltage monitor 2 reset are generated by monitoring VCC1.

I/O Pins Table 6.2

I/O Pin	I/O Type	Function
XIN	Input	Main clock input. The oscillation stop detection reset is generated by
		monitoring the main clock.

6.2 Registers

Refer to 7. "Voltage Detector" for registers used for the voltage monitor 0 reset, voltage monitor 1 reset, and voltage monitor 2 reset. Refer to 15. "Watchdog Timer" for registers used for the watchdog timer reset. Refer to 8.7 "Oscillation Stop/Re-Oscillation Detect Function" for registers used for oscillation stop detection reset.


Table 6.3 **Register Structure**

Address	Register Name	Register Symbol	After Reset
0004h	Processor Mode Register 0	PM0	0000 0000b
			(CNVSS pin is low)
			0000 0011b
			(CNVSS pin is high)
0018h	Reset Source Determine Register	RSTFR	XX00 001Xb (hardware reset) (1)

Note:

When not using the cold start-up/warm start-up discrimination flag in hardware reset. 1.

6.2.1 **Processor Mode Register 0 (PM0)**

Write to this register after setting the PRC1 bit in the PRCR register to 1 (write enabled).

The software reset, watchdog timer reset, oscillation stop detection reset, voltage monitor 1 reset, and voltage monitor 2 reset have no effect on bits PM01 to PM00.

PM03 (Software Reset Bit) (b3)

The software reset is generated by setting the PM03 bit to 1.

6.2.2 **Reset Source Determine Register (RSTFR)**

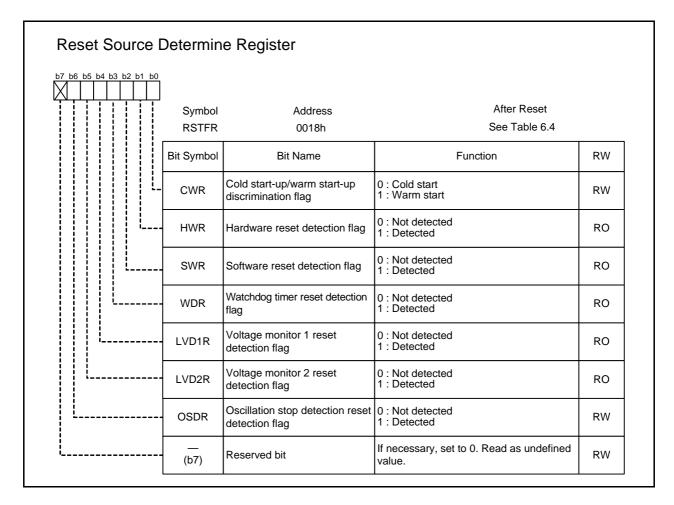


Table 6.4 Bit Values in the RSTFR Register after Reset

Reset	Bits in the RSTFR Register						
Reset	OSDR	LVD2R	LVD1R	WDR	SWR	HWR	CWR
Hardware reset	No change	0	0	0	0	1	No change
Power-on reset	0	0	0	0	0	0	0
Voltage monitor 0 reset	0	0	0	0	0	0	0
Voltage monitor 1 reset	0	0	1	0	0	0	No change
Voltage monitor 2 reset	0	1	0	0	0	0	No change
Oscillation stop detection reset	1	0	0	0	0	0	No change
Watchdog timer reset	0	0	0	1	0	0	No change
Software reset	0	0	0	0	1	0	No change

CWR (Cold Start-Up/Warm Start-Up Discrimination Flag) (b0)

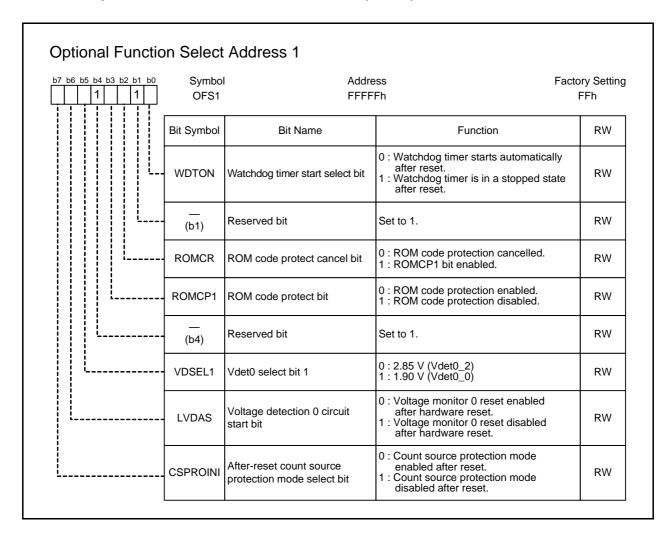
Condition to become 0:

- Power-on
- Power-on reset, voltage monitor 0 reset

Condition to become 1:

• Writing 1 to the CWR bit

OSDR (Oscillation Stop Detection Reset Detection Flag) (b6)


This bit becomes 0 by writing a 0 by a program. Writing a 1 has no effect.

6.3 **Optional Function Select Area**

In the optional function select area, the MCU state after reset and the function to prevent rewrite in parallel I/O mode are selected.

The optional function select area is not an SFR, and therefore cannot be rewritten by a program. Set a proper value when writing a program in flash memory. The entire optional function select area becomes FFh when the block including the optional function select area is erased.

6.3.1 **Optional Function Select Address 1 (OFS1)**

WDTON (Watchdog Timer Start Select Bit) (b0) CSPROINI (After-Reset Count Source Protection Mode Select Bit) (b7)

These bits select the state of watchdog timer after reset.

Set the WDTON bit to 0 (watchdog timer starts automatically after reset) when setting the CSPROINI bit to 0 (count source protection mode enabled after reset).

Refer to 15. "Watchdog Timer" for details of the watchdog timer and count source protection mode.

6. Resets M16C/65 Group

ROMCR (ROM Code Protect Cancel Bit) (b2) ROMCP1 (ROM Code Protect Bit) (b3)

This bit prevents reading and changing of flash memory in parallel I/O mode.

Table 6.5 **ROM Code Protection**

Bit S	ROM Code Protection		
ROMCR bit	ROMCR bit ROMCP1		
0	0	Cancelled	
0	1	Caricelled	
1	0	Enabled	
1	1	Cancelled	

VDSEL1 (Vdet0 Select Bit 1) (b5)

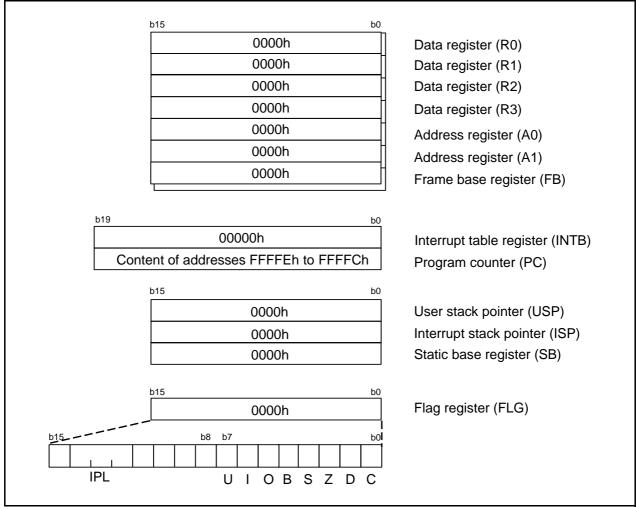
Set the VDSEL1 bit to 0 (Vdet0 is 2.85 V) when using power-on reset or voltage monitor 0 reset. Refer to 6.4.10 "Cold Start-Up/Warm Start-Up Discrimination".

LVDAS (Voltage Detection 0 Circuit Start Bit) (b6)

Set the LVDAS bit to 0 (voltage monitor 0 reset enabled after hardware reset) when using power-on reset.

6.4 **Operations**

6.4.1 **Status After Reset**


The status of SFRs after reset depends on the reset type. Refer to values after reset in 4. "Special Function Registers (SFRs)". Table 6.6 lists Pin Status When RESET Pin Level is Low, Figure 6.2 shows CPU Register Status after Reset, and Figure 6.3 shows Reset Sequence.

Pin Status When RESET Pin Level is Low Table 6.6

	Status (1)			
Pin Name	Single-Chip Mode (CNVSS = VSS)	Microprocessor Mode (CNVSS = VCC1, P5_5 = high)		Boot Mode
		BYTE = VSS	BYTE = VCC1	(CNVSS = VCC1, P5_5 = low)
P0	Input port	Data input	Data input	Input port
P1	Input port	Data input	Input port	Input port
P2, P3, P4_0 to P4_3	Input port	Address output (undefined)	Address output (undefined)	Input port
P4_4	Input port	CS0 output	CS0 output	Input port
		(High level is output)	(High level is output)	
P4_5 to P4_7	Input port	Input port (pulled high)	Input port (pulled high)	Input port
P5_0	Input port	WR output	WR output	CE input (2)
		(High level is output)	(High level is output)	•
P5_1	Input port	BHE output (undefined)	BHE output (undefined)	Input port
P5_2	Input port	RD output	RD output	Input port
		(High level is output)	(High level is output)	
P5_3	Input port	BCLK output	BCLK output	Input port
P5_4	Input port	HLDA output (The output value depends on the input to the HOLD pin)	HLDA output (The output value depends on the input to the HOLD pin)	Input port
P5_5	Input port	HOLD input (2)	HOLD input (2)	EPM input (3)
P5_6	Input port	ALE output (Low level is output)	ALE output (Low level is output)	Input port
P5_7	Input port	RDY input	RDY input	Input port
P6, P7, P8, P9, P10	Input port	Input port	Input port	Input port

Notes:

- 1. These two columns show the valid pin state when the internal power supply voltage has stabilized after power on. The pin state is undefined until the internal power supply voltage stabilizes.
- Input a high-level signal.
- 3. Input a low-level signal.

CPU Register Status after Reset Figure 6.2

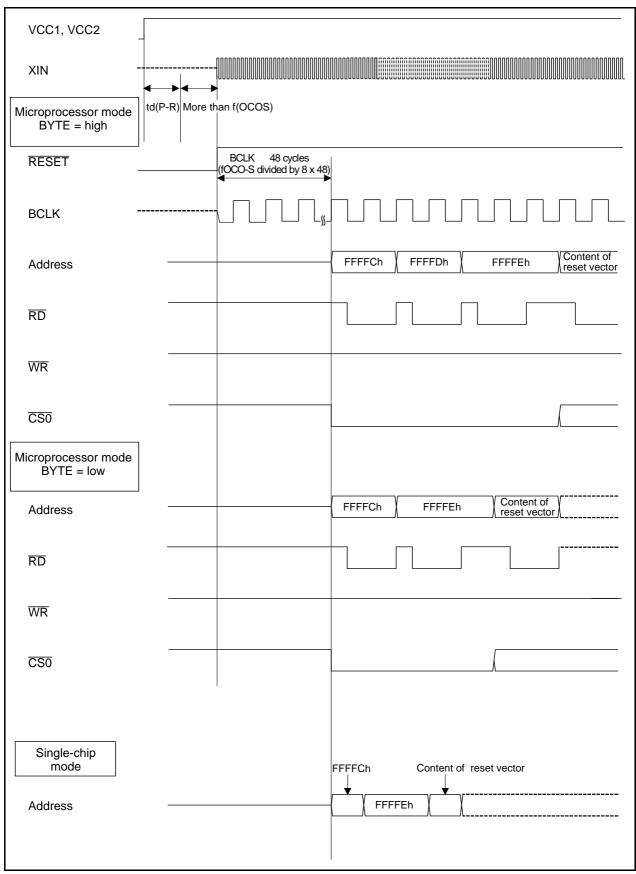


Figure 6.3 **Reset Sequence**

6.4.2 **Hardware Reset**

This reset is triggered by the RESET pin. If the power supply voltage meets the recommended operating conditions, the MCU resets the pins, CPU, and SFRs when a low-level signal is applied to the

When the signal applied to the RESET pin changes from low to high, the MCU executes the program at the address indicated by the reset vector. The fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The HWR bit in the RSTFR register becomes 1 (hardware reset detected) after hardware reset. Refer to 4. "Special Function Registers (SFRs)" for the rest of the SFR states after reset.

The internal RAM is not reset. When a low-level signal is applied to the RESET pin while writing data to the internal RAM, the internal RAM is in an undefined state.

The procedures for generating a hardware reset are as follows:

When Power Supply is Stable

- (1) Apply a low-level signal to the \overline{RESET} pin.
- (2) Wait for f(OCOS).
- (3) Apply a high-level signal to the RESET pin.

When Power is Turned on

- (4) Apply a low-level signal to the \overline{RESET} pin.
- (5) Raise the power supply voltage to the recommended operating level.
- (6) Wait for td(P-R) until the internal voltage stabilizes.
- (7) Wait for f(OCOS).
- (8) Apply a high-level signal to the RESET pin.

Figure 6.4 shows an Example Reset Circuit.

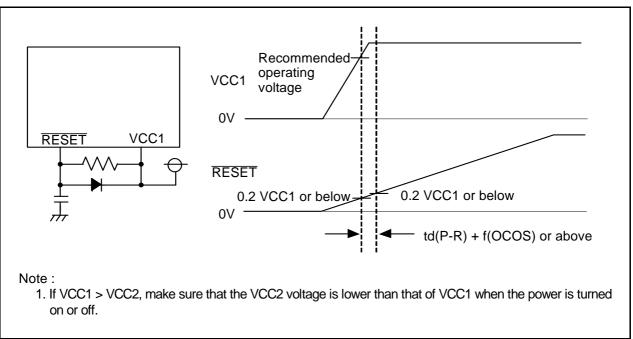


Figure 6.4 **Example Reset Circuit**

6.4.3 **Power-On Reset Function**

When the RESET pin is connected to the VCC1 pin via a pull-up resistor, and the VCC1 pin voltage level rises while the rise gradient is trth or more, the power-on reset function is enabled and the MCU resets its pins, CPU, and SFRs. Also, when a capacitor is connected to the RESET pin, always keep the voltage to the RESET pin 0.8 VCC or more.

When the input voltage to the VCC1 pin reaches the Vdet0 level or above, the fOCO-S starts counting. When the fOCO-S count reaches 32, the internal reset signal is held high and the MCU executes the program at the address indicated by the reset vector. The fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The CWR bit in the RSTFR register becomes 0 (cold start-up) after power-on reset. Refer to 4. "Special Function Registers (SFRs)" for the remaining SFR states after reset.

The internal RAM is not reset.

Use the voltage monitor 0 reset together with the power-on reset. Set the LVDAS bit in the OFS1 address to 0 (voltage monitor 0 reset enabled after hardware reset) to use the power-on reset. In this case, the voltage monitor 0 reset is enabled (the VW0C0 bit and bit 6 in the VW0C register are 1 and the VC25 bit in the VCR2 register is 1). Do not set these bits to 0 by a program.

Refer to 7. "Voltage Detector" for details of the voltage monitor 0 reset.

Figure 6.5 shows Example of Power-On Reset Circuit and Operation.

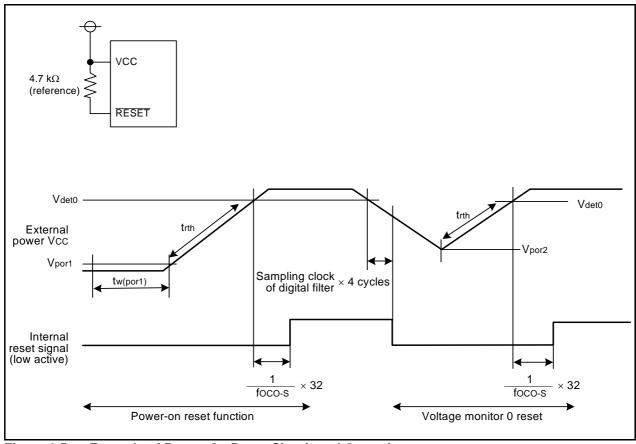


Figure 6.5 **Example of Power-On Reset Circuit and Operation**

6.4.4 **Voltage Monitor 0 Reset**

This reset is triggered by the MCU's on-chip voltage detection 0 circuit. The voltage detection 0 circuit monitors the voltage applied to the VCC1 pin (Vdet0).

The MCU resets the pins, CPU, and SFRs when the voltage applied to the VCC1 pin drops to Vdet0 or below.

Then, the fOCO-S starts counting when the voltage applied to the VCC1 pin rises to Vdet0 or above. The internal reset signal becomes high after 32 cycles of the fOCO-S, and then the MCU executes the program at the address indicated by the reset vector. The fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The CWR bit in the RSTFR register becomes 0 (cold start-up) after voltage monitor 0 reset. Refer to 4. "Special Function Registers (SFRs)" for the remaining SFR states after reset.

The internal RAM is not reset. When the voltage applied to the VCC1 pin drops to Vdet0 or below while writing data to the internal RAM, the internal RAM is in an undefined state.

Refer to 7. "Voltage Detector" for details of the voltage monitor 0 reset.

6.4.5 **Voltage Monitor 1 Reset**

This reset is triggered by the MCU's on-chip voltage detection 1 circuit. The voltage detection 1 circuit monitors the voltage applied to the VCC1 pin (Vdet1).

When the VW1C6 bit in the VW1C register is 1 (voltage monitor 1 reset when Vdet1 passage is detected), the MCU resets the pins, CPU, and SFRs when the voltage applied to the VCC1 pin drops to Vdet1 or below. Then, after the set amount of time, the MCU executes the program at the address indicated by the reset vector. The fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The LVD1R bit in the RSTFR register becomes 1 (voltage monitor 1 reset detected) after voltage monitor 1 reset. Some SFRs are not reset at voltage monitor 1 reset. Refer to 4. "Special Function Registers (SFRs)" for details. The processor mode remains unchanged since bits PM01 to PM00 in the PM0 register are not reset.

The internal RAM is not reset.

Refer to 7. "Voltage Detector" for details of the voltage monitor 1 reset.

6.4.6 **Voltage Monitor 2 Reset**

This reset is triggered by the MCU's on-chip voltage detection 2 circuit. The voltage detection 2 circuit monitors the voltage applied to the VCC1 pin (Vdet2).

When the VW2C6 bit in the VW2C register is 1 (voltage monitor 2 reset when Vdet2 passage is detected), the MCU resets the pins, CPU, and SFRs when the voltage applied to the VCC1 pin drops to Vdet2 or below. Then, after the set amount of time, the MCU executes the program at the address indicated by the reset vector. The fOCO-S divided by 8 is automatically selected as the CPU clock after reset

The LVD2R bit in the RSTFR register becomes 1 (voltage monitor 2 reset detected) after voltage monitor 2 reset. Some SFRs are not reset at voltage monitor 2 reset. Refer to 4. "Special Function Registers (SFRs)" for details. The processor mode remains unchanged since bits PM01 to PM00 in the PM0 register are not reset.

The internal RAM is not reset.

Refer to 7. "Voltage Detector" for details of the voltage monitor 2 reset.

6.4.7 **Oscillation Stop Detection Reset**

The MCU resets and stops the pins, CPU, and SFRs when the CM27 bit in the CM2 register is 0 (reset when oscillation stop detected), if it detects that the main clock oscillator has stopped.

The OSDR bit in the RSTFR register becomes 1 (oscillation stop detection reset detected).

Some SFRs are not reset at oscillation stop detection reset. Refer to 4. "Special Function Registers (SFRs)" for details. The processor mode remains unchanged since bits PM01 to PM00 in the PM0 register are not reset.

The internal RAM is not reset. When the main clock oscillation stop is detected while writing data to the internal RAM, the internal RAM is in an undefined state.

Oscillation stop detection reset is canceled by hardware reset or voltage monitor 0 reset.

Refer to 8.7 "Oscillation Stop/Re-Oscillation Detect Function" for details.

6.4.8 **Watchdog Timer Reset**

The MCU resets the pins, CPU, and SFRs when the PM12 bit in the PM1 register is 1 (reset when watchdog timer underflows) and the watchdog timer underflows. Then the MCU executes the program at the address determined by the reset vector. The fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The WDR bit in the RSTFR register becomes 1 (watchdog timer reset detected). Some SFRs are not reset at watchdog timer reset. Refer to 4. "Special Function Registers (SFRs)" for details. The processor mode remains unchanged since bits PM01 to PM00 in the PM0 register are not reset.

The internal RAM is not reset. When the watchdog timer underflows while writing data to the internal RAM, the internal RAM is in an undefined state.

Refer to 15. "Watchdog Timer" for details.

6.4.9 **Software Reset**

The MCU resets the pins, CPU, and SFRs when the PM03 bit in the PM0 register is 1 (MCU reset). Then the MCU executes the program at the address determined by the reset vector. The fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The SWR bit in the RSTFR register becomes 1 (software reset detected). Some SFRs are not reset at software reset. Refer to 4. "Special Function Registers (SFRs)" for details. The processor mode remains unchanged since bits PM01 to PM00 in the PM0 register are not reset.

The internal RAM is not reset.

Cold Start-Up/Warm Start-Up Discrimination 6.4.10

The cold start-up/warm start-up discrimination detects whether or not voltage applied to the VCC1 pin drops to the RAM hold voltage or below. The reference voltage is Vdet0. Therefore, the voltage monitor 0 reset is used for cold start-up/warm start-up discrimination. Follow Table 7.6 "Steps to Set Voltage Monitor 0 Reset Related Bits" to set the bits related to the voltage monitor 0 reset.

The CWR bit in the RSTFR register is 0 (cold start-up) when power is turned on. The CWR bit also becomes 0 after power-on reset or voltage monitor 0 reset. The CWR bit becomes 1 (warm start-up) by writing 1 by a program and remains unchanged at hardware reset, voltage monitor 1 reset, voltage monitor 2 reset, oscillation stop detection reset, watchdog timer reset, or software reset.

In the cold start-up/warm start-up discrimination, the Vdet0 level can be selected by setting the VDSEL1 bit in the OFS1 address.

- When power-on reset or voltage monitor 0 reset is used Set the VDSEL1 bit to 0 (Vdet0 = 2.85 V (Vdet0 2)).
- When neither power-on reset nor voltage monitor 0 reset is used as the user system Set the VDSEL1 bit to 1 (Vdet0 = 1.90 V (Vdet0_0)). In this case, voltage monitor 0 reset and its cancellation are based on Vdet0_0. Therefore, execute hardware reset after the cancellation of voltage monitor 0 reset.

Figure 6.6 shows the Cold Start-Up/Warm Start-Up Discrimination Example.

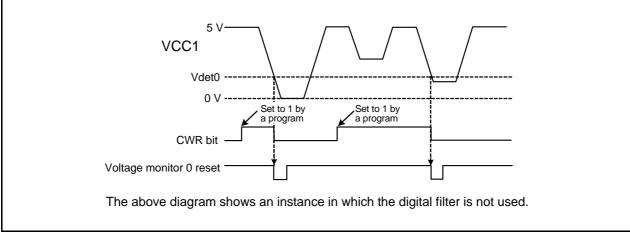


Figure 6.6 Cold Start-Up/Warm Start-Up Discrimination Example

M16C/65 Group 6. Resets

6.5 **Notes on Resets**

6.5.1 **Power Supply Rising Gradient**

When supplying power to the MCU, make sure that the power supply voltage applied to the VCC1 pin meets the SVCC conditions.

Symbol	Parameter		Standard		
Symbol	Falailletei	Min.	Тур.	Max.	Unit
SVcc	Power supply rising gradient (VCC1) (Voltage range: 0 to 2)	0.05			V/ms

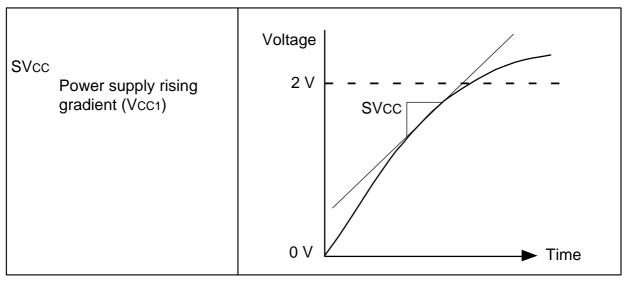


Figure 6.7 **Timing of SVcc**

6.5.2 **Power-On Reset**

Use the voltage monitor 0 reset together with the power-on reset. To use power-on reset, set the LVDAS bit in the OFS1 address to 0 (voltage monitor 0 reset enabled after hardware reset). In this case, the voltage monitor 0 reset is enabled (the VW0C0 bit and bit 6 in the VW0C register are 1, and the VC25 bit in the VCR2 register is 1) after power-on reset. Do not disable the bits by a program.

6.5.3 OSDR Bit (Oscillation Stop Detection Reset Detection Flag)

When the oscillation stop detection reset is generated, the MCU is reset and then stopped. This state is canceled by hardware reset or voltage monitor 0 reset.

Note that the OSDR bit remains unchanged at hardware reset, but is set to 0 (not detected) at voltage monitor 0 reset.

Voltage Detector 7.

7.1 Introduction

The voltage detection circuit monitors the voltage applied to the VCC1 pin. This circuit can be programmed to monitor the VCC1 input voltage. Alternately, voltage monitor 0 reset, voltage monitor 1 interrupt, voltage monitor 1 reset, voltage monitor 2 interrupt, and voltage monitor 2 reset can also be

Table 7.1 lists the Voltage Detector Specifications and Figure 7.1 shows Voltage Detection Circuit.

Table 7.1 **Voltage Detector Specifications**

	Item	Voltage Detection 0	Voltage Detection 1	Voltage Detection 2
VCC1	Voltage to monitor	Vdet0	Vdet1	Vdet2
monitor	Detection target	Whether passing Vdet0 by rising or falling	Whether passing Vdet1 by rising or falling	Whether passing Vdet2 by rising or falling
	Monitor	None	VW1C3 bit in VW1C register	VC13 bit in VCR1 register
			Whether VCC1 is higher or lower than Vdet1	Whether VCC1 is higher or lower than Vdet2
Process	Reset	Voltage monitor 0 reset	Voltage monitor 1 reset	Voltage monitor 2 reset
when voltage is detected		Reset at Vdet0 > VCC1; restart CPU operation at VCC1 > Vdet0	Reset at Vdet1 > VCC1; restart CPU operation after a specified time	Reset at Vdet2 > VCC1; restart CPU operation after a specified time
	Interrupt	None	Voltage monitor 1 interrupt	Voltage monitor 2 interrupt
			Interrupt request at Vdet1 > VCC1 and VCC1 > Vdet1 when digital filter is enabled; interrupt request at Vdet1 > VCC1 or VCC1 > Vdet1 when digital filter is disabled	Interrupt request at Vdet2 > VCC1 and VCC1 > Vdet2 when digital filter is enabled; interrupt request at Vdet2 > VCC1 or VCC1 > Vdet2 when digital filter is disabled
Digital filter	Switch enabled/ disabled	Available	Available	Available
	Sampling time	(Divide-by-n of fOCO-S) × 3 n: 1, 2, 4, 8	(Divide-by-n of fOCO-S) × 3 n: 1, 2, 4, 8	(Divide-by-n of fOCO-S) x 3 n: 1, 2, 4, 8

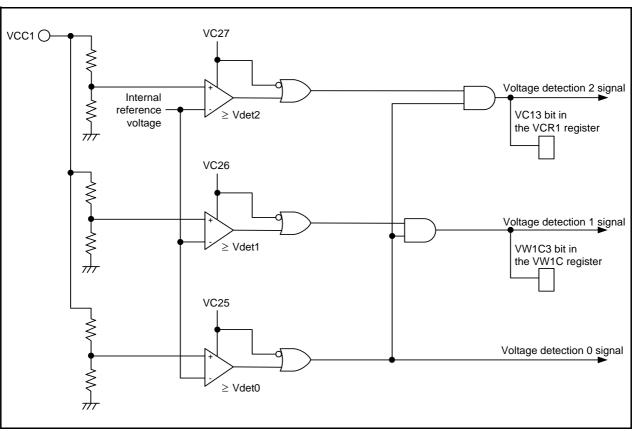
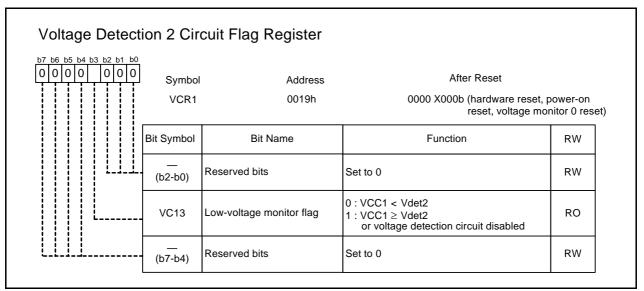


Figure 7.1 **Voltage Detection Circuit**

7.2 **Registers**


Table 7.2 **Register Structure**

Address	Register Name	Register Symbol	After Reset
0019h	Voltage Detection 2 Circuit Flag Register	VCR1	0000 X000b (1)
001Ah	Voltage Detection Circuit Operation Enable	VCR2	000X 0000b (2)
	Register		001X 0000b (3)
0026h	Voltage Monitor Function Select Register	VWCE	00h ⁽⁴⁾
0028h	Voltage Detection 1 Level Select Register	VD1LS	0000 1010b ⁽⁴⁾
002Ah	Voltage Monitor 0 Circuit Control Register	VW0C	1100 1X10b ⁽²⁾
			1100 1X11b ⁽³⁾
002Bh	Voltage Monitor 1 Circuit Control Register	VW1C	1000 XX10b ⁽¹⁾
002Ch	Voltage Monitor 2 Circuit Control Register	VW2C	1000 0X10b ⁽¹⁾

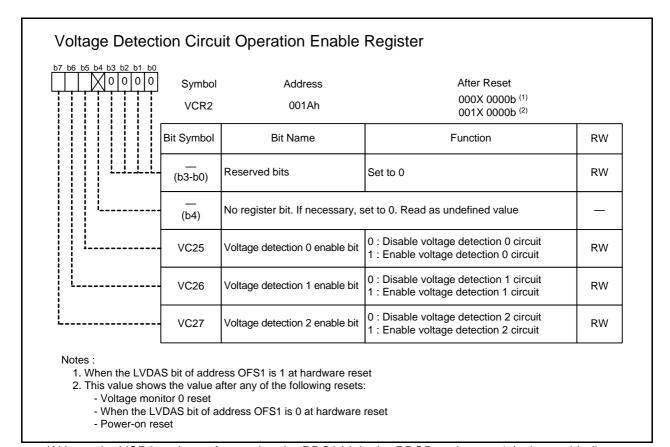
Notes:

- Hardware reset, power-on reset, or voltage monitor 0 reset
- When the LVDAS bit of address OFS1 is 1 at hardware reset 2.
- 3. This value shows the value after any of the following resets.
 - Voltage monitor 0 reset
 - When the LVDAS bit of address OFS1 is 0 at hardware reset
 - Power-on reset
- 4. Hardware reset, power-on reset, voltage monitor 0 reset, voltage monitor 1 reset or voltage monitor 2 reset

7.2.1 **Voltage Detection 2 Circuit Flag Register (VCR1)**

This register does not change at voltage monitor 1 reset, voltage monitor 2 reset, oscillation stop detection reset, watchdog timer reset, or software reset.

VC13 (Low-Voltage Monitor Flag) (b3)


The VC13 bit is enabled when the VW12E bit in the VWCE register is 1 (voltage detection 1 and 2 circuits enabled) and the VC27 bit in the VCR2 register is 1 (voltage detection 2 circuit enabled). Condition to become 0:

VCC1 < Vdet 2 (when the VW12E bit is 1 and the VC27 bit is 1)

Condition to become 1:

- VCC1 ≥ Vdet 2 (when the VW12E bit is 1 and the VC27 bit is 1)
- The VC27 bit in the VCR2 register is 0 (voltage detector 2 disabled).

7.2.2 Voltage Detection Circuit Operation Enable Register (VCR2)

Write to the VCR2 register after setting the PRC3 bit in the PRCR register to 1 (write enabled).

This register does not change at voltage monitor 1 reset, voltage monitor 2 reset, oscillation stop detection reset, watchdog timer reset, or software reset.

VC25 (Voltage Detection 0 Enable Bit) (b5)

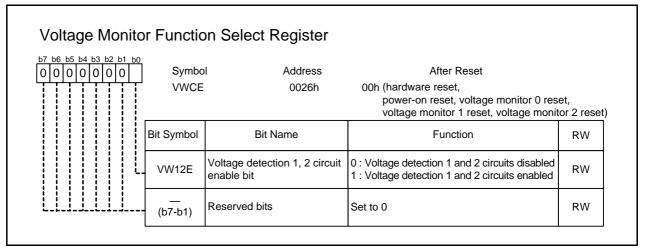
To use voltage monitor 0 reset, set the VC25 bit to 1 (voltage detection 0 circuit enabled). After changing the VC25 bit to 1, the detection circuit starts operating when the td(E-A) elapses.

VC26 (Voltage Detection 1 Enable Bit) (b6)

The voltage detection 1 circuit is enabled when the VW12E bit in the VWCE register is set to 1 (voltage detection 1 and 2 circuits enabled) and the VC26 bit is set to 1 (voltage detection 1 circuit enabled). Set bits VW12E and VC26 to 1 under the following conditions:

- When using voltage monitor 1 interrupt/reset
- When using bits VW1C2 and VW1C3 in the VW1C register

The detection circuit does not start operation until td(E-A) elapses after the VC26 bit is changed from 0 to 1.


VC27 (Voltage Detection 2 Enable Bit) (b7)

The voltage detection 2 circuit is enabled when the VW12E bit in the VWCE register is set to 1 (voltage detection 1 and 2 circuits enabled) and the VC27 bit is set to 1 (voltage detection 2 circuit enabled). Set bits VW12E and VC27 to 1 under the following conditions:

- When using voltage monitor 2 interrupt/reset
- When using the VC13 bit in the VCR1 register
- When using the VW2C2 bit in the VW2C register

The detection circuit does not start operation until td(E-A) elapses after the VC27 bit is changed from 0 to 1.

7.2.3 **Voltage Monitor Function Select Register (VWCE)**

Set the PCR3 bit in the PRCR register to 1 (write enabled) before the VWCE register is rewritten. This register does not change at watchdog timer reset, oscillation stop detection reset, or software

VW12E Bit

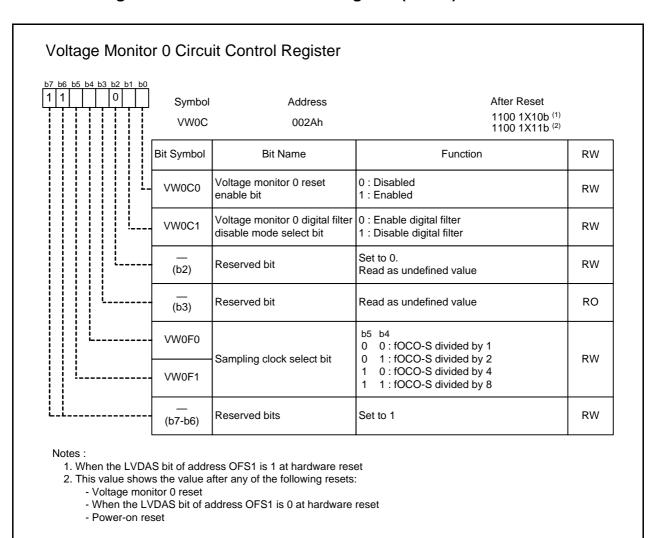
Set the VW12E bit to 1 (enabled) when either or both of bits VC26 and VC27 in the VCR2 register are 1 (enabled).

7.2.4 Voltage Detection 1 Level Select Register (VD1LS)

Set the PCR3 bit in the PRCR register to 1 (write enabled) before the VD1LS register is rewritten. This register does not change at watchdog timer reset, oscillation stop detection reset, or software

reset.

The value of the VD1LS register is affected by the VW12E bit in the VWCE register. Table 7.3 lists Value of the VD1LS Register. When setting the VW12E bit to 0 and then 1 after setting a value to the VD1LS register, the setting value to the VD1LS register is returned.

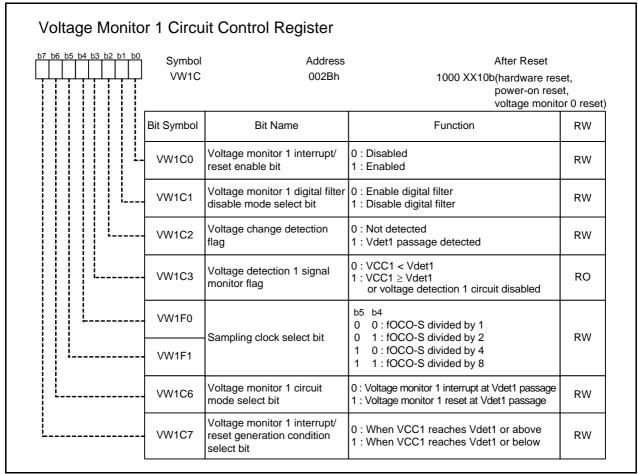

Table 7.3 Value of the VD1LS Register

VW12E Bit	Value of the VD1LS Register			
0	0000 1010b			
1	Value set in the VD1LS register			
	(0000 0111b when no value is set in the VD1LS register)			

VD1LS3-VD1LS0 (Vdet1 Select Bit) (b3-b0)

To use the voltage detection 1 circuit, set the values shown in the above figure. When the voltage detection 1 circuit is not used, the values after reset can remain as is.

7.2.5 Voltage Monitor 0 Circuit Control Register (VW0C)



Set the PRC3 bit in the PRCR register to 1 (write enabled) before writing to the VW0C register. This register does not change at voltage monitor 1 reset, voltage monitor 2 reset, oscillation stop detection reset, watchdog timer reset, or software reset.

VW0C0 (Voltage Monitor 0 Reset Enable Bit) (b0)

The VW0C0 bit is enabled when the VC25 bit in the VCR2 register is 1 (voltage detection 0 circuit enabled). Set the VW0C0 bit to 0 (disabled) when the VC25 bit is 0 (voltage detection 0 circuit disabled).

7.2.6 Voltage Monitor 1 Circuit Control Register (VW1C)

Set the PRC3 bit in the PRCR register to 1 (write enabled) before writing to the VW1C register. The VW1C2 bit may become 1 when the VW1C register is rewritten. Therefore, set the VW1C2 bit to 0 after rewriting the VW1C register.

VW1C0 (Voltage Monitor 1 Interrupt/Reset Enable Bit) (b0)

The VW1C0 bit is enabled when the VW12E bit in the VWCE register is 1 (voltage detection 1 and 2 circuits enabled) and the VC26 bit in the VCR2 register is 1 (voltage detection 1 circuit enabled). Set the VW1C0 bit to 0 (disabled) when the VC26 bit is 0 (voltage detection 1 circuit disabled).

VW1C1 (Voltage Monitor 1 Digital Filter Disable Mode Select Bit) (b1)

After using the voltage monitor 1 interrupt to exit stop mode, to use it again to exit stop mode, set the VW1C1 bit to 0 first, and then to 1.

VW1C2 (Voltage Change Detection Flag) (b2)

The VW1C2 bit is enabled when the VC26 bit in the VCR2 register is 1 (voltage detection 1 circuit enabled). The VW1C2 remains unchanged even if 1 is written by a program.

Condition to become 0:

Writing 0 by a program

Condition to become 1:

Table 7.4 Conditions Under which the VW1C2 Bit Becomes 1

	Bit Setting		Conditions under Which the VW1C2 Bit Becomes 1	
WV1C1	VW1C6	VW1C7	Conditions under which the VWTC2 Bit Becomes 1	
0	0	0 or 1	The VW1C3 bit changes (from 0 to 1 and from 1 to 0).	
	1	1	The VW1C3 bit changes from 1 to 0.	
1	0	0	The VW1C3 bit changes from 0 to 1.	
		1	The VW1C3 bit changes from 1 to 0.	
	1	1	The VW1C3 bit changes from 1 to 0.	

Note:

1. Do not set values not listed above.

VW1C3 (Voltage Detection 1 Signal Monitor Flag) (b3)

The VW1C3 bit is enabled when the VW12E bit in the VWCE register is 1 (voltage detection 1 and 2 circuits enabled) and the VC26 bit in the VCR2 register is 1 (voltage detection 1 circuit enabled). Condition to become 0:

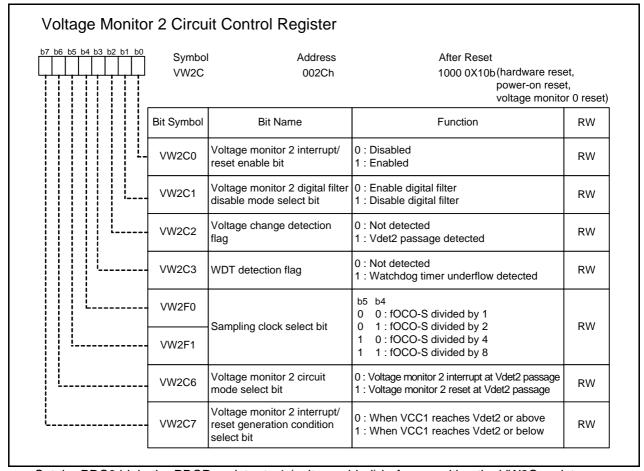
• VCC1 < Vdet1 (when the VW12E bit is 1 and the VC26 bit is 1)

Condition to become 1:

- VCC1 ≥ Vdet1 (when the VW12E bit is 1 and the VC26 bit is 1)
- The VC26 bit in the VCR2 register is 0 (voltage detection 1 circuit disabled).

VW1C6 (Voltage Monitor 1 Circuit Mode Select Bit) (b6)

The VW1C6 bit is enabled when the VW1C0 bit is 1 (voltage monitor 1 interrupt/reset enabled).


VW1C7 (Voltage Monitor 1 Interrupt/Reset Generation Condition Select Bit) (b7)

The voltage monitor 1 interrupt/reset generation condition can be selected by the VW1C7 bit when the VW1C6 bit is 0 (voltage monitor 1 interrupt at Vdet1 passage) and the VW1C1 bit is 1 (digital filter disabled).

When the VW1C6 bit is 1 (voltage monitor 1 reset at Vdet1 passage), set the VW1C7 bit to 1 (when VCC1 reaches Vdet1 or below). (Do not set the VW1C7 bit to 0.)

When the VW1C1 bit is 0 (digital filter enabled), regardless of the VW1C7 bit setting, the voltage monitor 1 interrupt is generated when VCC1 reaches Vdet1 or above and also when VCC1 reaches Vdet1 or below.

7.2.7 Voltage Monitor 2 Circuit Control Register (VW2C)

Set the PRC3 bit in the PRCR register to 1 (write enabled) before rewriting the VW2C register.

When rewriting the VW2C register, the VW2C2 bit may become 1. Set the VW2C2 bit to 0 after rewriting the VW2C register.

The VW2C3 bit does not change at voltage monitor 1 reset, voltage monitor 2 reset, oscillation stop detection reset, watchdog timer reset, or software reset.

VW2C0 (Voltage Monitor 2 Interrupt/Reset Enable Bit) (b0)

The VW2C0 bit is enabled when the VW12E bit in the VWCE register is 1 (voltage detection 1 and 2 circuits enabled) and the VC27 bit in the VCR2 register is 1 (voltage detection 2 circuit enabled). Set the VW2C0 bit to 0 (disabled) when the VC27 bit is 0 (voltage detection 2 circuit disabled).

VW2C1 (Voltage Monitor 2 Digital Filter Disable Mode Select Bit) (b1)

After using the voltage monitor 2 interrupt to exit stop mode, to use it again to exit stop mode, set the VW2C1 bit to 0 first and then to 1.

VW2C2 (Voltage Change Detection Flag) (b2)

The VW2C2 bit is enabled when the VC27 bit in the VCR2 register is 1 (voltage detection 2 circuit enabled). The VW2C2 remains unchanged even if 1 is written by a program.

Condition to become 0:

Writing 0 by a program

Condition to become 1:

Table 7.5 Conditions Under which the VW2C2 Bit Becomes 1

Bit Setting			Conditions under Which the VW2C2 Bit Becomes 1	
WV2C1	VW2C6	VW2C7	Conditions under which the vw2G2 bit becomes i	
0	0	0 or 1	The VW1C3 bit changes (from 0 to 1 and from 1 to 0).	
	1	1	The VW1C3 bit changes from 1 to 0.	
1	0	0	The VW1C3 bit changes from 0 to 1.	
		1	The VW1C3 bit changes from 1 to 0.	
	1	1	The VW1C3 bit changes from 1 to 0.	

Note:

1. Do not set values not listed above.

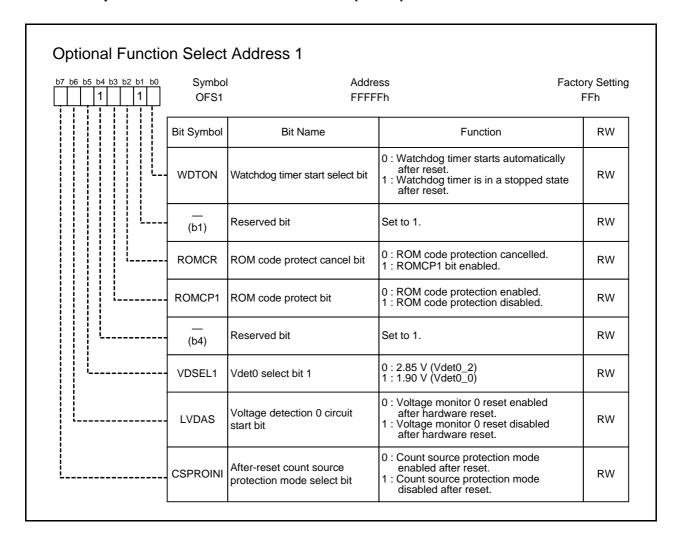
VW2C6 (Voltage Monitor 2 Circuit Mode Select Bit) (b6)

The VW2C6 bit is enabled when the VW2C0 bit is 1 (voltage monitor 2 interrupt/reset enabled).

VW2C7 (Voltage Monitor 2 Interrupt/Reset Generation Condition Select Bit) (b7)

The voltage monitor 2 interrupt/reset generation condition can be selected by the VW2C7 bit when the VW2C6 bit is 0 (voltage monitor 2 interrupt at Vdet2 passage) and the VW2C1 bit is 1 (digital filter

When the VW2C6 bit is 1 (voltage monitor 2 reset at Vdet2 passage), set the VW2C7 bit to 1 (when VCC1 reaches Vdet2 or below). (Do not set the VW2C7 bit to 0.)


When the VW2C1 bit is 0 (digital filter enabled), regardless of the VW2C7 bit setting, the voltage monitor 2 interrupt is generated when VCC1 reaches Vdet2 or above, and also when VCC2 reaches Vdet1 or below.

7.3 **Optional Function Select Area**

In the optional function select area, the MCU state after reset and the function to prevent rewrite in parallel I/O mode are selected.

The optional function select area is not an SFR, and therefore cannot be rewritten by a program. Set a proper value when writing a program in flash memory. The entire optional function select area is set to FFh when the block including the optional function select area is erased.

7.3.1 **Optional Function Select Address (OFS1)**

VDSEL1 (Vdet0 Select Bit 1) (b5)

The Vdet0 level used in the voltage detection 0 circuit is selectable. The voltage detection 0 circuit operates based on Vdet0.

Set the VDSEL1 bit to 0 (Vdet0 is 2.85 V) when using power-on reset or voltage monitor 0 reset. Refer to 6.4.10 "Cold Start-Up/Warm Start-Up Discrimination".

7.4 **Operations**

7.4.1 **Digital Filter**

A digital filter can be used to monitor VCC1 input voltage. For the voltage detection i circuit (i = 0 to 2), the digital filter is enabled when the VWiC1 bit in the VWiC register is set to 0 (digital filter enabled).

The fOCO-S divided by 1, 2, 4, or 8 is selected as a sampling clock. When using the digital filter, set the CM14 bit in the CM1 register to 0 (125 kHz on-chip oscillator on).

The VCC1 input level is sampled by the digital filter for every sampling clock. When the same sampled level is detected two times in a row, at the next sampling timing, the internal reset signal goes low or a voltage monitor i interrupt request is generated. Therefore, when the digital filter is used, the time from when the VCC1 input voltage level passes Vdeti until when a reset or an interrupt is generated is up to three cycles of the sampling clock.

Since the fOCO-S stops in stop mode, the digital filter does not function. When using the voltage detection i circuit to exit stop mode, set the VWiC1 bit in the VWiC register to 1 (digital filter disabled). Figure 7.2 shows Digital Filter Operation Example.

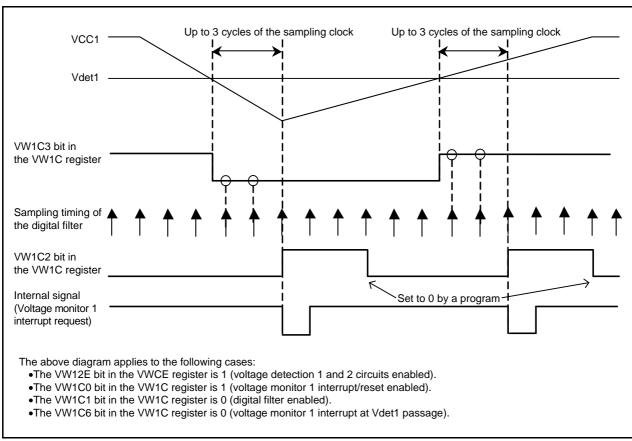


Figure 7.2 **Digital Filter Operation Example**

7.4.2 **Voltage Detection 0 Circuit**

When the VC25 bit in the VCR2 register is 1 (voltage detection 0 circuit enabled), the voltage detection 0 circuit monitors the voltage applied to the VCC1 pin and detects whether the voltage passes Vdet0 by rising or falling. The level of Vdet0 can be selected by the VDSEL1 bit in the OFS1 address.

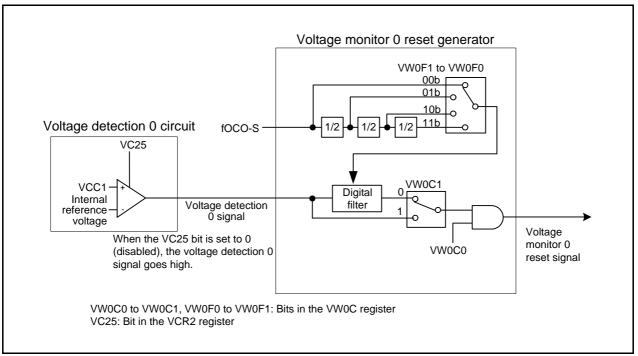


Figure 7.3 **Voltage Monitor 0 Reset Generator**

M16C/65 Group 7. Voltage Detector

7.4.2.1 **Voltage Monitor 0 Reset**

When using voltage monitor 0 reset, set the VDSEL1 bit in the OFS1 address to 0 (Vdet0 is 2.85 V (Vdet0_2)).

Table 7.6 lists Steps to Set Voltage Monitor 0 Reset Related Bits.

Table 7.6 Steps to Set Voltage Monitor 0 Reset Related Bits

Step	When Using the Digital Filter	When Not Using the Digital Filter			
1	Set the CM14 bit in the CM1 register to 0 (125 kHz on-chip oscillator enabled).	-			
2	Wait for digital filter sampling clock x 3 cycles.	- (no wait time)			
3	Set the VC25 bit in the VCR2 register to 1 (voltage detection 0 circuit enabled).				
4	Wait for td(E (E-A).				
5	Use bits VW0F0 to VW0F1 in the VW0C register to select the digital filter sampling clock. Set the VW0C1 bit to 0 (digital filter enabled), and bits 6 and 7 to 1.	Set the VW0C1 bit in the VW0C register to 1 (digital filter disabled), and bits 6 and 7 to 1.			
6	Set bit 2 in the VW0C register to 0. Set bit 2 to 0 once again after procedure 4.				
7	Set the VW0C0 bit in the VW0C register to 1 (voltage monitor 0 reset enabled).				

When using voltage monitor 0 reset to exit stop mode, set the VW0C1 bit in the VW0C register to 1 (digital filter disabled).

When voltage monitor 0 reset is generated, the CWR bit in the RSTFR register is automatically set to 0 (cold start-up). Refer to 6.4.4 "Voltage Monitor 0 Reset" for status after reset.

Figure 7.4 shows Voltage Monitor 0 Reset Operation Example.

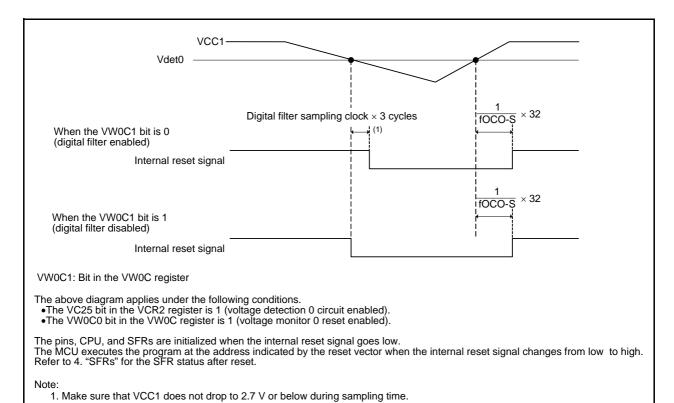


Figure 7.4 **Voltage Monitor 0 Reset Operation Example**

7.4.3 **Voltage Detection 1 Circuit**

Under development

When the VW12E bit in the VWCE register is 1 (voltage detection 1 and 2 circuits enabled) and the VC26 bit in the VCR2 register is 1 (voltage detection 1 circuit enabled), the voltage detection 1 circuit monitors the voltage applied to the VCC1 pin and detects whether the voltage passes Vdet1 by rising or falling.

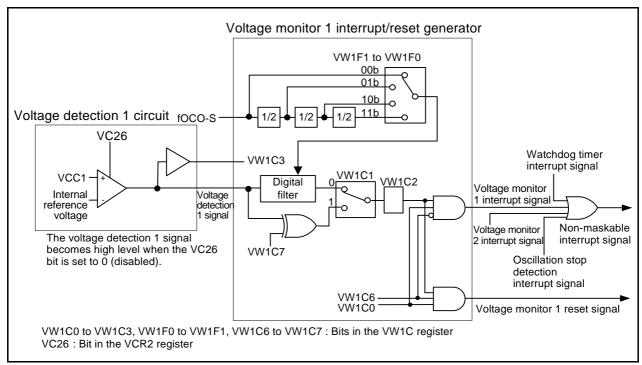


Figure 7.5 Voltage Monitor 1 Interrupt/Reset Generator

7.4.3.1 **Monitoring Vdet1**

Set the VW12E bit in the VWCE register to 1 (voltage detection 1 and 2 circuits enabled) and the VC26 bit in the VCR2 register to 1 (voltage detection 1 circuit enabled). Vdet1 can be monitored by using the VW1C3 bit in the VW1C register after td(E-A) elapses.

Under development

7.4.3.2 **Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset**

Table 7.7 lists Steps to Set Voltage Monitor 1 Interrupt/Reset Related Bits.

Table 7.7 Steps to Set Voltage Monitor 1 Interrupt/Reset Related Bits

	When Using th	ne Digital Filter	When Not Using the Digital Filter	
Step	Voltage Monitor 1 Interrupt	Voltage Monitor 1 Reset	Voltage Monitor 1 Interrupt	Voltage Monitor 1 Reset
1	Set the CM14 bit in the kHz on-chip oscillator o	CM1 register to 0 (125 n)	-	
2	Wait for digital filter san	npling clock x 3 cycles.	- (no wait time)	
3	Set the VW12E bit in th	e VWCE register to 1 (v	oltage detection 1 and 2	2 circuits enabled).
4	Set bits VD1LS3 to VD	1LS0 in the VD1LS regis	ster to select Vdet1.	
5	Set the VC26 bit in the VCR2 register to 1 (voltage detection 1 circuit enabled).			
6	Wait for td(E (E-A).			
7	Use bits VW1F0 to VW register to select the dig clock.		Use the VW1C7 bit in t select the timing of the request. (1)	•
8 (2)	Set the VW1C1 bit in the (digital filter enabled).	e VW1C register to 0	Set the VW1C1 bit in the (digital filter disabled).	ne VW1C register to 1
9 (2)	Set the VW1C6 bit in the VW1C register to 0 (voltage monitor 1 interrupt mode). Set the VW1C6 bit in the VW1C7 register to 1 (voltage monitor 1 reset mode).			
10	Set the VW1C2 bit in the VW1C register to 0 (Vdet1 passage not detected).			
11	Set the VW1C0 bit in the VW1C register to 1 (voltage monitor 1 interrupt/reset enabled).			

Notes:

- Set the VW1C7 bit to 1 (when VCC reaches Vdet1 or below) for the voltage monitor 1 reset.
- 2. When the VW1C0 bit is 0, procedures 7, 8, and 9 can be executed simultaneously (with one instruction).

When using voltage monitor 1 interrupt or voltage monitor 1 reset to exit stop mode, set the VW1C1 bit in the VW1C register to 1 (digital filter disabled).

When voltage monitor 1 reset is generated, the LVD1R bit in the RSTFR register is automatically set to 1 (voltage monitor 1 reset detected). Refer to 6.4.5 "Voltage Monitor 1 Reset" for status after reset. Figure 7.6 shows Voltage Monitor 1 Interrupt/Reset Operation Example.

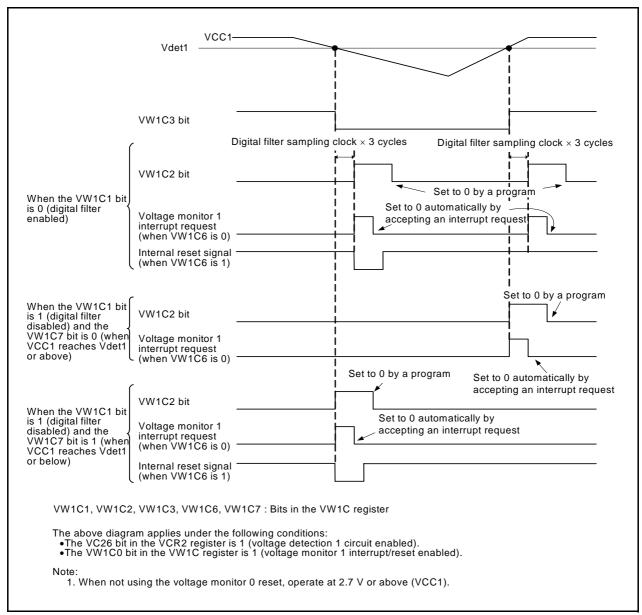
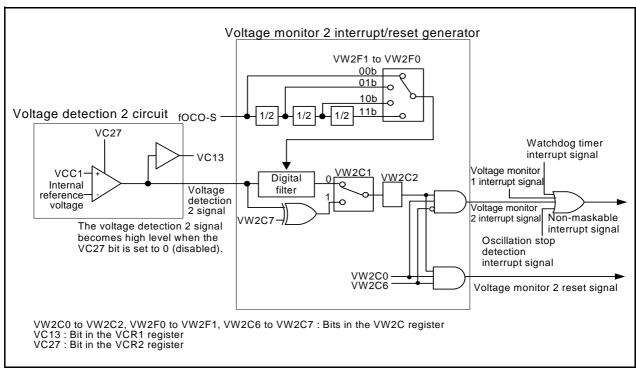



Figure 7.6 Voltage Monitor 1 Interrupt/Reset Operation Example

7.4.4 **Voltage Detection 2 Circuit**

Under development

When the VW12E bit in the VWCE register is 1 (voltage detection 1 and 2 circuits enabled) and the VC27 bit in the VCR2 register is 1 (voltage detection 2 circuit enabled), the voltage detection 2 circuit monitors the voltage applied to the VCC1 pin and detects whether the voltage passes Vdet2 by rising or falling.

Voltage Monitor 2 Interrupt/Reset Generator Figure 7.7

7.4.4.1 **Monitoring Vdet2**

Set the VW12E bit in the VWCE register to 1 (voltage detection 1 and 2 circuits enabled) and the VC27 bit in the VCR2 register to 1 (voltage detection 2 circuit enabled). Vdet2 can be monitored by using the VCA13 bit in the VCA1 register after td(E-A) elapses.

7.4.4.2 **Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset**

Table 7.8 lists Steps to Set Voltage Monitor 2 Interrupt/Reset Related Bits.

Table 7.8 Steps to Set Voltage Monitor 2 Interrupt/Reset Related Bits

	When Using the Digital Filter		When Not Using the Digital Filter		
Step	Voltage Monitor 2 Interrupt	Voltage Monitor 2 Reset	Voltage Monitor 2 Interrupt	Voltage Monitor 2 Reset	
1	Set the CM14 bit in the kHz on-chip oscillator o	CM1 register to 0 (125 n)	-		
2	Wait for digital filter san	npling clock x 3 cycles.	- (no wait time)		
3	Set the VW12E bit in th	e VWCE register to 1 (v	oltage detection circuit	enabled).	
4	Set the VC27 bit in the	VCR2 register to 1 (volt	age detection 2 circuit e	nabled).	
5	Wait for td(E (E-A).				
6	Use bits VW2F0 to VW2 register to select the dig clock.		Use the VW2C7 bit in t select the timing of the request. (1)	•	
7 (2)	Set the VW2C1 bit in the (digital filter enabled).	e VW2C register to 0	Set the VW2C1 bit in the (digital filter disabled).	ne VW2C register to 1	
8 (2)	Set the VW2C6 bit in the VW2C register to 0 (voltage monitor 2 interrupt mode). Set the VW2C6 bit in the VW2C register to 1 (voltage monitor 2 reset mode).		Set the VW2C6 bit in the VW2C register to 0 (voltage monitor 2 interrupt mode). Set the VW2C6 bit in the VW2C6 bit in the VW2C register to (voltage monitor 2 reset mode).		
9	Set the VW2C2 bit in the VW2C register to 0 (Vdet2 passage not detected).				
10	Set the VW2C0 bit in the VW2C register to 1 (voltage monitor 2 interrupt/reset enabled).				

Notes:

- Set the VW2C7 bit to 1 (when VCC reaches Vdet2 or below) for the voltage monitor 2 reset. 1.
- 2. When the VW2C0 bit is 0, procedures 6, 7, and 8 can be executed simultaneously (with one instruction).

When using voltage monitor 2 interrupt or voltage monitor 2 reset to exit stop mode, set the VW2C1 bit in the VW2C register to 1 (digital filter disabled).

When voltage monitor 2 reset is generated, the LVD2R bit in the RSTFR register is automatically set to 1 (voltage monitor 2 reset detected). Refer to 6.4.6 "Voltage Monitor 2 Reset" for status after reset. Figure 7.8 shows Voltage Monitor 2 Interrupt/Reset Operation Example.

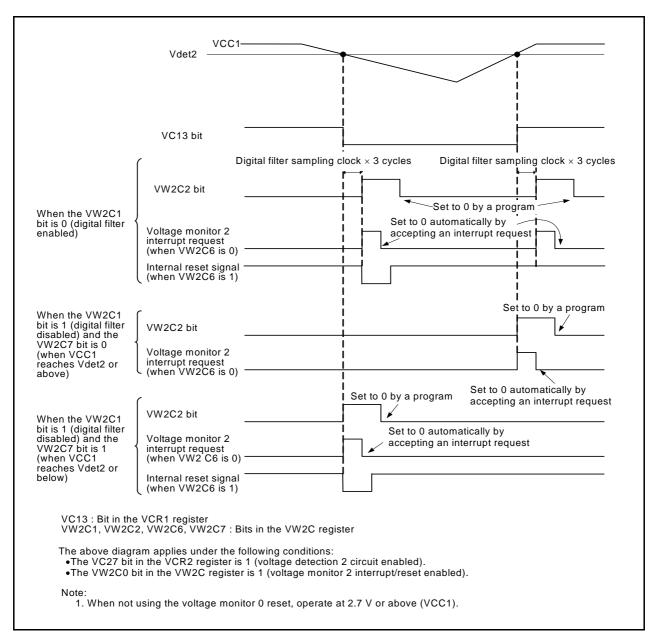


Figure 7.8 Voltage Monitor 2 Interrupt/Reset Operation Example

M16C/65 Group

7.5 Interrupts

The voltage monitor 1 interrupt and voltage monitor 2 interrupt are non-maskable interrupts.

The watchdog timer interrupt, oscillation stop and re-oscillation detection interrupt, voltage monitor 1 interrupt, and voltage monitor 2 interrupt share the same interrupt vector. When using some functions together, read the detect flags of the events in an interrupt processing program, and determine the interrupt source of the interrupt request.

The detect flag for voltage monitor 1 is the VW1C2 bit in the VW1C register, and the detect flag for voltage monitor 2 is the VW2C2 bit in the VW2C register. After the interrupt source is determined, set bits VW1C2 and VW2C2 to 0 (not detected).

M16C/65 Group 8. Clock Generator

Clock Generator 8.

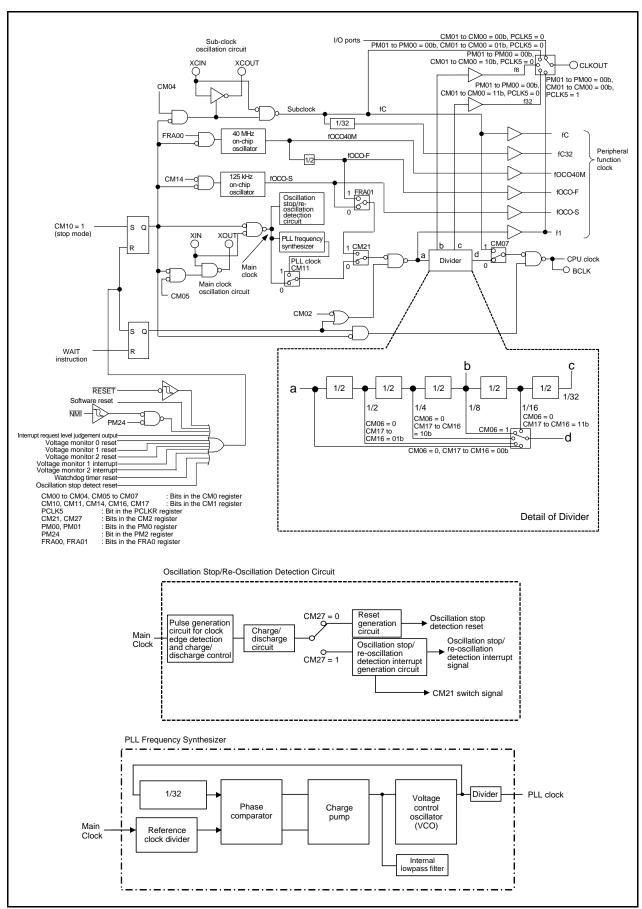
8.1 Introduction

The clock generator generates operating clocks for the CPU and peripheral circuits. Five circuits are incorporated to generate the system clock signals.

- · Main clock oscillation circuit
- PLL frequency synthesizer
- 40 MHz on-chip oscillator
- 125 kHz on-chip oscillator
- Sub clock oscillation circuit

Table 8.1 lists Clock Generator Specifications, and Figure 8.1 shows System Clock Generator Circuitry.

Table 8.1 **Clock Generator Specifications**


	Main Clock	PLL Frequency	On-Chip Oscillator		Sub clock Oscillation	
Item	Oscillation Circuit	Synthesizer	40 MHz On-Chip Oscillator	125 kHz On-Chip Oscillator	Circuit	
Application	CPU clock source Peripheral function clock source	CPU clock source Peripheral function clock source	CPU clock source Peripheral function clock source CPU and peripheral function clock sources when the main clock stops oscillating	CPU clock source Peripheral function clock source CPU and peripheral function clock sources when the main clock stops oscillating Watchdog timer count source when CPU clock is stopped	CPU clock source Peripheral function clock source	
Clock frequency	0 to 20 MHz	10 to 32 MHz	Approx. 40 MHz	Approx. 125 kHZ	32.768 kHz	
Connectable oscillators	Ceramic oscillator Crystal oscillator	- (1)	-	-	Crystal oscillator	
Pins connecting to oscillator	XIN, XOUT	_ (1)	-	-	XCIN, XCOUT	
Oscillation start, stop function	Yes	Yes	Yes	Yes	Yes	
Oscillator status after reset	Oscillating	Stopped	Stopped	Oscillating	Stopped	
Other	An externally generated clock can be input.	- (1)	-	-	An externally generated clock can be input.	

Note:

The PLL frequency synthesizer uses the main clock oscillation circuit as a reference clock source. The items above are based on the main clock oscillation circuit.

8. Clock Generator M16C/65 Group

System Clock Generator Circuitry Figure 8.1

Table 8.2 I/O Pins

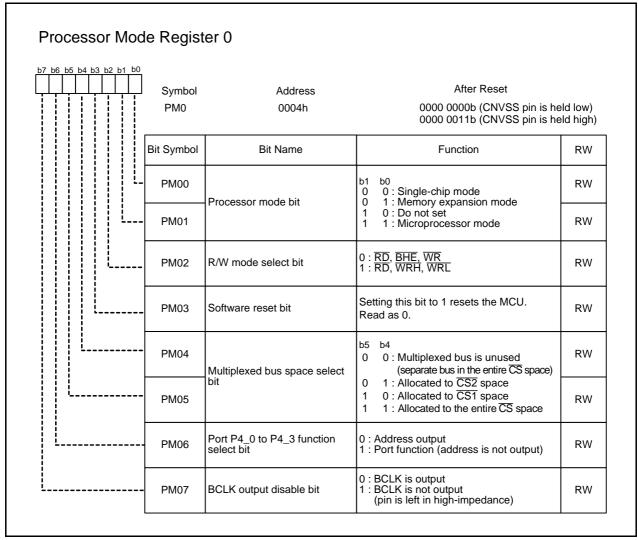
Pin Name	I/O Type	Function
XIN	Input	I/O pins for the main clock oscillation circuit
XOUT	Output	
XCIN	Input (1)	I/O pins for a sub clock oscillation circuit
XCOUT	Output (1)	
CLKOUT	Output	Clock output (in single-chip mode)
BCLK	Output	BCLK output (in memory expansion mode, microprocessor mode)

Note:

Set the port direction bits which share pins to 0 (input mode).

M16C/65 Group

Registers 8.2

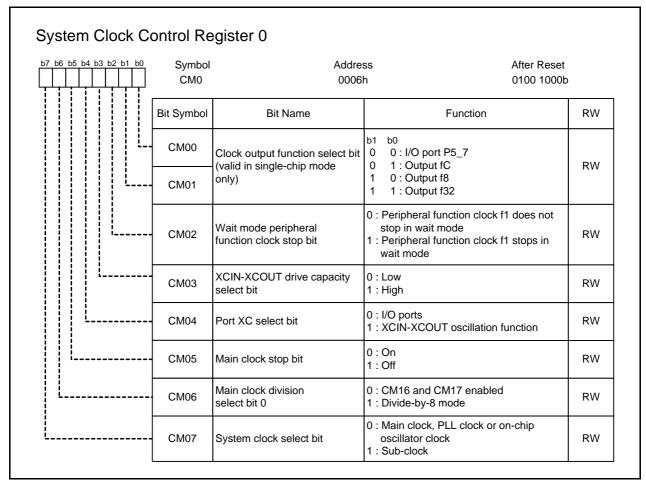

Table 8.3 **Register Structure**

Address	Register Name	Register Symbol	After Reset
0004h	Processor Mode Register 0	PM0	0000 0000b (CNVSS pin
			is low)
			0000 0011b (CNVSS pin
			is high)
0006h	System Clock Control Register 0	CM0	0100 1000b
0007h	System Clock Control Register 1	CM1	0010 0000b
000Ch	Oscillation Stop Detection Register	CM2	0X00 0010b (1)
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
001Ch	PLL Control Register 0	PLC0	0X01 X010b
001Eh	Processor Mode Register 2	PM2	XX00 0X01b
0022h	40 MHz On-Chip Oscillator Control Register 0	FRA0	XXXX XX00b

Note:

Bits CM20, CM21, and CM27 remain unchanged at oscillation stop detection reset.

8.2.1 **Processor Mode Register 0 (PM0)**



Write to the PM0 register after setting the PRC1 bit in the PRCR register to 1 (write enabled). Bits PM01 to PM00 do not change at software reset, watchdog timer reset, oscillation stop detection reset, voltage monitor 1 reset, or voltage monitor 2 reset.

PM07 (BCLK Output Disable Bit) (b7)

This bit is enabled in memory expansion mode and microprocessor mode. A clock with the same frequency as that of the CPU clock is output as the BCLK signal from the BCLK pin.

8.2.2 System Clock Control Register 0 (CM0)

Rewrite the CM0 register after setting the PRC0 bit in the PRCR register to 1 (write enabled). Refer to Table 9.3 "Clock Related Bit Setting and Modes" to select a clock and a mode.

CM01-CM00 (Clock Output Function Select Bit) (b1-b0)

The CLKOUT pin outputs can be selected. These bits are enabled when the PCLK5 bit in the PCLKR register is set to 0 (bits CM01 to CM00 enabled) in single-chip mode. When the PCLK5 bit is 1, set bits CM01 to CM00 to 00b. Table 8.4 shows CLKOUT Pin Functions for Single-Chip Mode.

Table 8.4 **CLKOUT Pin Functions for Single-Chip Mode**

PCLKR Register	CM0 Register		CLKOUT Pin Output
PCLK5 bit	CM01 bit	CM00 bit	CEROOT Fill Output
0	0	0	I/O port
0	0	1	Output fC
0	1	0	Output f8
0	1	1	Output f32
1	0	0	Output f1

Only set the combinations listed above.

CM02 (Wait Mode Peripheral Function Clock Stop Bit) (b2)

The CM02 bit is used to stop the peripheral function clock f1 in wait mode. The peripheral functions fC, fC32, fOCO-S, fOCO-F, and fOCO40M are not affected by the CM02 bit.

When the PM21 bit in the PM2 register is set to 1 (clock change disabled), the CM02 bit remains unchanged even when written to.

CM03 (XCIN-XCOUT Drive Capacity Select Bit) (b3)

Setting the driving capacity to low while sub-clock oscillation is stable reduces power consumption. The CM03 bit is set to 1 (high) while the CM04 bit is 0 (P8_6 and P8_7 are I/O ports), or when entering stop mode.

CM04 (Port XC Select Bit) (b4)

The CM03 bit is set to 1 (high) while the CM04 bit is 0 (P8 6 and P8 7 are I/O ports).

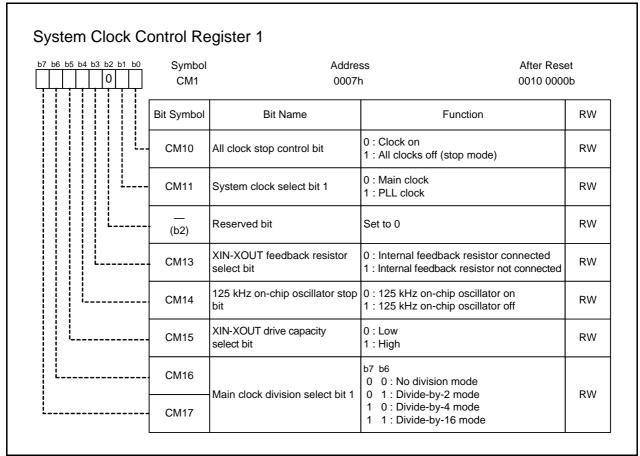
CM05 (Main Clock Stop Bit) (b5)

The CM05 bit is provided to stop the main clock when selecting the low power mode or 125 kHz on-chip oscillator low power mode, or when stopping the main clock at 40 MHz on-chip oscillator mode. The CM05 bit cannot be used to detect whether the main clock is stopped or not. Refer to 8.7 "Oscillation Stop/Re-Oscillation Detect Function" for the main clock stop detection.

When the PM21 bit in the PM2 register is 1 (clock change disabled), the CM05 bit remains unchanged even when written to.

CM06 (Main Clock Division Select Bit) (b6)

The CM06 bit becomes 1 (divide-by-8 mode) under the following conditions:


- When entering stop mode
- When the CM07 bit is 1 (sub clock used as CPU clock) and the CM05 bit is 1 (main clock off)

CM07 (System Clock Select Bit) (b7)

The CPU clock source and the peripheral function clock f1 depend on combinations of the bit status of the CM07 bit, the CM11 bit in the CM1 register, and the CM21 bit in the CM2 register. When the CM07 bit is 0 (main clock, PLL clock or on-chip oscillator clock used as CPU clock), the CPU clock source and the peripheral function clock f1 can be selected by combinations of the bit status of the CM11 bit and the CM21 bit. When the CM07 bit is 1 (sub clock used as CPU clock), the CPU clock source is fC, and the peripheral function clock f1 can be selected by combinations of the bit status of bits CM11 and CM21.

When setting the PM21 bit in the PM2 register to 1 (clock change disabled), set the CM07 bit to 0 (main clock) before setting the PM21 bit to 1. When the PM21 bit is set to 1, this bit remains unchanged even when written to.

8.2.3 System Clock Control Register 1 (CM1)

Rewrite the CM1 register after setting the PRC0 bit in the PRCR register to 1 (write enabled). Refer to Table 9.3 "Clock Related Bit Setting and Modes" to select a clock and a mode.

CM10 (All Clock Stop Control Bit) (b0)

When the CM11 bit is 1 (PLL clock), or the CM20 bit in the CM2 register is 1 (oscillation stop detection function enabled), do not set the CM10 bit to 1.

When the PM21 bit in the PM2 register is 1 (clock change disabled), the CM10 bit remains unchanged even when written to (stop mode is not entered). When the CSPRO bit in the CSPR register is 1 (watchdog timer count source protection mode), the CM10 bit remains unchanged even when written to (stop mode is not entered).

CM11 (System Clock Select Bit) (b1)

The CM11 bit is valid when the CM21 bit in the CM2 register is set to 0 (main clock or PLL clock).

The CPU clock source and the peripheral function clock f1 can be selected by the CM11 bit when the CM07 bit is 0 (main clock, PLL clock, or on-chip oscillator clock used as CPU clock). The peripheral function clock f1 can be selected by the CM11 bit when the CM07 bit is 1 (sub clock used as CPU clock).

When the PM21 bit in the PM2 register is 1 (clock change disabled), the CM11 bit remains unchanged even when written to.

CM13 (XIN-XOUT Feedback Resistor Select Bit) (b3)

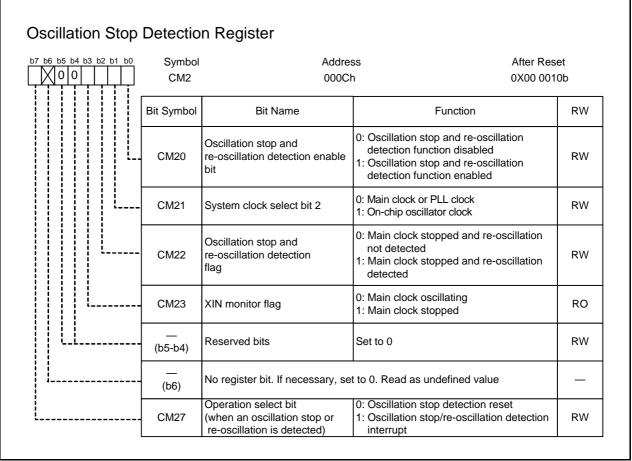
The CM13 bit can be used when the main clock is not used at all, or when the externally generated clock is supplied to the XIN pin. When connecting a resonator between pins XIN and XOUT, set the CM13 bit to 0 (internal feedback resistor connected). Do not set this bit to 1.

When the CM10 bit is 1 (stop mode), the feedback resistor is not connected regardless of the CM13 bit status.

CM14 (125 kHz On-Chip Oscillator Stop Bit) (b4)

The CM14 bit can be set to 1 (125 kHz on-chip oscillator off) when the CM21 bit is 0 (main clock or PLL clock). When the CM21 bit is set to 1 (on-chip oscillator clock), the CM14 bit is automatically set to 0 (125 kHz on-chip oscillator on) and remains unchanged even when 1 is written to this bit. Note that the 125 kHz on-chip oscillator does not stop.

When the CSPRO bit in the CSPR register is 1 (watchdog timer count source protection mode), the CM14 bit is automatically set to 0 (125 kHz on-chip oscillator on) and remains unchanged even when 1 is written to this bit. Note that the 125 kHz on-chip oscillator does not stop.


CM15 (XIN-XOUT Drive Capacity Select Bit) (b5)

When entering stop mode or the CM05 bit is set to 1 (main clock stopped) in low speed mode, the CM15 bit is automatically set to 1 (drive capacity high).

CM17-CM16 (Main Clock Division Select Bit 1) (b7-b6)

Bits CM17 to CM16 are valid when the CM06 bit is set to 0 (bits CM16 and CM17 enabled).

8.2.4 Oscillation Stop Detection Register (CM2)

Rewrite the CM2 register after setting the PRC0 bit in the PRCR register to 1 (write enabled). Bits CM20, CM21, and CM27 do not change at oscillation stop detection reset.

Refer to Table 9.3 "Clock Related Bit Setting and Modes" to select a clock and a mode.

CM20 (Oscillation Stop and Re-Oscillation Detection Enable Bit) (b0)

Set the CM20 bit to 0 (oscillation stop and re-oscillation detection function disabled) to enter stop mode. Set the CM20 bit back to 1 (enabled) after stop mode is exited.

When the PM21 bit in the PM2 register is 1 (clock change disabled), the CM20 bit remains unchanged even when being written.

CM21 (System Clock Select Bit 2) (b1)

When the CM07 bit is 0 (main clock, PLL clock, or on-chip oscillator clock used as CPU clock source), the CPU clock source and the peripheral function clock f1 can be selected by the CM21 bit. When the CM07 bit is 1 (sub clock used as CPU clock source), the peripheral function clock f1 can be selected by the CM21 bit.

To set the CM21 bit to 1 (on-chip oscillator clock), set the FRA01 bit in the FRA0 register to select either the 125 kHz on-chip oscillator, or the 40 MHz on-chip oscillator.

When the CM20 bit is 1 (oscillation stop and re-oscillation detection function enabled) and the CM23 bit is 1 (main clock stopped), do not set the CM21 bit to 0 (main clock or PLL clock).

When the CM20 bit is 1 (oscillation stop and re-oscillation detection function enabled), the CM27 bit is 1 (oscillation stop and re-oscillation detection interrupt), and the main clock is used as a CPU clock source, the CM21 bit is automatically set to 1 (on-chip oscillator clock) if main clock stop is detected. See 8.7 "Oscillation Stop/Re-Oscillation Detect Function" for details.

M16C/65 Group

CM22 (Oscillation Stop and Re-Oscillation Detection Flag) (b2)

Condition to become 0:

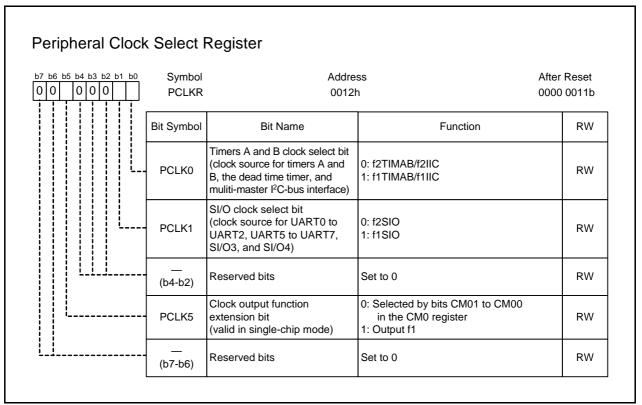
Set it to 0.

Condition to become 1:

- Main clock stop is detected.
- Main clock re-oscillation is detected.

(The CM22 bit remains unchanged even if 1 is written.)

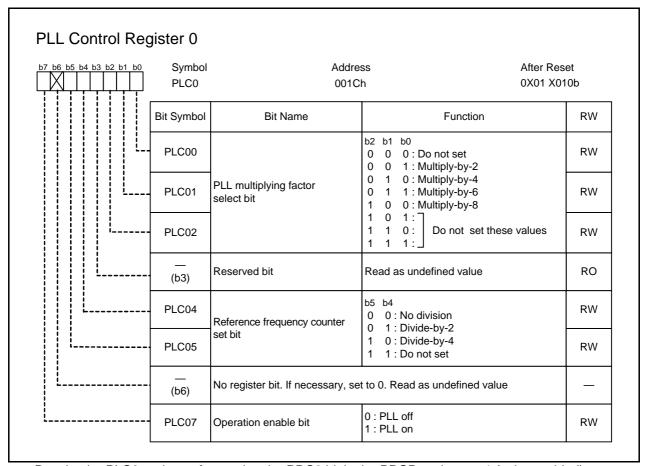
When the CM22 bit changes state from 0 to 1, an oscillation stop/re-oscillation detection interrupt is generated. Use this bit in an interrupt routine to determine the factors of interrupts between the oscillation stop and re-oscillation detection interrupt and the watchdog timer interrupt.


When the CM22 bit is 1 and oscillation stop or re-oscillation is detected, an oscillation stop/re-oscillation detection interrupt is not generated. The bit is not set to 0 even if an oscillation stop/re-oscillation detection interrupt request is accepted.

CM23 (XIN Monitor Flag) (b3)

Determine the main clock status by reading the CM23 bit several times in the oscillation stop and reoscillation detection interrupt routine.

8.2.5 Peripheral Clock Select Register (PCLKR)



Write to the PCLKR register after setting the PRC0 bit in the PRCR register to 1 (write enabled).

PCLK5 (Clock Output Function Extension Bit) (b5)

The PCLK5 bit is valid in single-chip mode. Output from the CLKOUT pin is selectable. When the PCLK5 bit is 1, set bits CM01 to CM00 to 00b. Refer to Table 8.4 "CLKOUT Pin Functions for Single-Chip Mode".

8.2.6 **PLL Control Register 0 (PLC0)**

Rewrite the PLC0 register after setting the PRC0 bit in the PRCR register to 1 (write enabled).

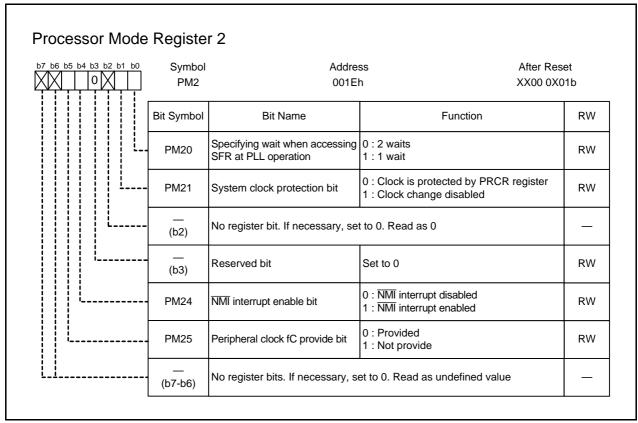
PLC02-PLC00 (PLL Multiplying Factor Select Bit) (b2-b0)

Write to bits PLC00 to PLC02 when the PLC07 bit is 0 (PLL off).

When the PM21 bit in the PM2 register is 1 (clock change disabled), writing to bits PLC02 to PLC00 has no effect.

PLC05-PLC04 (Reference Frequency Counter Set Bit) (b5-b4)

Write to bits PLC05 to PLC04 when the PLC07 bit is 0 (PLL off).


When the PM21 bit in the PM2 register is 1 (clock change disabled), writing to bits PLC05 to PLC04 has no effect.

PLC07 (Operation Enable Bit) (b7)

When the PM21 bit in the PM2 register is 1 (clock change disabled), writing to the PLC07 bit has no effect.

Under development

8.2.7 **Processor Mode Register 2 (PM2)**

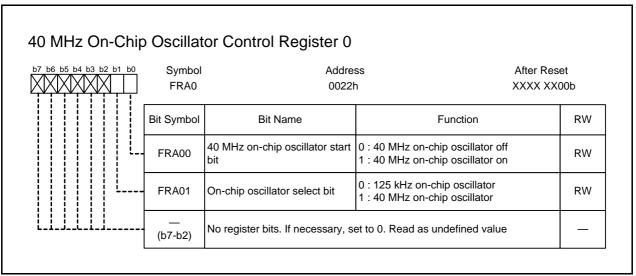
Rewrite the PM2 register after setting the PRC1 bit in the PRCR register to 1 (write enabled).

PM20 (Specifying Wait When Accessing SFR at PLL Operation) (b0)

Change the PM20 bit when the PLC07 bit is 0 (PLL off). The PM20 bit becomes enabled when the PLC07 bit in the PLC0 register is set to 1 (PLL on).

PM21 (System Clock Protection Bit) (b1)

The PM21 bit is used to protect the CPU clock. (See 8.6 "System Clock Protection Function".) If the PM21 bit is set to 1, writing to the following bits has no effect.


- Bits CM02, CM05, and CM07 in the CM0 register
- Bits CM10 and CM11 in the CM1 register
- The CM20 bit in the CM20 register
- All bits in the PLC0 register

Do not execute the WAIT instruction when the PM21 bit is 1.

PM25 (Peripheral Clock fC Provide Bit) (b5)

The PM25 bit provides fC to the real-time clock, CEC function, and remote control signal receiver. (See Figure 8.5 "Peripheral Function Clocks".)

8.2.8 40 MHz On-Chip Oscillator Control Register 0 (FRA0)

Rewrite the FRA0 register after setting the PRC0 bit in the PRCR register to 1 (write enabled). Refer to Table 9.3 "Clock Related Bit Setting and Modes" Table 9.3 "Clock Related Bit Setting and Modes" to select a clock and a mode.

FRA00 (40 MHz On-Chip Oscillator Start Bit) (b0)

When using an oscillation stop/re-oscillation detection interrupt, do not set the FRA00 bit to 0 (40 MHz on-chip oscillator off), and the FRA01 bit to 1 (40 MHz on-chip oscillator).

FRA01 (40 MHz On-Chip Oscillator Select Bit) (b1)

Change the FRA01 bit if the both conditions below are met.

- When the FRA00 bit is 1 (40 MHz on-chip oscillator on) and oscillation is stable
- When the CM14 bit in the CM1 register is 0 (125 kHz on-chip oscillator on) and oscillation is stable When setting the FRA01 bit to 0 (125 kHz on-chip oscillator), do not set the FRA00 bit to 0 (40 MHz onchip oscillator off) at the same time. Set the FRA00 bit to 0 after setting the FRA01 bit to 0.

8. Clock Generator M16C/65 Group

8.3 **Clocks Generated by Clock Generators**

The clocks generated by the clock generators are described below.

8.3.1 **Main Clock**

This clock is supplied by the main clock oscillator circuit and used as a clock source for the CPU and peripheral function clocks. After reset, the main clock is running, but is not used as a clock source for the CPU.

The main clock oscillator circuit is configured by connecting a resonator between pins XIN and XOUT. The main clock oscillator circuit contains a feedback resistor, which is separated from the oscillator circuit in stop mode in order to reduce the amount of power consumed by the chip. The main clock oscillator circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 8.2 shows Main Clock Connection Examples.

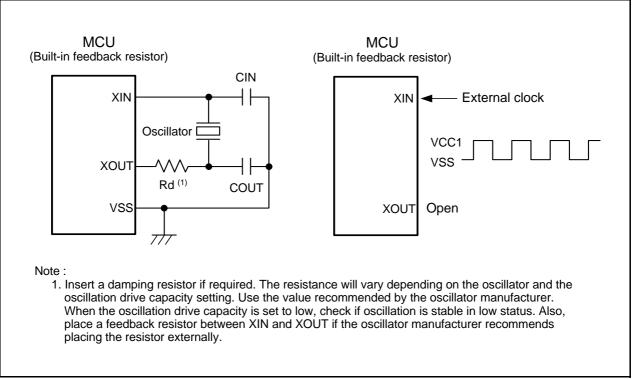


Figure 8.2 **Main Clock Connection Examples**

The XOUT becomes high by setting the CM05 bit in the CM0 register to 1 (main clock oscillator circuit turned off) after switching the clock source for the CPU clock to the sub clock (fC) or on-chip oscillator clock (fOCO-F, fOCO-S). In this case, the XIN is pulled high to the XOUT via the feedback resistor because the internal feedback resistor remains connected.

When the main clock oscillator circuit is not used, setting the CM13 bit in the CM1 register to 1 enables to select the internal feedback resistor not connected.

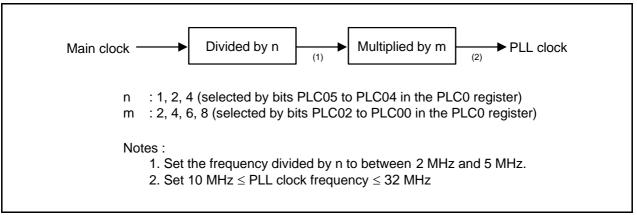
Perform the following steps to start or stop the main clock. Refer to 8.2 "Registers" for access to register

Main clock oscillation start

- (1) Set the CM15 bit to 1 (drive capacity high) when a resonator is connected between pins XIN and
- (2) Set the CM05 bit to 0 (main clock oscillating).
- (3) Wait until main clock oscillation stabilizes. (Enter the external clock when entering it from the XIN pin.)

Main clock oscillation stop

- (1) Set the CM20 bit in the CM2 register to 0 (oscillation stop/re-oscillation detection function disabled).
- (2) Set the CM05 bit to 1 (stop).
- (3) Stop the external clock (when entering the external clock from the XIN pin).


8. Clock Generator M16C/65 Group

PLL Clock 8.3.2

The PLL clock is generated by the PLL frequency synthesizer. This clock is used as the clock source for the CPU and peripheral function clocks.

After reset, the PLL frequency synthesizer is stopped.

The PLL clock is the main clock divided by the selected values of bits PLC05 to PLC04 in the PLC0 register, and then multiplied by the selected values of bits PLC02 to PLC00. Set bits PLC05 to PLC04 to fit divided frequency between 2 MHz and 5 MHz. Figure 8.3 shows Relation between Main Clock and PLL Clock.

Relation between Main Clock and PLL Clock Figure 8.3

Bits PLC05 to PLC04 and bits PLC02 to PLC00 can be set only once after reset. Table 8.5 lists Example Settings for PLL Clock Frequencies.

Table 8.5 **Example Settings for PLL Clock Frequencies**

Main Clock	Settir	PLL Clock	
IVIAIII CIOCK	Bits PLC05 to PLC04	Bits PLC02 to PLC00	- FEE Clock
10 MHz	01b (divide-by-2)	010b (multiply-by-4)	20 MHz
5 MHz	00b (not divided)	010b (multiply-by-4)	
12 MHz	10b (divide-by-4)	100b (multiply-by-8)	24 MHz
6 MHz	01b (divide-by-2)	100b (multiply-by-8)	
16 MHz	10b (divide-by-4)	100b (multiply-by-8)	32 MHz
8 MHz	01b (divide-by-2)	100b (multiply-by-8)	

M16C/65 Group 8. Clock Generator

8.3.3 fOCO40M

The fOCO40M is a 40 MHz clock (approx.), which is supplied by the 40 MHz on-chip oscillator. It is used as the clock source for ϕAD of AD converter.

Follow the steps below to start or stop the 40 MHz on-chip oscillator clock. Refer to 8.2 "Registers" for access to register and bit.

- 40 MHz on-chip oscillator clock oscillation start
- (1) Set the FRA00 bit in the FRA0 register to 1 (40 MHz on-chip oscillator on).
- (2) Wait for td (OCOF).
- 40 MHz on-chip oscillator clock oscillation stop
- (1) Set the FRA01 bit in the FRA0 register to 0 (125 MHz on-chip oscillator) (when the CM27 bit is 1 (oscillation stop/re-oscillation detection interrupt)).
- (2) Set the FRA00 bit in the FRA0 register to 0 (40 MHz on-chip oscillator off).

8.3.4 fOCO-F

The fOCO-F is a 40 MHz clock (approx.), which is supplied by the 40 MHz on-chip oscillator, divided by 2. It is used as the clock source for the CPU and peripheral function clocks.

After reset, the 40 MHz on-chip oscillator is stopped.

If the main clock stops oscillating and the FRA01 bit is 1 when the CM20 bit in the CM2 register is 1 (oscillation stop/re-oscillation detection function enabled), and the CM27 bit is 1 (oscillation stop/reoscillation detection interrupt), the fOCO-F is used as the clock source for the CPU.

Follow the steps below to start or stop the 40 MHz on-chip oscillator clock. Refer to 8.2 "Registers" for access to registers and bits.

- 40 MHz on-chip oscillator clock oscillation start
- (1) Set the FRA00 bit in the FRA0 register to 1 (40 MHz on-chip oscillator on).
- (2) Wait for td (OCOF).
- 40 MHz on-chip oscillator clock oscillation stop
- (1) Set the FRA01 bit in the FRA0 register to 0 (125 MHz on-chip oscillator) (when the CM27 bit is 1 (oscillation stop/re-oscillation detection interrupt)).
- (2) Set the FRA00 bit in the FRA0 register to 0 (40 MHz on-chip oscillator off).

8.3.5 125 kHz On-Chip Oscillator Clock (fOCO-S)

This clock is approximately 125 kHz, and is supplied by the 125 kHz on-chip oscillator. It is used as the clock source for the CPU and peripheral function clocks. In addition, when the CSPRO bit in the CSPR register is 1 (count source protection mode enabled), this clock is used as the count source for the watchdog timer (refer to 15.4.2 "Count Source Protection Mode Enabled").

After reset, the fOCO-S divided by 8 is used as the CPU clock.

If the main clock stops oscillating and the FRA01 bit is 0, when the CM20 bit in the CM2 register is 1 (oscillation stop/re-oscillation detection function enabled) and the CM27 bit is 1 (oscillation stop/reoscillation detection interrupt), the 125 kHz on-chip oscillator automatically starts operating and supplying the necessary clock for the MCU.

Follow the steps below to start or stop the fOCO-S. Refer to 8.2 "Registers" for access to register and

fOCO-S start

- (1) Set the CM14 bit in the CM1 register to 0 (125 kHz on-chip oscillator on).
- (2) Wait for td (OCOS).

fOCO-S stop

(1) Set the CM14 bit in the CM1 register to 1 (125 kHz on-chip oscillator off).

When the CM21 bit is 1 (on-chip oscillator used as the clock source for the CPU), the CM14 bit becomes 0 (125 kHz on-chip oscillator on).

M16C/65 Group 8. Clock Generator

8.3.6 Sub Clock (fC)

The sub clock is supplied by the sub clock oscillator circuit. This clock is used as the clock source for count sources of the CPU clock, timer A, timer B, real-time clock, CEC function, and remote control signal receiver.

The sub clock oscillator circuit is configured by connecting a crystal resonator between pins XCIN and XCOUT. The sub clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillation circuit in stop mode in order to reduce the amount of power consumed by the chip. The sub clock oscillator circuit may also be configured by feeding an externally generated clock to the XCIN pin. Figure 8.4 shows Sub Clock Connection Examples.

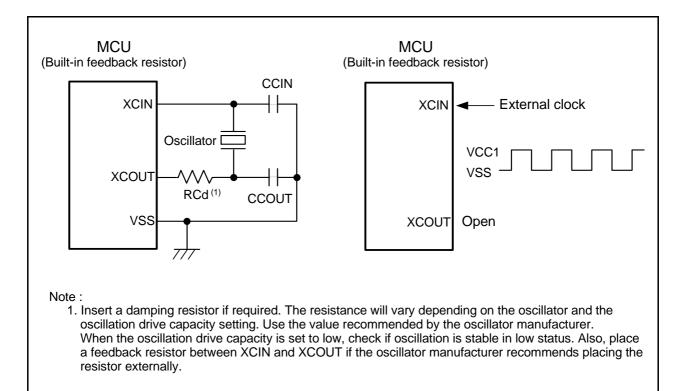


Figure 8.4 **Sub Clock Connection Examples**

After reset, the sub clock is stopped. At this time, the feedback resistor is disconnected from the oscillator circuit.

Follow the steps below to start the sub clock. Refer to 8.2 "Registers" for access to registers and bits.

- (1)Set the PU21 bit in the PUR2 register to 0 (P8_4 to P8_7 not pulled high).
- (2)Set bits PD8 6 and PD8 7 in the PD8 register to 0 (P8 6, P8 7 function as input ports).
- (3)Set the CM04 bit to 1 (XCIN-XCOUT oscillation function). Set the CM03 bit to 1 (XCIN-XCOUT drive capacity high).
- (4) Wait until sub clock oscillation stabilizes (enter the external clock when entering it from the XCIN pin).

8.4 **CPU Clock and Peripheral Function Clocks**

The CPU is run by the CPU clock, and the peripheral functions are run by the peripheral function clocks.

8. Clock Generator

8.4.1 **CPU Clock and BCLK**

The CPU clock is an operating clock for the CPU and watchdog timer. Also it is used as a sampling clock of the NMI/SD digital filter.

The main clock, PLL clock, fOCO-F, fOCO-S, or fC can be selected as the clock source for the CPU clock. (See Table 9.2 "Clocks in Normal Operating Mode".)

When the main clock, PLL clock, fOCO-F, or fOCO-S is selected as the clock source for the CPU clock, the selected clock source can be divided by 1 (no division), 2, 4, 8 or 16 to produce the CPU clock. Use the CM06 bit in the CM0 register, and bits CM17 to CM16 in the CM1 register to select a frequencydivided value.

When fC is selected as the clock source for the CPU clock, it is not divided and is used directly as the CPU clock.

After reset, the fOCO-S divided by 8 is used as the CPU clock. Note that when entering stop mode or when the CM05 bit in the CM0 register is set to 1 (stop) in low-speed mode, the CM06 bit in the CM0 register is set to 1 (divide-by-8 mode).

BCLK is a bus reference clock.

In memory expansion or microprocessor mode, a BCLK signal with the same frequency as the CPU clock can be output from the BCLK pin by setting the PM07 bit in the PM0 register to 0 (output enabled).

8.4.2 Peripheral Function Clocks (f1, f0CO40M, f0CO-F, f0CO-S, fC32, fC)

f1, fOCO40M, fOCO-F, fOCO-S, and fC32 are operating clocks for the peripheral functions.

f1 is produced from one of the following:

- Main clock divided by 1 (no division)
- PLL clock divided by 1 (no division)
- fOCO-S divided by 1 (no division)
- fOCO-F divided by 1 (no division)

f1 is used for timers A and B, PWM, real-time clock, remote control signal receiver, UART0 to UART2, UART5 to UART7, SI/O3, SI/O4, multi-master I²C-bus interface, and the A/D converter.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to 1 (peripheral function clock f1 turned off during wait mode), the f1 clock is stopped.

fOCO40M can be used for A/D converter. fOCO40M can be used when the FRA00 bit in the FRA0 register is 1 (40 MHz on-chip oscillator on).

fOCO-F can be used for timers A and B, UART0 to UART2, UART5 to UART7, SI/O3, and SI/O4. fOCO-F can be used when the FRA00 bit in the FRA0 register is 1 (40 MHz on-chip oscillator on).

fOCO-S is used for timers A and B. It is also used for reset, voltage detector and watchdog timer. fOCO-S is also used when the CM14 bit in the CM1 register is set to 0 (125 kHz on-chip oscillator on). fC is divided by 32 to produce fC32. fC32 is used for timers A and B, and is enabled when the sub clock is on.

fC is used for the watchdog timer. fC is also used as the clock source for the real-time clock, remote control signal receiver, and CEC function, when the PM25 bit in the PM2 register is 1 (peripheral clock fC provided). fC can be used when the sub clock is on.

Figure 8.5 shows Peripheral Function Clocks.

Under development

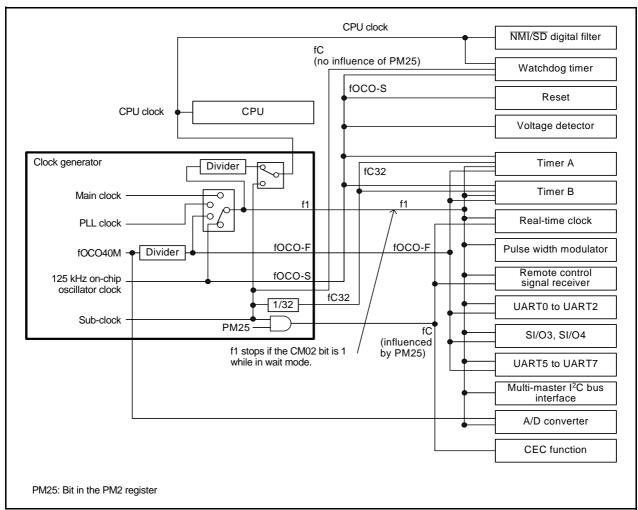


Figure 8.5 **Peripheral Function Clocks**

8.5 **Clock Output Function**

In single-chip mode, the f1, f8, f32 or fC clock can be output from the CLKOUT pin. Use bits CM01 to CM00 in the CM0 register, and the PCLK5 bit in the PCLKR register to select the clock. f8 has the same frequency as f1 divided by 8, and f32 has the same frequency as f1 divided by 32. Set the frequency of a clock output from the CLKOUT pin to 25 MHz or below.

8.6 **System Clock Protection Function**

The system clock protection function prohibits the CPU clock from changing clock sources when the main clock is selected as the CPU clock source. This is to prevent the CPU clock from stopping due to an unexpected program operation.

When the PM21 bit in the PM2 register is set to 1 (clock change disabled), the following bits remain unchanged even if they are written to.

- The CM02 bit in the CM0 register (peripheral function clock f1 in wait mode)
- The CM05 bit in the CM0 register (to prevent the main clock from being stopped)
- The CM07 bit in the CM0 register (clock source of the CPU clock)
- The CM10 bit in the CM1 register (stop mode is not entered)
- The CM11 bit in the CM1 register (clock source of the CPU clock)
- The CM20 bit in the CM2 register (oscillation stop/re-oscillation detect function set)
- All bits in the PLC0 register (PLL frequency synthesizer set)

To use the system clock protect function, set the CM05 bit in the CM0 register to 0 (main clock oscillation) and CM07 bit to 0 (main clock as CPU clock source), and then follow the procedures below.

- (1) Set the PRC1 bit in the PRCR register to 1 (write to PM2 register enabled).
- (2) Set the PM21 bit in the PM2 register to 1 (clock change disabled).
- (3)Set the PRC1 bit in the PRCR register to 0 (write to PM2 register disabled).

When the PM21 bit is 1, do not execute the WAIT instruction.

8.7 Oscillation Stop/Re-Oscillation Detect Function

Under development

This function is to detect the stop and re-oscillation of the main clock oscillation circuit. The oscillation stop and re-oscillation detect function can be enabled and disabled with the CM20 bit in the CM2 register. A reset or oscillation stop/re-oscillation detection interrupt is generated when an oscillation stop or reoscillation is detected. Set the CM27 bit in the CM2 register to select the reset or interrupt. Table 8.6 lists Specification Overview of Oscillation Stop and Re-Oscillation Detect Function.

Table 8.6 Specification Overview of Oscillation Stop and Re-Oscillation Detect Function

Item	Specification
Oscillation stop detectable clock and frequency bandwidth	f(XIN) ≥ 2 MHz
Enabling condition for oscillation stop/ re-oscillation detect function	Set CM20 bit to 1 (enabled)
Operation at oscillation stop/ re-oscillation detection	When CM27 bit is 0: Oscillation stop detection reset generated When CM27 bit is 1: Oscillation stop/re-oscillation detection interrupt generated

8.7.1 Operation When CM27 Bit is 0 (Oscillation Stop Detection Reset)

When main clock stop is detected while the CM20 bit is 1 (oscillation stop/re-oscillation detection function enabled), the MCU is initialized, and then stops (oscillation stop reset). (Refer to 4. "Special Function Registers (SFRs)" and 6. "Resets".)

The status is cancelled at hardware reset or voltage monitor 0 reset. The MCU can also be initialized and stopped when re-oscillation is detected, but do not use the MCU in this manner (during main clock stop, do not set the CM20 bit to 1 and the CM27 bit to 0).

8.7.2 Operation When CM27 Bit is 1 (Oscillation Stop, Re-Oscillation Detect Interrupt)

When the CM20 bit is 1 (oscillation stop/re-oscillation detect function enabled), the system is placed in the state shown in Table 8.7 if the main clock detects oscillation stop or re-oscillation.

The CM21 bit is automatically set to 1 in high-speed, medium-speed, or low-speed mode. The FRA01 bit does not change. Thus, high-speed and medium-speed mode become 125 kHz on-chip oscillator mode or 40 MHz on-chip oscillator mode. Because the CM07 bit does not change, low-speed mode remains in low-speed mode, but clock sources for the peripheral functions become fOCO-S or fOCO-F.

When the CM21 bit is set to 1, the CM14 bit is set to 0 (125 kHz on-chip oscillator on), but the FRA00 bit remains unchanged (40 MHz on-chip oscillator does not oscillate automatically). Thus, when the FRA01 bit is set to 1 (40 MHz on-chip oscillator selected), set the FRA00 bit to 1 (40 MHz on-chip oscillator on). Do not set the FRA00 bit to 0 while the FRA01 bit is 1, and vice versa.

Since the CM21 bit remains unchanged in PLL operating mode, select 125 kHz on-chip oscillator mode or 40 MHz on-chip oscillator mode inside the interrupt routine.

Table 8.7 State after Oscillation Stop and Re-Oscillation Detect When CM27 Bit is 1

С	ondition	After Detection
Main clock oscillation stop detected	High-speed mode Medium-speed mode	 Oscillation stop, re-oscillation detection interrupt is generated CM14 bit is 0 (125 kHz on-chip oscillator on) CM21 bit is 1 (fOCO-S or fOCO-F is used as the clock source for
	Low-speed mode 40 MHz on-chip oscillator mode	the CPU and peripheral function clocks) (1), (2) • CM22 bit is 1 (main clock stop detected) • CM23 bit is 1 (main clock stopped)
	125 kHz on-chip oscillator mode	
	PLL operating mode	 Oscillation stop, re-oscillation detection interrupt is generated CM14 bit is 0 (125 kHz on-chip oscillator on) CM21 bit remains unchanged CM22 bit is 1 (main clock stop detected) CM23 bit is 1 (main clock stopped)
Main clock re-oscillation detected	-	 Oscillation stop, re-oscillation detection interrupt is generated CM14 bit is 0 (125 kHz on-chip oscillator on) CM21 bit remains unchanged CM22 bit is 1 (main clock stop detected) CM23 bit is 0 (main clock oscillating)

Notes:

Under development

- fOCO-S or fOCO-F is selected depending on the FRA01 bit status. 1.
- fC is used as the CPU clock in low-speed mode.

Under development

8.7.3 Using the Oscillation Stop, Re-Oscillation Detect Function

- The oscillation stop/re-oscillation detect interrupt shares a vector with the watchdog timer interrupt, voltage monitor 1 interrupt, and voltage monitor 2 interrupt. If the oscillation stop/re-oscillation detection interrupt is used with a watchdog timer interrupt, voltage monitor 1 interrupt, or voltage monitor 2 interrupt, read the CM22 bit (oscillation stop/re-oscillation detection), VW1C2 bit (Vdet1 passage detection), VW2C2 bit (Vdet2 passage detection) and VW2C3 bit (watchdog timer underflow detection) in an interrupt routine to determine which interrupt source is requesting the interrupt.
- After oscillation stop is detected, if the main clock re-oscillates, set the main clock back to the clock source for the CPU clock and peripheral functions by a program. Figure 8.6 shows the Procedure to Switch Clock Source from On-Chip Oscillator to Main Clock.

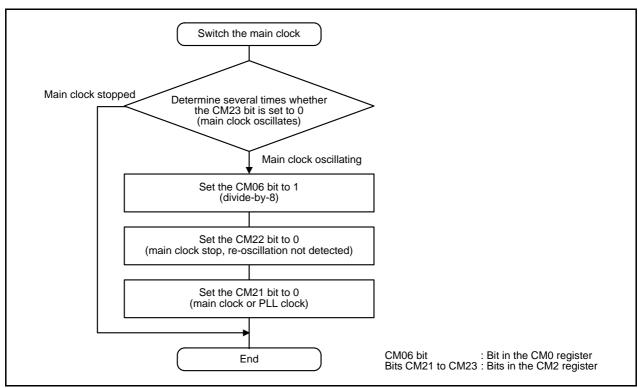


Figure 8.6 Procedure to Switch Clock Source from On-Chip Oscillator to Main Clock

• The CM22 bit becomes 1 at the same time an oscillation stop/re-oscillation detection interrupt is generated. When the CM22 bit is 1, the oscillation stop/re-oscillation detection interrupt is disabled. When setting the CM22 bit to 0 by a program, the oscillation stop/re-oscillation detection interrupt is enabled.

8.8 **Notes on Clock Generator**

8.8.1 Oscillation Circuit Using an Oscillator

To connect an oscillator, follow these instructions:

- The oscillation characteristics are tied closely to the user's board design. Perform a careful evaluation of the board before connecting an oscillator.
- Oscillation circuit structure depends on the oscillator. The M16C/65 Group contains a feedback resistor, but an external feedback resistor may be required. Contact the oscillator manufacturer regarding circuit constants, as they are dependent on the oscillator or stray capacitance of the mounted circuit.
- Check output from the CLKOUT pin to confirm that the clock generated by the oscillation circuit is properly transmitted to the MCU. Procedures for outputting a clock from the CLKOUT pin are listed below. Set the clock output from the CLKOUT pin to 25 MHz or below.

Outputting the main clock

- (1) Set the PRC0 bit in the PRCR register to 1 (write enabled).
- (2) Set the CM11 bit in the CM1 register to 0, the CM07 bit in the CM0 register to 0, and the CM21 bit in the CM2 register to 0 (main clock selected).
- (3) Select the clock output from the CLKOUT pin (refer to the following table).
- (4) Set the PRC0 bit in the PRCR register to 0 (write disabled)

Table 8.8 Output from CLKOUT Pin When Selecting Main Clock

Bit S	etting	
PCLKR Register	CM0 Register	Output from CLKOUT Pin
PCLK5 Bit	Bits CM01 to CM00	
1	00b	Clock with the same frequency as the main clock
0	10b	Main clock divided by 8
0	11b	Main clock divided by 32

Outputting the sub clock

- (1) Set the PRC0 bit in the PRCR register to 1 (write enabled).
- (2) Set the CM07 bit in the CM0 register to 1 (sub clock selected).
- (3) Set the PCLK5 bit in the PCLKR register to 0, and bits CM01 to CM00 in the CM0 register to 01b (fC output from CLKOUT pin).
- (4) Set the PRC0 bit in the PRCR register to 0 (write disabled)

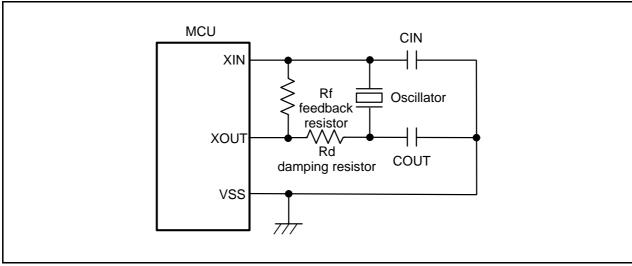


Figure 8.7 **Oscillation Circuit Example**

8. Clock Generator M16C/65 Group

8.8.2 **Noise Countermeasure**

8.8.2.1 Clock I/O Pin Wiring

- Connect the shortest possible wiring to the clock I/O pin.
- Connect (a) the capacitor's ground lead connected to the oscillator, and (b) the MCU's VSS pin, with the shortest possible wiring (maximum 20 mm).

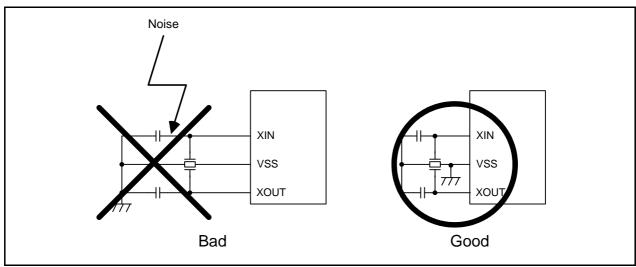


Figure 8.8 Clock I/O Pin Wiring

Reason

If noise enters the clock I/O pin, the clock waveform becomes unstable, which causes an error in operation or a program runaway. Also, if a potential difference attributed to the noise occurs between the VSS level of the MCU and the VSS level of the oscillator, an accurate clock is not input to the MCU.

8.8.2.2 **Large Current Signal Line**

For large currents that go above the MCU's current range, wire the signal lines as far away from the MCU as possible (especially the oscillator).

Reason

In the system using the MCU, there are signal lines for controlling motors, LEDs, and thermal heads. When a large current flows through these signal lines, noise is generated due to mutual inductance.

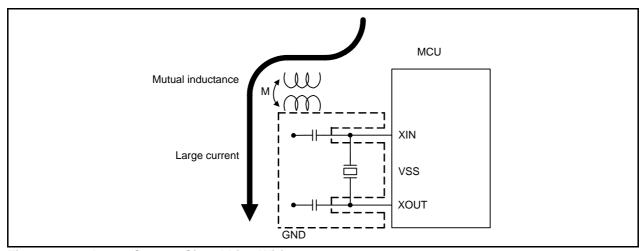


Figure 8.9 **Large Current Signal Line Wiring**

M16C/65 Group 8. Clock Generator

8.8.2.3 Signal Line Whose Level Changes at a High-Speed

For a signal line whose level changes at a high-speed, wire it as far away from the oscillator and the oscillator wiring pattern as possible. Do not wire it across or extend it parallel to a clock-related signal line or other signal lines which are sensitive to noise.

Reason

A signal whose level changes at a high-speed (such as the signal from the TAOUT pin) affects other signal lines due to the level change at rising or falling edges. Specially when the signal line crosses the clock-related signal line, the clock waveform becomes unstable, which causes an error in operation or a program runaway.

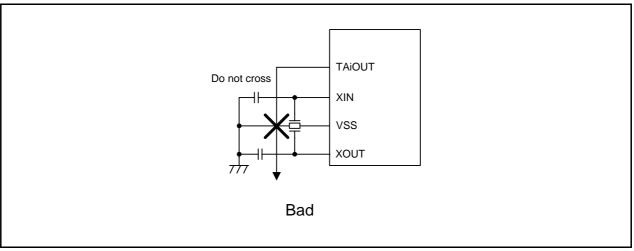


Figure 8.10 Wiring of Signal Line Whose Level Changes at High-Speed

8.8.3 CPU ClockW

 When the external clock is entered from the XIN pin and the main clock is used as the CPU clock, do not stop the external clock.

8.8.4 Oscillation Stop, Re-Oscillation Detect Function

• In the following cases, set the CM20 bit to 0 (oscillation stop/re-oscillation detect function disabled), and then change the status of each bit.

When the CM05 bit is set to 1 (main clock stopped)

When the CM10 bit is set to 1 (stop mode)

- To enter wait mode while using the oscillation stop/re-oscillation detection function, set the CM02 bit to 0 (peripheral function clock f1 not turned off during wait mode).
- This function cannot be used if the main clock frequency is 2 MHz or below. In that case, set the CM20 bit to 0 (oscillation stop/re-oscillation detect function disabled).
- While the CM27 bit is 1 (oscillation stop/re-oscillation detect interrupt), when the FRA01 bit is 1 (40 MHz on-chip oscillator selected), set the FRA00 bit to 1 (40 MHz on-chip oscillator on). (Do not set the FRA00 bit to 0 while FRA01 bit is 1, and vice versa.)

PLL Frequency Synthesizer 8.8.5

To use the PLL frequency synthesizer, stabilize the supply voltage to meet the power supply ripple standard.

Symbol	Parameter -			Standard			
Symbol				Тур.	Max.	Unit	
f (ripple)	Power supply ripple allowable frequency (VCC1)				10	kHz	
VP-P (ripple)	Power supply ripple allowable	(VCC1 = 5 V)			0.5	V	
	amplitude voltage	(VCC1 = 3 V)			0.3	V	
VCC (ΔV /ΔT)	Power supply ripple rising/falling	(VCC1 = 5 V)			0.3	V/ms	
	gradient	(VCC1 = 3 V)			0.3	V/ms	

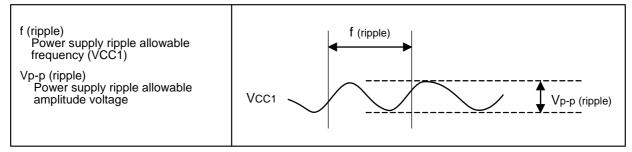
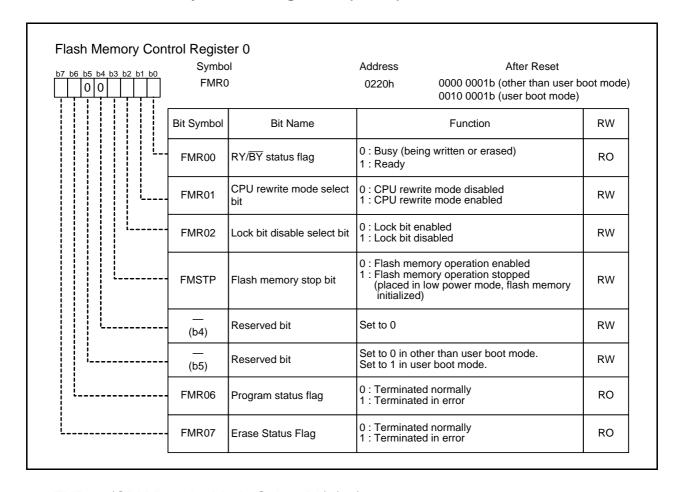


Figure 8.11 Voltage Fluctuation Timing

Power Control 9.

9.1 Introduction

The following describes how to reduce the amount of current consumption.


9.2 **Registers**

Refer to 8. "Clock Generator" for the clock-related registers.

Table 9.1 **Register Structure**

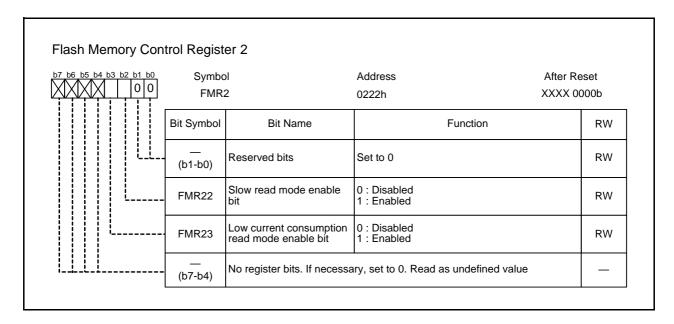
Address	Register Name	Symbol	After Reset
0220h	Flash Memory Control Register 0	FMR0	0000 0001b
			(Other than user boot mode)
			0010 0001b
			(User boot mode)
0222h	Flash Memory Control Register 2	FMR2	XXXX 0000b

9.2.1 Flash Memory Control Register 0 (FMR0)

FMR01 (CPU Rewrite Mode Select Bit) (b1)

To set the FMR01 bit to 1, write 0 and then 1 in succession. Make sure no interrupts or DMA transfers occur before writing 1 after writing 0.

In EW0 mode, write to this bit by a program in any area other than the flash memory. Enter read array mode first to set this bit to 0.


FMSTP (Flash Memory Stop Bit) (b3)

Write to the FMSTP bit by a program in any area other than the flash memory.

The FMSTP bit is enabled when the FMR01 bit is 1 (CPU rewrite mode). When the FMR01 bit is 0, although the FMSTP bit can be set to 1, the flash memory is neither placed in low power mode nor initialized.

When the FMR23 bit is 1 (low current consumption read mode enabled), do not set the FMSTP bit to 1 (flash memory stopped). Also, when the FMSTP bit is 1, do not set the FMR23 bit to 1.

9.2.2 Flash Memory Control Register 2 (FMR2)

FMR22 (Slow Read Mode Enable Bit) (b2)

This bit enables mode which reduces the amount of current consumption when reading the flash memory. When rewriting the flash memory (CPU rewrite mode), set the FMR22 bit to 0 (slow read mode disabled).

Slow read mode can be used when f(BCLK) is 5 MHz or below. When f(BCLK) is above 5 MHz, set the FMR22 bit to 0 (slow read mode disabled).

To set the FMR22 bit to 1, write 0 and then 1 in succession. Make sure no interrupts or DMA transfers occur before writing 1 and after writing 0.

Set the FMR23 bit to 1 (low current consumption read mode enabled) after the FMR22 bit is set to 1 (slow read mode enabled). Also, set the FMR22 bit to 0 (slow read mode disabled) after the FMR23 bit is set to 0 (slow read mode disabled). Do not change the FMR22 bit and FMR23 bit at the same time.

FMR23 (Low Current Consumption Read Mode Enable Bit) (b3)

When this bit is enabled, the slow read mode reduces the amount of current consumption when reading the flash memory. When rewriting the flash memory (CPU rewrite mode), set the FMR23 bit to 0 (slow read mode disabled).

Low current consumption read mode can be used when the CM07 bit in the CM0 register is 1 (sub clock used as CPU clock). When the CM07 bit is 0, set the FMR23 bit to 0 (slow read mode disabled). To set the FMR23 bit to 1, write 0 and then 1 in succession. Make sure no interrupts or DMA transfers occur before writing 1 and after writing 0.

Set the FMR23 bit to 1 (low current consumption read mode enabled) after the FMR22 bit is set to 1 (slow read mode enabled). Also, set the FMR22 bit to 0 (slow read mode disabled) after the FMR23 bit is set to 0 (slow read mode disabled). Do not change bits FMR22 and FMR23 at the same time.

When the FMR23 bit is 1, do not set the FMSTP bit in the FMR0 register to 1 (flash memory stopped). Also, when the FMSTP bit is 1, do not set the FMR23 bit to 1.

When the FMR23 bit in the FMR2 register is 1 (low current consumption read mode enabled), do not enter wait mode or stop mode. To enter wait mode or stop mode, set the FMR23 bit to 0 (low current consumption read mode disabled) before entering.

9.3 Clock

The amount of current consumption correlates with the number of operating clocks and frequency. If there are fewer operating clocks and a lower frequency, current consumption will be low.

Normal operating mode, wait mode, and stop mode are provided to control power consumption. All mode states, except wait mode and stop mode, are called normal operating mode in this document.

9.3.1 **Normal Operating Mode**

In normal operating mode, because both the CPU clock and the peripheral function clocks are supplied, the CPU and the peripheral functions are operating. Power control is exercised by controlling the CPU clock frequency. The higher the CPU clock frequency, the greater the processing capability. The lower the CPU clock frequency, the smaller the power consumption in the chip. If unnecessary oscillator circuits are turned off, power consumption is further reduced.

9.3.1.1 **High-Speed Mode and Medium-Speed Mode**

In high-speed mode, the main clock divided by 1 (no division) is used as the CPU clock. In medium-speed mode, the main clock divided by 2, 4, 8 or 16 is used as the CPU clock.

f1 with the same frequency of the main clock divided by 1 is used as the peripheral function clocks in both high-speed and medium-speed modes. When fC is supplied, fC and fC32 can be used as the peripheral function clocks. When fOCO-S is supplied, it can be used as the peripheral function clocks. When fOCO40M and fOCO-F are supplied, they can be used as the peripheral function clocks.

9.3.1.2 **PLL Operating Mode**

The PLL clock divided by 1 (no division), 2, 4, 8 or 16 is used as the CPU clock. f1 with the same frequency of the PLL clock divided by 1 (no division) is used as the peripheral function clocks.

When fC is supplied, fC and fC32 can be used as the peripheral function clocks. When fOCO-S is supplied, it can be used as the peripheral function clocks. When fOCO40M and fOCO-F are supplied, they can be used as the peripheral function clocks.

PLL operating mode can be entered and exited from high-speed mode or medium-speed mode. To enter other modes including wait mode and stop mode, enter high-speed mode or medium-speed mode first, and then enter the intended mode (refer to Figure 9.1 "Clock Mode Transition").

9.3.1.3 40 MHz On-Chip Oscillator Mode

The fOCO-F clock divided by 1 (no division), 2, 4, 8 or 16 is used as the CPU clock. f1 with the same frequency of the fOCO-F clock divided by 1 is used as the peripheral function clocks.

When fC is supplied, fC and fC32 can be used as the peripheral function clocks. When fOCO-S is supplied, it can be used as the peripheral function clocks. fOCO40M and fOCO-F can be used as the peripheral function clocks.

9.3.1.4 125 kHz On-Chip Oscillator Mode

The fOCO-S clock divided by 1 (no division), 2, 4, 8 or 16 is used as the CPU clock. f1 with the same frequency of the fOCO-S clock divided by 1 is used as the peripheral function clocks.

When fC is supplied, fC and fC32 can be used as the peripheral function clocks. fOCO-S can be used as the peripheral function clocks. When fOCO40M and fOCO-F are supplied, they can be used as the peripheral function clocks.

9.3.1.5 125 kHz On-Chip Oscillator Low Power Mode

The main clock and fOCO-F are turned off after the MCU enters 125 kHz on-chip oscillator mode. The fOCO-S clock divided by 1 (no division), 2, 4, 8 or 16 is used as the CPU clock. f1 with the same frequency of the fOCO-S clock divided by 1 is used as the peripheral function clocks.

When fC is supplied, fC and fC32 can be used as the peripheral function clocks. fOCO-S can be used as the peripheral function clocks.

Low-Speed Mode 9.3.1.6

fC is used as the CPU clock.

When the CM21 bit is 0 and the CM11 bit is 0 (main clock), f1 with the same frequency of the main clock divided by 1 is used as the peripheral function clocks. When the CM21 bit is 0 and the CM11 bit is 1 (PLL clock), f1 with the same frequency of the PLL clock divided by 1 is used as the peripheral function clocks. When the CM21 bit is 1 (on-chip oscillator clock) and the FRA01 bit is 0 (125 kHz onchip oscillator clock), f1 with the same frequency of the fOCO-S clock divided by 1 is used as the peripheral function clocks. When the CM21 bit is 1 (on-chip oscillator clock) and the FRA01 bit is 1 (40 MHz on-chip oscillator clock), f1 with the same frequency of the fOCO-F clock divided by 1 is used as the peripheral function clocks.

fC and fC32 can be used as the peripheral function clocks. When fOCO-S is supplied, it can be used as the peripheral function clocks. When fOCO40M and fOCO-F are supplied, they can be used as the peripheral function clocks.

9.3.1.7 **Low Power Mode**

The main clock and fOCO-F are turned off after the MCU enters low speed mode. fC is used as the CPU clock. When the CM21 bit is 1 (on-chip oscillator clock) and the FRA01 bit is 0 (125 kHz on-chip oscillator clock), f1 with the same frequency of the fOCO-S clock divided by 1 is used as the peripheral function clocks.

fC and fC32 can be used as the peripheral function clocks. When fOCO-S is supplied, it can be used as the peripheral function clocks.

When this mode is selected, the CM06 bit in the CM0 register simultaneously becomes 1 (divide-by-8 mode). In low power mode, do not change the CM06 bit. Consequently, select the divide-by-8 mode when any clock (except the sub clock) is used for the next operation.

Table 9.2 **Clocks in Normal Operating Mode**

		Peripheral Clo	ocks		
Mode	CPU Clock	f1		fOCO-S	fOCO-F fOCO40M
High-speed	Main clock	Main clock divided by 1	Enabled	Enabled	Enabled
mode	divided by 1		(2)	(3)	(4)
	(1)				
Medium-speed	Main clock				
mode	divided by n				
	(1)				
PLL operating	PLL clock	PLL clock divided by 1			
mode	divided by n				
	(1)				
40 MHz on-	fOCO-F	fOCO-F divided by 1	Enabled		Enabled
chip oscillator	divided by n		(2)	(3)	
mode	(1)				
125 kHz on-	fOCO-S	fOCO-S divided by 1	Enabled	Enabled	
chip oscillator	divided by n		(2)		(4)
mode	(1)				
125 kHz on-	fOCO-S	fOCO-S divided by 1	Enabled	Enabled	Disabled
chip oscillator	divided by n		(2)		
low power	(1)				
mode					
Low-speed	fC	Any of the following:	Enabled	Enabled	Enabled
mode		Main clock divided by 1		(3)	(4)
		(when the CM21 is 0 and the CM11 is 0) (5)			
		PLL clock divided by 1			
		(when the CM21 is 0 and the CM11 is 1) (6)			
		fOCO-F divided by 1			
		(when the CM21 is 1 and the FRA01 is 1)			
		(4)			
		fOCO-S divided by 1			
		(when the CM21 is 0 and the FRA01 is 0)			
		(3)			
Low power	fC	fOCO-S divided by 1	Fnahled	Enabled	Disabled
mode		(when the CM21 is 1 and the FRA01 is 0)	LITADIGU	(3)	ษเวนมเธน
Inoue		(3)		(0)	
ON444 B'(: (1		(0)			

CM11 : Bit in the CM1 register CM21 : Bit in the CM2 register FRA01: Bit in the FRA0 register

Notes:

- 1. Select by using the CM06 bit in the CM0 register and bits CM17 to CM16 in the CM1 register.
- 2. When the fC is supplied.
- 3. When the fOCO-S is supplied.
- 4. When the fOCO40M and fOCO-F are supplied.
- 5. When the main clock is supplied.
- 6. When the PLL clock is supplied.

Table 9.3 **Clock Related Bit Setting and Modes**

Mode	CM2 Register	CM1 R	CM1 Register		CM0 Register		FRA0 Register	
Wode	CM21	CM14	CM11	CM07	CM05	CM04	FRA01	FRA00
High-speed mode,	0	_	0	0	0	_	_	_
medium-speed mode	U	_	U	U	O	_		_
PLL operating mode	0	-	1	0	0	-	-	-
40 MHz on-chip oscillator mode	1	-	0	0	-	-	1	1
125 kHz on-chip oscillator mode	1	0	0	0	0 (1)	-	0	1 (1)
125 kHz on-chip oscillator low power mode	1	0	0	0	1	-	0	0
Low-speed mode	-	-	0	1	0 (1)	1	-	1 (1)
Low power mode	-	-	0	1	1	1	-	0

Note:

Both or either the main clock and fOCO-F are oscillated 1.

Table 9.4 Selecting Clock Division Related Bits (1)

Division	CM1 Register	CM0 Register
Division	Bits CM17 to CM16	CM16 bit
Divide-by-1 (no division) (2)	00b	0
Divide-by-2	01b	0
Divide-by-4	10b	0
Divide-by-8	-	1
Divide-by-16	11b	0

Notes:

- 1. While in high-speed mode, medium-speed mode, PLL operating mode, 125 kHz on-chip oscillator mode, or 125 kHz on-chip oscillator low power mode.
- Select divide-by-1 (no division) in high-speed mode. 2.

Table 9.5 Example Settings for 40 MHz On-Chip Oscillator Mode Division Related Bits

Division	CPU Clock Frequency	CM1 Register	CM0 Register
Division	CFO Clock Flequency	Bits CM17 to CM16	CM06 bit
Divide-by-2	Approx. 20 MHz	00b (divide-by-1 (no division))	0
Divide-by-4	Approx. 10 MHz	01b (divide-by-2)	0
Divide-by-8	Approx. 5 MHz	10b (divide-by-4)	0
Divide-by-16	Approx. 2.5 MHz	-	1 (divide-by-8)
Divide-by-32	Approx. 1.25 MHz	11b (divide-by-16)	0

9.3.2 **Mode Transitions**

M16C/65 Group

Figure 9.1 shows Clock Mode Transition. Arrows indicate that mode transitions are enabled between modes.

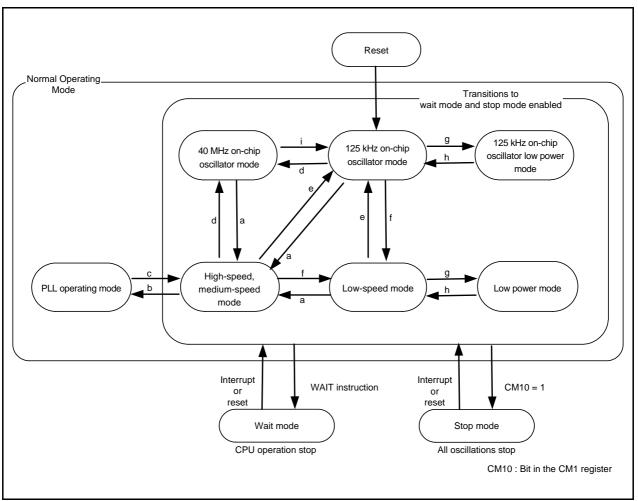


Figure 9.1 **Clock Mode Transition**

To start or stop clock oscillations, or to change modes in normal operating mode, follow the instructions below.

- Enter a mode after the clock for the mode entered stabilizes completely.
- To stop a clock, stop the clock for the mode exited after mode transition is completed. Do not stop the clock at the same time as mode transition.
- Execute mode transition according to the following procedures. To access registers and bits, see 9.2 "Registers". Letters a to h correspond to those in Figure 9.1 "Clock Mode Transition".
- For oscillation start and stop, see 8.3.1 "Main Clock" to 8.3.6 "Sub Clock (fC)".

- a.Entering high-speed mode or medium-speed mode from 40 MHz on-chip oscillator mode, 125 kHz on-chip oscillator mode, or low-speed mode
 - (1)Oscillate the main clock and wait until the oscillation stabilizes. See 8.3.1 "Main Clock".
 - (2) Set the CM06 bit to 1 (divide-by-8 mode).
 - (3)Set the CM11 bit to 0, the CM21 bit to 0, and the CM07 bit to 0 (main clock selected as CPU clock source).
- b.Entering PLL operating mode from high-speed mode or medium-speed mode
 - (1)Set a multiplying factor and reference frequency counter by using bits PLC05 to PLC04 and bits PLC02 to PLC00 in the PLC0 register.
 - (2) Specify wait for SFR accessing by the PM20 bit.
 - (3)Set the PLC07 bit to 1 (PLL on).
 - (4) Wait for tsu(PLL) until the PLL clock stabilizes.
 - (5)Set the CM11 bit to 1, the CM21 bit to 0, and the CM07 bit to 0 (PLL clock selected as CPU clock source).
- c.Entering high-speed mode or medium-speed mode from PLL operating mode
 - (1) Select a divide ratio by setting the CM06 bit and bits CM17 to CM16.
 - (2) Set the CM11 bit to 0, the CM21 bit to 0, and the CM07 bit to 0 (main clock selected as CPU clock source).
 - (3)Set the PLC07 bit to 0 (PLL off).
- d.Entering 40 MHz on-chip oscillator mode from high-speed mode, medium-speed mode, or 125 kHz on-chip oscillator mode
 - (1)Oscillate the 40 MHz on-chip oscillator and wait until the oscillation stabilizes. See 8.3.4 "fOCO-F".
 - (2) Set the CM06 bit to 1 (divide-by-8 mode).
 - (3) Set the FRA01 bit to 1 (40 MHz on-chip oscillator).
 - (4)Set the CM21 bit to 1 (on-chip oscillator clock selected as CPU clock source).
 - (5)Set the CM07 bit to 0 (main clock, PLL clock, or on-chip oscillator clock selected as CPU clock source).
- e.Entering 125 kHz on-chip oscillator mode from high-speed mode, medium-speed mode, or low-speed
 - (1)Oscillate the 125 kHz on-chip oscillator and wait until the oscillation stabilizes. See 8.3.5 "125 kHz On-Chip Oscillator Clock (fOCO-S)".
 - (2) Set the FRA01 bit to 0 (125 kHz on-chip oscillator).
 - (3)Set the CM21 bit to 1 (on-chip oscillator clock selected as CPU clock source).
 - (4)Set the CM07 bit to 0 (main clock, PLL clock, or on-chip oscillator clock selected as CPU clock source).
- f.Entering low-speed mode from high-speed mode, medium-speed mode, or 125 kHz on-chip oscillator mode
 - (1)Oscillate the sub clock and wait until the oscillation stabilizes. See 8.3.6 "Sub Clock (fC)".
 - (2) Set the CM07 bit to 1 (sub clock selected as CPU clock source).
- g.Entering 125 kHz on-chip oscillator low power mode from 125kHz on-chip oscillator mode Entering low power mode from low-speed mode
 - Follow both or either of the procedures below (in no particular order).
 - (1)Stop oscillating the main clock. See 8.3.1 "Main Clock"
 - (2)Stop oscillating the 40 MHz on-chip oscillator. See 8.3.4 "fOCO-F".

- h.Entering 125 kHz on-chip oscillator mode from 125 kHz on-chip oscillator low power mode Entering low-speed mode from low power mode
 - Follow both or either of the procedures below (in no particular order).
 - (1)Oscillate the main clock and wait until the oscillation stabilizes. See 8.3.1 "Main Clock".
 - (2)Oscillate the 40 MHz on-chip oscillator and wait until the oscillation stabilizes. See 8.3.4 "fOCO-F".
- i.Entering 125 kHz on-chip oscillator mode from 40 MHz on-chip oscillator mode
 - (1)Oscillate the 125 kHz on-chip oscillator and wait until the oscillation stabilizes. See 8.3.5 "125 kHz On-Chip Oscillator Clock (fOCO-S)".
 - (2) Set the CM06 bit to 1 (divide-by-8 mode).
 - (3) Set the FRA01 bit to 0 (125 kHz on-chip oscillator).
 - (4)Set the CM21 bit to 1 (on-chip oscillator clock selected as CPU clock source).
 - (5) Set the CM07 bit to 0 (main clock, PLL clock, or on-chip oscillator clock selected as CPU clock source).

M16C/65 Group

9.3.3 **Wait Mode**

In wait mode, the CPU clock, CPU, watchdog timer, and NMI/SD digital filter are turned off as they are operated by the CPU clock. However, if the CSPRO bit in the CSPR register is 1 (count source protection enabled), the watchdog timer remains active. Because the main clock, fOCO-F, fOCO-S, and fC do not stop, the peripheral functions using these clocks keep operating.

Peripheral Function Clock Stop Function 9.3.3.1

When the CM02 bit is 1 (peripheral function clock f1 turned off during wait mode), the f1 clock is turned off while in wait mode, and power consumption is reduced. However, all the peripheral clocks except f1 (i.e. fOCO-F, fOCO-S, fC, and fC32) do not stop.

9.3.3.2 **Entering Wait Mode**

The MCU enters wait mode by executing a WAIT instruction.

When the CM11 bit is 1 (PLL clock selected as CPU clock source), set the CM11 bit to 0 (main clock selected as CPU clock source) before entering wait mode. Chip power consumption can be reduced by setting the PLC07 bit to 0 (PLL off).

9.3.3.3 **Pin Status in Wait Mode**

Table 9.6 lists Pin Status in Wait Mode.

Table 9.6 **Pin Status in Wait Mode**

Pin		Memory Expansion Mode Microprocessor Mode	Single-Chip Mode
A0 to A19, D CS0 to CS3,		Retains the status just prior to entering wait mode	Cannot be used as a bus control pin
RD, WR, WF	RL, WRH	High	
HLDA, BCLK	(High	
ALE		Low	
I/O ports		Retains the status just prior to entering wait mode	Retains the status just prior to entering wait mode
CLKOUT	fC selected	Cannot be used as a CLKOUT	Does not stop
f1, f8, f32 selected		pin	Does not stop when the CM02 bit is 0. When the CM02 bit is 1, the status immediately prior to entering wait mode is maintained

9. Power Control M16C/65 Group

9.3.3.4 **Exiting Wait Mode**

The MCU exits wait mode by a reset or interrupt. Table 9.7 lists Resets and Interrupts to Exit Wait Mode and Conditions for Use.

The peripheral function interrupts are affected by the CM02 bit. When the CM02 bit is 0 (peripheral function clock f1 not turned off in wait mode), peripheral function interrupts can be used to exit wait mode. When the CM02 bit is 1 (peripheral function clock f1 turned off in wait mode), the peripheral functions using the peripheral function clock f1 stop operating, so that the peripheral functions activated by external signals and the peripheral function clocks except f1 (fOCO40M, fOCO-F, fOCO-S, fC, fC32) can be used to exit wait mode.

The fOCO-S is also used for the digital filter in the voltage detection circuit, so wait mode is exited when the digital filter is disabled or when the fOCO-S is supplied.

Resets and Interrupts to Exit Wait Mode and Conditions for Use Table 9.7

	Interrupt E	Poset	Conditions for Use			
	Interrupt, R	reset	CM02 = 0	CM02 = 1		
Interrupt	Peripheral	INT	Usable	Usable		
	function	Key input	Usable	Usable		
	interrupt	timer A, timer B	Usable in all modes	Usable when fOCO-F, fOCO-S or fC32 is supplied and is used as count source. Usable when counting external signals in event counter mode		
		Remote control signal receiver	Usable	Usable when fC is supplied and is used as count source. Usable when fOCO-F, fOCO-S, or fC32 is supplied and is used as count source for timer B1 or B2, and timer B1 or B2 underflow is used as count source for remote control signal receiver.		
		Serial interface	Usable in internal clock or external clock	Usable in external clock Usable when fOCO-F is supplied and is used as internal clock		
		Multi-master I ² C-bus interface	Both I ² C-bus interface and SCL/SDA are usable	SCL/SDA is usable		
		CEC function	Usable	Usable when fC is supplied and is used as count source.		
		A/D converter	Usable in one-shot mode or single sweep mode	Usable when fOCO40M is supplied and is used as fAD in one-shot mode or single sweep mode		
		Real-time clock	Usable when fC is supplied	and is used as count source		
	Voltage de Voltage de		Usable when the digital filter is disabled or fOCO-S is supplied			
	NMI		Usable when the digital filter is disabled (bits NMIDF2 to NMIDF0 in the NMIDF register are 000b)			
Reset	Hardware reset Usable					
	Voltage de	tection 0 reset, tection 1 reset, tection 2 reset				
	Watchdog	timer	Usable when count source protection mode is enabled (CSPRO = 1)			

When the MCU exits wait mode by hardware reset, voltage monitor 0 reset, voltage monitor 1 reset, voltage monitor 2 reset, watchdog timer reset, NMI interrupt, voltage monitor 1 interrupt, or voltage monitor 2 interrupt, set bits ILVL2 to ILVL0 in peripheral function interrupt to 000b (interrupt disabled) before executing the WAIT instruction.

When the MCU exits wait mode by peripheral function interrupts, make the following settings before executing a WAIT instruction:

- (1) Set the interrupt priority level of bits ILVL2 to ILVL0 in the interrupt control register for peripheral function interrupts which are used to exit wait mode.
 - Set bits ILVL2 to ILVL0 in all other interrupt control registers, for peripheral function interrupts not used to exit wait mode, to 000b (interrupt disabled).
- (2) Set the I flag to 1.
- (3) Start operating the peripheral functions used to exit wait mode.

When exiting wait mode by means of an interrupt, an interrupt routine is performed after an interrupt request is generated, and then the CPU clock is supplied again.

When the MCU exits wait mode by an interrupt, the CPU clock is the same CPU clock used while executing the WAIT instruction.

9.3.4 **Stop Mode**

In stop mode, all oscillator circuits, the CPU clock, and peripheral function clocks are turned off. Therefore, the CPU and the peripheral functions using these clocks stop operating. The least amount of power is consumed in this mode. If the voltage applied to pins VCC1 and VCC2 is VRAM or greater, the contents of internal RAM are retained. When applying 2.7 V or less to pins VCC1 and VCC2, make sure $VCC1 \ge VCC2 \ge VRAM$.

However, the peripheral functions activated by external signals keep operating.

9.3.4.1 **Entering Stop Mode**

The MCU enters stop mode by setting the CM10 bit in the CM1 register to 1 (all clocks turned off). At the same time, the CM06 bit in the CM0 register is set to 1 (divide-by-8 mode), and the CM15 bit in the CM1 register is set to 1 (main clock oscillator circuit drive capability high).

Before entering stop mode, set the CM20 bit to 0 (oscillation stop/re-oscillation detection function

Also, when the CM11 bit is 1 (PLL clock used as the CPU clock source), set the CM11 bit to 0 (main clock used as the CPU clock source), and then the PLC07 bit to 0 (PLL turned off) before entering stop mode.

9.3.4.2 **Pin Status in Stop Mode**

Table 9.8 lists Pin Status in Stop Mode.

Table 9.8 Pin Status in Stop Mode

Pin		Memory Expansion Mode Microprocessor Mode	Single-Chip Mode	
A0 to A19, D0 to D15, CS0 to CS3, BHE		Retains status just prior to stop mode	Cannot be used as bus control pin	
RD, WR, WRL, WRH		High		
HLDA, BCLK		High		
ALE		Undefined		
I/O ports		Retains status just prior to stop mode	Retains status just prior to stop mode	
CLKOUT	fC selected	Cannot be used as CLKOUT pin	High	
	f1, f8, f32 selected		Retains status just prior to stop mode	
XOUT		High		
XCIN, XCOUT		High-impedance		

9.3.4.3 **Exiting Stop Mode**

Use a reset or an interrupt to exit stop mode. Table 9.9 lists Resets and Interrupts to Exit Stop Mode and Conditions for Use.

Table 9.9 Resets and Interrupts to Exit Stop Mode and Conditions for Use

Interrupt, Reset		Reset	Conditions for Use
	Peripheral function interrupt	ĪNT	Usable
		Key input	Usable
		timer A, timer B	Usable when counting external signals in event counter mode
		Serial interface	Usable when an external clock is selected
		Multi-master I ² C-bus interface	SCL/SDA is usable
	Voltage detection 1 interrupt,		Usable when the digital filter is disabled (VW1C1 bit in the VW1C register is 1)
	Voltage detection 2 interrupt		Usable when the digital filter is disabled (VW2C1 bit in the VW2C register is 1)
	NMI		Usable when the digital filter is disabled (bits NMIDF2 to NMIDF0 in the NMIDF register are 000b)
Reset	Hardware reset		Usable
	Voltage detection 0 reset		Usable when the digital filter is disabled (VW0C1 bit in the VW0C register is 1)

To exit stop mode by using hardware reset, voltage monitor 0 reset, MMI interrupt, voltage monitor 1 interrupt, or voltage monitor 2 interrupt, set bits ILVL2 to ILVL0 in the interrupt control registers for the peripheral function interrupt to 000b (interrupt disabled) before setting the CM10 bit to 1.

To use a peripheral function interrupt to exit stop mode, set the CM10 bit to 1 after the following settings are completed.

- (1) Set the interrupt priority level of bits ILVL2 to ILVL0 in the interrupt control register for peripheral function interrupts which are used to exit stop mode.
 - Set bits ILVL2 to ILVL0 in all other interrupt control registers, for peripheral function interrupts not used to exit stop mode, to 000b (interrupt disabled).
- (2) Set the I flag to 1.
- (3) Start operating the peripheral functions used to exit stop mode.

When exiting stop mode by means of a peripheral function interrupt, an interrupt routine is performed after an interrupt request is generated and then the CPU clock is supplied again.

When stop mode is exited by means of an interrupt, the CPU clock source varies depending on the CPU clock source setting before the MCU had entered stop mode. Table 9.10 lists CPU Clock After Exiting Stop Mode.

CPU Clock After Exiting Stop Mode Table 9.10

Under development

CPU Clock Before Entering Stop Mode	CPU Clock After Exiting Stop Mode
Main clock divided by 1 (no division), 2, 4, 8 or 16	Main clock divided by 8
fOCO-S divided by 1 (no division), 2, 4, 8 or 16	fOCO-S divided by 8
fOCO-F divided by 1 (no division), 2, 4, 8 or 16	fOCO-F divided by 8
fC	fC

M16C/65 Group 9. Power Control

9.4 **Power Control in Flash Memory**

9.4.1 **Stopping Flash Memory**

When the flash memory is stopped, consumption current is reduced. Execute a program in any area other than the flash memory. Figure 9.2 shows Stop and Restart of the Flash Memory. Follow the flowchart of Figure 9.2.

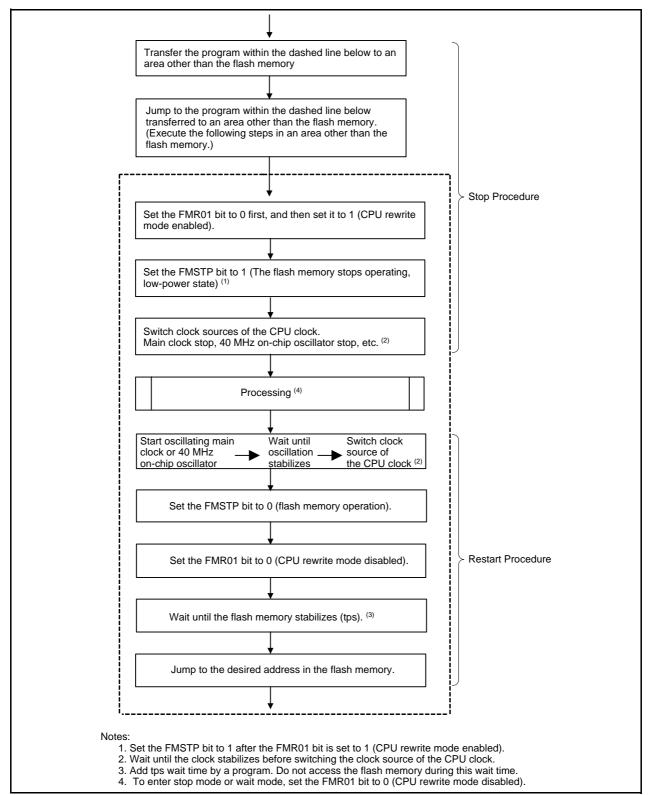
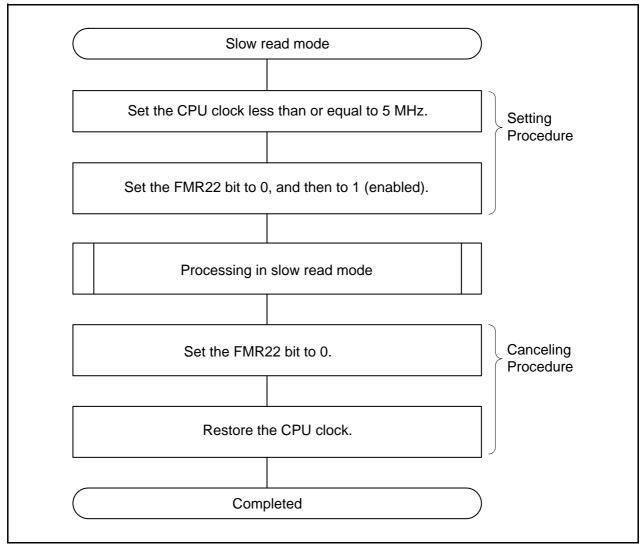


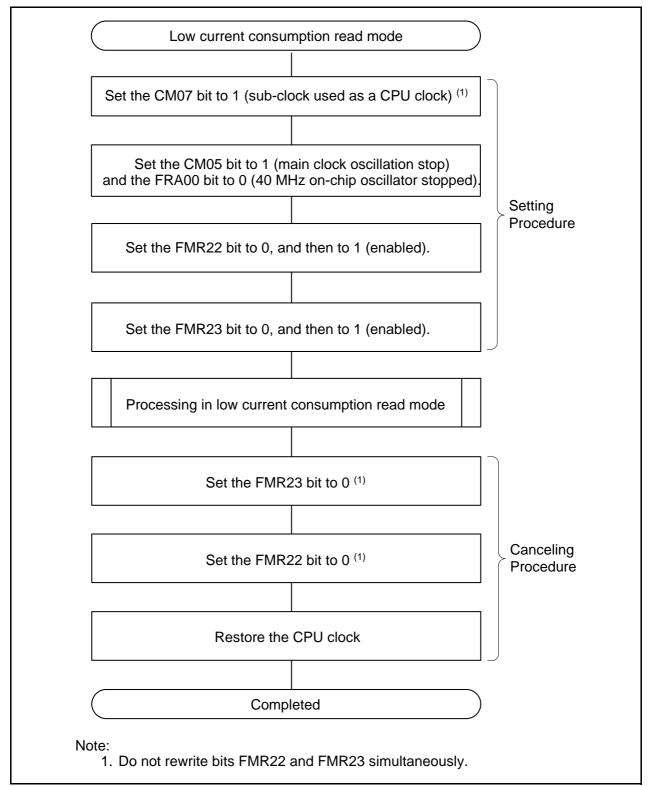
Figure 9.2 Stop and Restart of the Flash Memory

Consumption current while reading the flash memory can be reduced by using bits FMR22 and FMR23.

9.4.2.1 **Slow Read Mode**

Slow read mode can be used when f(BCLK) is 5 MHz or below. Figure 9.3 shows Setting and Canceling of Slow Read Mode.




Figure 9.3 **Setting and Canceling of Slow Read Mode**

9. Power Control M16C/65 Group

9.4.2.2 **Low Current Consumption Read Mode**

Under development

Low current consumption read mode can be used when the CM07 bit in the CM0 register is 1 (sub clock used as CPU clock). Figure 9.4 shows Setting and Canceling of Low Current Consumption Read Mode.

Setting and Canceling of Low Current Consumption Read Mode Figure 9.4

M16C/65 Group

9.5 **Reducing Power Consumption**

To reduce power consumption, refer to the following descriptions when designing a system or writing a program.

9.5.1 **Ports**

The MCU retains the state of each I/O port even when it enters wait mode or stop mode. A current flows in the active output ports. A shoot-through current flows to the input ports in the high-impedance state. When entering wait mode or stop mode, set unused ports to input and stabilize the potential.

9.5.2 A/D Converter

When not executing A/D conversion, set the ADSTBY bit in the ADCON1 register to 0 (A/D operation stop). When executing A/D conversion, start the A/D conversion after setting the ADSTBY bit to 1 (A/D operation enabled) and waiting 1 \$\phi AD\$ cycle or more.

9.5.3 D/A Converter

When not executing D/A conversion, set the DAiE bit (i = 0, 1) in the DACON register to 0 (output inhibited) and the DAi register to 00h.

9.5.4 **Stopping Peripheral Functions**

Use the CM02 bit in the CM0 register to stop the unnecessary peripheral functions while in wait mode.

9.5.5 Switching the Oscillation-Driving Capacity

Set the driving capacity to low when oscillation is stable.

9. Power Control M16C/65 Group

9.6 **Notes on Power Control**

9.6.1 **CPU Clock**

 When switching clock sources of the CPU clock, wait until the clock oscillation switched to is stabilized.

9.6.2 **Wait Mode**

 After the WAIT instruction, insert at least four NOP instructions. When entering wait mode, the instruction queue reads ahead the instructions following WAIT. Thus, depending on timing, some of the instructions may be executed before the MCU enters wait mode.

Program example when entering wait mode is shown below.

Program Example: **FSET** Τ

> WAIT ; Enter wait mode

NOP ; More than four NOP instructions

NOP NOP NOP

 Do not enter wait mode when the FMR23 bit in the FMR2 register is 1 (low current consumption read mode enabled). Set the FMR23 bit to 0 (low current consumption read mode disabled) and the FMR01 bit to 0 (CPU rewrite mode disabled), and disable DMA transfer before entering wait mode.

M16C/65 Group 9. Power Control

9.6.3 **Stop Mode**

- When exiting stop mode by hardware reset, drive the RESET pin low until main clock oscillation is stabilized.
- Set the MR0 bit in the TAiMR register (i = 0 to 4) to 0 (pulse not output) when using timer A to exit stop mode.
- When entering stop mode, insert a JMP.B instruction immediately after executing an instruction that sets the CM10 bit in the CM1 register to 1, and then insert at least four NOP instructions. When entering stop mode, the instruction queue reads ahead the instructions following the instruction which sets the CM10 bit to 1 (all clock stop). Thus, some of the instructions may be executed before the MCU enters stop mode or before the interrupt routine for returning from stop mode.

Program example when entering stop mode

Program Example: FSET

BSET 0, CM1; Enter stop mode

JMP.B L2 ; Insert a JMP.B instruction

L2:

NOP ; At least four NOP instructions

NOP NOP NOP

 The CLKOUT pin outputs a high-level signal in stop mode. Thus, if stop mode is entered right after output on the CLKOUT pin changes state from high to low, the high-level durations of the output signal to the CLKOUT pin becomes shorter.

 When the FMR23 bit in the FMR2 register is 1 (low current consumption read mode enabled), do not enter stop mode. To enter stop mode, execute an instruction to set the CM10 bit in the CM1 register to 1 (stop mode) after setting the FMR23 bit to 0 (low current consumption read mode disabled), setting the FMR01 bit to 0 (CPU rewrite mode disabled), and disabling DMA transfer.

9.6.4 **Low Current Consumption Read Mode**

- Enter low current consumption read mode through slow read mode (refer to Figure 9.4 "Setting and Canceling of Low Current Consumption Read Mode").
- When the FMR23 bit in the FMR2 register is 1 (low current consumption read mode enabled), do not set the FMSTP bit to 1 (flash memory stopped). Also, when the FMSTP bit is 1, do not set the FMR23 bit to 1.

M16C/65 Group

10. Processor Mode

Note •

Do not use memory expansion mode and microprocessor mode in the 80-pin package.

10.1 Introduction

Three processor modes are available to choose from: single-chip mode, memory expansion mode, and microprocessor mode. Table 10.1 shows the Features of Processor Modes.

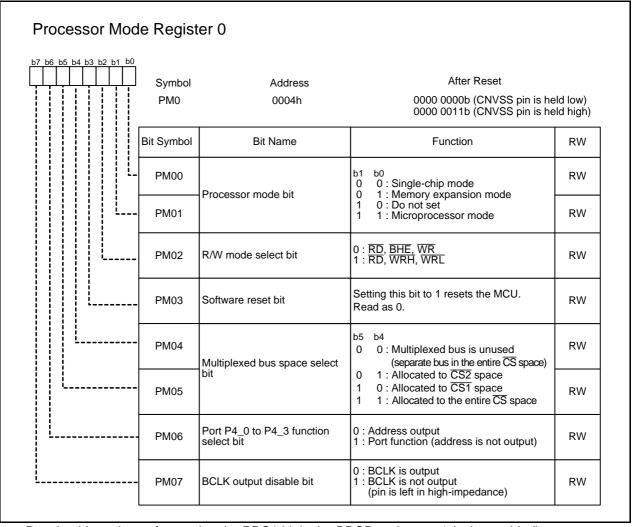
Table 10.1 Features of Processor Modes

Processor Mode	Access Space	Pins Assigned as I/O Ports
Single-chip mode		All pins are I/O ports or peripheral function I/O pins
Memory expansion mode	SFR, internal RAM, internal ROM, external area ⁽¹⁾	Some pins serve as bus control pins (1)
Microprocessor mode	SFR, internal RAM, external area (1)	Some pins serve as bus control pins (1)

Note:

1. Refer to 11. "Bus" for details.

Table 10.2 I/O Pins

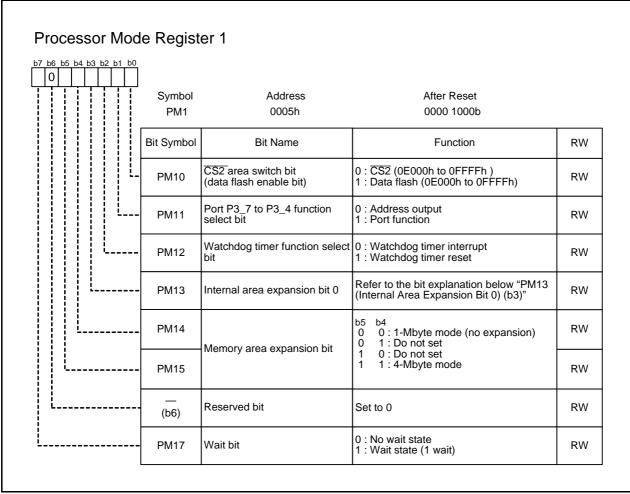

Pin Name	I/O Type	Function
CNVSS	Input	Selects a processor mode

10.2 Registers

Table 10.3 Register Structure

Address	Register Name	Symbol	After Reset
0004h	Processor Mode Register 0		0000 0000b (CNVSS pin is low) 0000 0011b (CNVSS pin is high)
0005h	Processor Mode Register 1	PM1	0000 1000b
0010h	Program 2 Area Control Register	PRG2C	XXXX XX00b

10.2.1 **Processor Mode Register 0 (PM0)**



Rewrite this register after setting the PRC1 bit in the PRCR register to 1 (write enabled). Bits PM01 to PM00 do not change at software reset, watchdog timer reset, oscillation stop detection reset, voltage monitor 1 reset, and voltage monitor 2 reset.

PM01 to PM00 (Processor Mode Bit) (b1 to b0)

Do not rewrite bits PM01 to PM00 and PM07 to PM02 at the same time.

10.2.2 **Processor Mode Register 1 (PM1)**

Rewrite this register after setting the PRC1 bit in the PRCR register to 1 (write enabled).

The PM12 bit is set to 1 by writing 1 by a program (writing 0 has no effect).

PM10 (CS2 Area Switch Bit (Data Flash Enable Bit)) (b0)

This bit is used to select the function of addresses 0E000h to 0FFFFh. Table 10.4 lists Data Flash (Addresses 0E000h to 0FFFFh).

Table 10.4 Data Flash (Addresses 0E000h to 0FFFFh)

PM10 bit in PM1 Register		0	1
Processor Mode Single-chip mode F		Reserved area	Data flash
Memory expansion mode		External area	Data flash
	Microprocessor mode E		Reserved area

Data flash includes block A (addresses 0E000h to 0EFFFh) and block B (addresses 0F000h to 0FFFFh). When data flash is selected by the setting of the PM10 bit, both block A and block B can be

The PM10 bit is automatically set to 1 while the FMR01 bit in the FMR0 register is set to 1 (CPU rewrite mode).

PM13 (Internal Area Expansion Bit 0) (b3)

This bit is used to select the range of the RAM, program ROM 1, and external area.

When the PM13 bit is 0, the size of the RAM and program ROM 1 is limited, but a wide range can be selected for the external area.

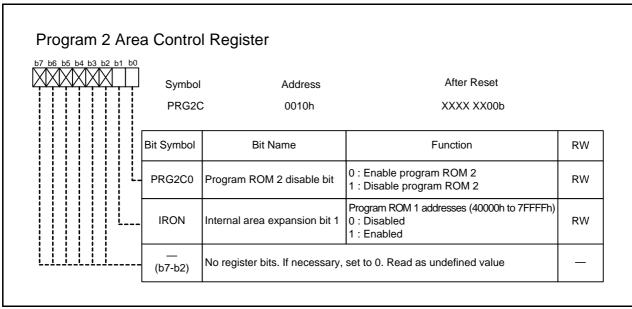
When the PM13 bit is 1, the entire RAM and the program ROM 1 in addresses 80000h to CFFFFh are available. Table 10.5 lists the Functions of Bits PM13 and IRON and Table 10.6 lists Functions of Addresses 80000h to CFFFFh.

Table 10.5 Functions of Bits PM13 and IRON

		Bit Setting			
	Access Area		PM13 = 0 PM13 = 1		1
			IRON = 0 (1)	IRON = 0	IRON = 1
Internal	Internal RAM		Addresses 00400h up to 03FFFh (15 Kbytes) are available (addresses 0400h to 0CFFFh cannot be used).	The entire area is usable.	The entire area is usable.
	Program ROM 1		Addresses D0000h up to FFFFFh (192 Kbytes) are available (addresses 40000h to CFFFFh cannot be used).	Addresses 80000h up to FFFFFh are available (addresses 40000h to 7FFFFh cannot be used).	The entire area is usable.
External	Memory expansion	04000h to 0CFFFh	Usable	Reserved	Reserved
	mode	40000h to 7FFFFh	Usable	Usable	Reserved
		80000 to CFFFFh	Usable	Reserved	Reserved
	Micro- processor	04000h to 0CFFFh	Usable	Reserved	Reserved
	mode 40000h to 7FFFFh		Usable	Usable	Usable
		80000 to CFFFFh	Usable	Usable	Usable

PM13: Bit in the PM1 register IRON: Bit in the PRG2C register Note:

1. When the PM13 bit is 0, set the IRON bit to 0.


Table 10.6 Functions of Addresses 80000h to CFFFFh

PM13 Bit in PM1 Register		0	1
Processor Mode	Single-chip mode	Reserved area	Program ROM 1 (when program ROM 1 exists)
Memory expansion mode		External area	if not, reserved area
	Microprocessor mode	External area	External area

The PM13 bit is automatically set to 1 while the FMR01 bit in the FMR0 register is set to 1 (CPU rewrite mode).

10.2.3 Program 2 Area Control Register (PRG2C)

Rewrite this register after setting the PRC6 bit in the PRCR register to 1 (write enabled).

PRG2C0 (Program ROM 2 Disable Bit) (b0)

This bit is used to select the function of addresses 10000h to 13FFFh. Table 10.7 lists Program ROM 2 (Addresses 10000h to 13FFFh).

Table 10.7 Program ROM 2 (Addresses 10000h to 13FFFh)

PRG2C0 b	oit in PRG2C Register	0	1
Processor Mode	Single-chip mode	Program ROM 2	Reserved area
Memory expansion mode		Program ROM 2	External area
	Microprocessor mode	Reserved area	External area

Program ROM 2 includes the on-chip debugger monitor area and user boot code area (refer to 30.7 "User Boot Function").

IRON (Internal Area Expansion Bit 1) (b1)

This bit enables the program ROM 1 (addresses 40000h to 7FFFFh) for products with the size of program ROM 1 over 512 Kbytes. Table 10.8 lists Functions of Addresses 40000h to 7FFFFh. Table 10.5 lists Functions of Bits PM13 and IRON.

Set the IRON bit to 0 when either of the following is true.

- The PM13 bit in the PM1 register is 0 (maximum of 192 Kbytes are available in program ROM 1).
- Bits PM15 and PM14 in the PM1 register are set to "11b" (4-Mbyte mode).

Table 10.8 Functions of Addresses 40000h to 7FFFFh

IRON Bit in PRG2C Register		0	1	
Processor Mode Single-chip mode Memory expansion mode			Program ROM 1(when program ROM 1 exi-	
		External area	if not, reserved area	
	Microprocessor mode	External area	External area	

M16C/65 Group 10. Processor Mode

10.3 **Operations**

10.3.1 **Processor Mode Settings**

Processor mode is set by using the CNVSS pin and bits PM01 to PM00 in the PM0 register. In hardware reset, power-on reset, or voltage monitor 0 reset, the processor mode is selected by the CNVSS pin input level. Table 10.9 lists Processor Mode after Hardware Reset, Power-On Reset, or Voltage Monitor 0 Reset.

Table 10.9 Processor Mode after Hardware Reset, Power-On Reset, or Voltage Monitor 0 Reset

CNVSS Pin Input Level	Processor Mode	Bits PM01 to PM00 in the PM0 Register	
VSS	Single-chip mode	00b (single-chip mode)	
VCC1	Microprocessor mode	11b (microprocessor mode)	

Rewriting bits PM01 to PM00 places the MCU in the mode corresponding to bits PM01 to PM00 regardless of whether the input level of the CNVSS pin is high or low. When VCC1 is applied to the CNVSS pin and then the MCU is reset by hardware reset, power-on reset, or voltage monitor 0 reset, the internal ROM cannot be accessed regardless of the value of bits PM01 to PM00. Table 10.10 lists Bits PM01 to PM00 Set Values and Processor Modes.

Do not rewrite these bits to enter microprocessor mode in the internal ROM, or to exit microprocessor mode in areas overlapping the internal ROM.

Table 10.10 Bits PM01 to PM00 Set Values and Processor Modes

Bits PM01 to PM00	Processor Mode
00b	Single-chip mode
01b	Memory expansion mode
10b	Do not set
11b	Microprocessor mode

Figure 10.1 shows Memory Map in Single-Chip Mode.

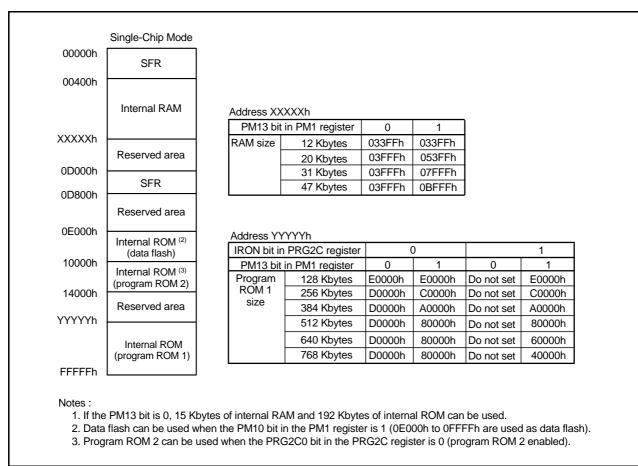


Figure 10.1 Memory Map in Single-Chip Mode

11. Bus

Note •

Do not use bus control pins for the 80-pin package.

11.1 Introduction

Two types of buses are available:

- Internal bus in the MCU
- External bus which is used to access to external devices in memory expansion mode or microprocessor mode

Table 11.1 Bus Specifications

Item	Specification
Internal bus	Used in all processor modes
	Separate bus
	• 16-bit data bus width
	0 to 2 software waits can be inserted
External bus	Used in memory expansion mode or microprocessor mode
	Separate bus or multiplexed bus selectable
	Data bus width selectable (8 or 16 bits)
	Number of address buses selectable (12, 16, or 20 buses)
	• 4 chip select outputs CS0 to CS3
	• Combinations of read and write signals selectable (RD, BHE, WR or RD, WRL, WRH)
	• RDY available
	HOLD, HDLA available
	0 to 8 software waits can be inserted
	Memory area expansion function (up to 4 Mbytes) (Refer to 12. "Memory Space
	Expansion Function")
	•3 V or 5 V interface

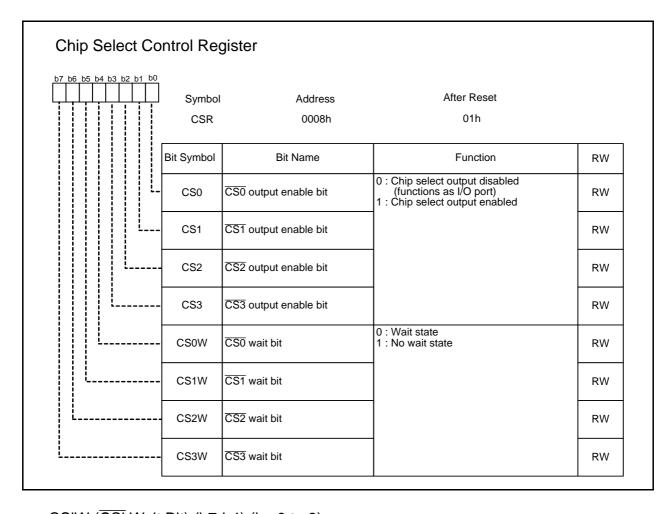

Registers 11.2

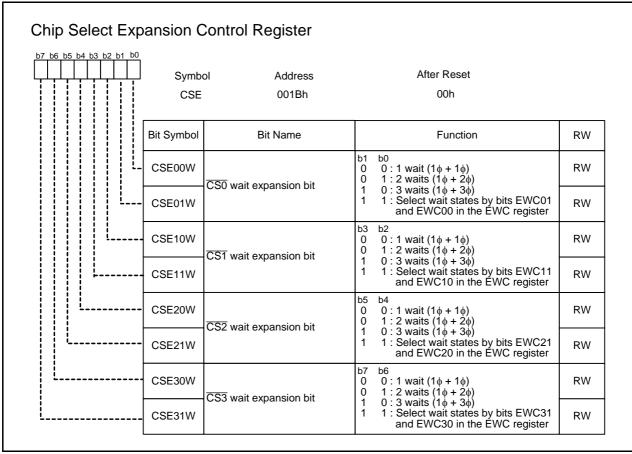
Table 11.2 lists bus related registers. Refer to 10. "Processor Mode" for registers PM1 and PM2. Refer to 30. "Flash Memory" for the FMR1 register.

Table 11.2 Register Structure

Address	Register Name	Register Symbol	After Reset
0005h	Processor Mode Register 1	PM1	0000 1000b
0008h	Chip Select Control Register	CSR	01h
0009h	External Area Recovery Cycle Control Register	EWR	XXXX XX00b
0011h	External Area Wait Control Expansion Register	EWC	00h
001Bh	Chip Select Expansion Control Register	CSE	00h
001Eh	Processor Mode Register 2	PM2	XX00 0X01b
0221h	Flash Memory Control Register 1	FMR1	00X0 XX0Xb

11.2.1 **Chip Select Control Register (CSR)**

CSiW ($\overline{\text{CSi}}$ Wait Bit) (b7-b4) (i = 0 to 3)

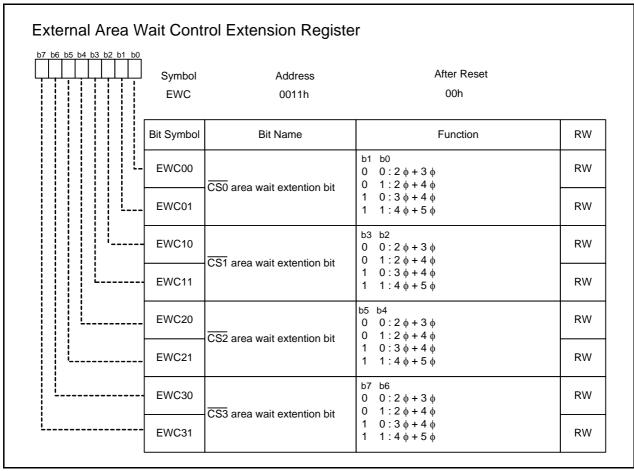

Set the CSiW bit to 0 (wait state) under the following conditions:

- The RDY signal is used in the area indicated by CSi.
- Multiplexed bus is used in the area indicated by CSi.
- The PM17 bit in the PM1 register is 1 (wait state).

When the CSiW bit is 0 (wait state), the number of wait states can be selected using bits CSEi1W to CSEi0W in the CSE register.

Under development

11.2.2 **Chip Select Expansion Control Register (CSE)**

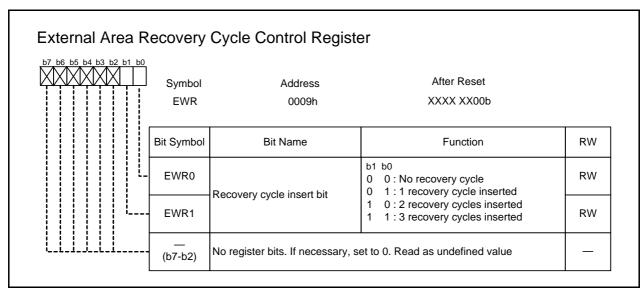


Set the CSiW bit (i = 0 to 3) in the CSR register to 0 (wait state) before writing to bits CSEi1W to CSEi0W. To set the CSiW bit to 1 (no wait state), set bits CSEi1W to CSEi0W to 00b first, and then set the CSiW bit to 1.

Do not set bits CSEi1W and CSEi0W to 11b for a multiplexed bus area.

M16C/65 Group

11.2.3 **External Area Wait Control Expansion Register (EWC)**



This register can be used as a separate bus area. When bits CSEi1W and CSEi0W in the CSE register are 11b (select wait states by bits EWCi1 to EWCi0), bits EWCi1 to EWCi0 are enabled. (i = 0 to 3) The number of cycles is as follows.

Example: $2\phi + 3\phi$

The number of cycles between the falling edge and the rising edge of the \overline{RD} or \overline{WR} signal The number of cycles between bus access start and the falling edge of the RD or WR signal

External Area Recovery Cycle Control Register (EWR) 11.2.4

The EWR register is enabled when bits CSEi1W to CSEi0W in the CSE register is 11b.

11.3 **Operations**

11.3.1 **Common Specifications of Internal Bus and External Bus**

11.3.1.1 **Reference Clock**

Both the internal and external buses operate based on the BCLK. However, the area accessed and wait states affect bus operation. Refer to 11.3.2.1 "Software Wait States of the Internal Bus" and 11.3.5.10 "Software Wait States" for details.

11.3.1.2 **Bus Hold**

Both the internal and external buses are in a hold state under the following conditions:

- Rewriting the flash memory in EW1 mode while auto-programming or auto-erasing
- Inputting a low-level signal to the HOLD pin in memory expansion mode or microprocessor mode

When the bus is in hold state, the following occur:

- CPU is stopped
- DMAC is stopped
- Watchdog timer is stopped when the CSPRO bit in the CSPR register is 0 (count source protection mode disabled)

Bus use priority is given to bus hold, DMAC, and CPU in descending order. However, if the CPU is accessing an odd address in word units, the DMAC cannot gain control of the bus between two separate accesses.

Bus Hold > DMAC > CPU

Figure 11.1 **Bus Use Priority**

11.3.2 **Internal Bus**

The internal bus is used to access the internal area in the MCU.

Software Wait States of the Internal Bus 11.3.2.1

The PM17 bit in the PM1 register, which is a software-wait-related bit, affects both the internal memory and the external area. Table 11.3 lists Bits and Bus Cycles Related to Software Wait States (SFR and Internal Memory).

The data flash of the internal ROM is affected by both the PM17 bit in the PM1 register and the FMR17 bit in the FMR1 register.

Bits and Bus Cycles Related to Software Wait States (SFR and Internal Memory) **Table 11.3**

		Setting of	Software-Wait-Re	Software		
Area		PM2 Register	FMR1 Register	PM1 Register	Wait	Bus cycle
		PM20 Bit ⁽¹⁾	FMR17 Bit	PM17 Bit	States	
SFR		1	0 or 1	0 or 1	1	2 BCLK cycles (2)
		0	0 or 1	0 or 1	2	3 BCLK cycles
Internal		0 or 1	0 or 1	0	None	1 BCLK cycle (2)
RAM				1	1	2 BCLK cycles
Internal	Program ROM 1		0 or 1	0	None	1 BCLK cycle (2)
ROM	Program ROM 2			1	1	2 BCLK cycles
	Data flash	0 or 1	0	0 or 1	1	2 BCLK cycles (2)
			1	0	None	1 BCLK cycle
				1	1	2 BCLK cycle

Notes:

- The PM20 bit is valid when the PLC07 bit in the PLC0 register is set to 1 (PLL operation). 1.
- 2. Status after reset.

11.3.3 **External Bus**

The external bus is used to access external devices in memory expansion mode or microprocessor mode.

In memory expansion or microprocessor mode, some pins serve as the bus control pins to perform data input to and output from external devices. The bus control pins are as follows: A0 to A19, D0 to D15, CS0 to CS3, RD, WRL /WR, WRH / BHE, ALE, RDY, HOLD, HLDA, and BCLK.

11.3.4 **External Bus Mode**

Multiplexed bus mode or separate bus mode can be selected using bits PM05 to PM04 in the PM0 register. Table 11.4 shows the Difference between Separate Bus and Multiplexed Bus Modes.

11.3.4.1 Separate Bus

In external bus mode, data and address are separate.

11.3.4.2 Multiplexed Bus

In external bus mode, data and address are multiplexed.

- When input level to the BYTE pin is high (8-bit data bus) D0 to D7 and A0 to A7 are multiplexed.
- When input level to the BYTE pin is low (16-bit data bus) D0 to D7 and A1 to A8 are multiplexed. D8 to D15 are not multiplexed (do not use these pins). External devices connected to a multiplexed bus are assigned only even addresses of the MCU.

Table 11.4 Difference between Separate Bus and Multiplexed Bus Modes

Pin Name (1)	Separate Bus	Multiplexed Bus		
Fill Name (1)	Separate bus	BYTE = high	BYTE = low	
P0_0 to P0_7/D0 to D7	D0 to D7	(Note 2)	(Note 2)	
P1_0 to P1_7/D8 to D15		I/O port P1_0 to P1_7	(Note 2)	
P2_0/A0 (/ D0 / -)	X A0 X	X A0 X D0 X	X A0 X	
P2_1 to P2_7/A1 to A7 (/ D1 to D7 / D0 to D6)	X A1 to A7	XA1 to A7 D1 to D7	<u>A1 to A7</u> <u>D0 to D6</u>	
P3_0/A8 (/ - / D7)	X A8 X	X A8	A8 D7	

Notes:

- 1. See Table 11.9 "Pin Functions for Each Processor Mode", for bus control signals other than the
- 2. Depends on the setting of PM05 and PM04, and area being accessed. See Table 11.9 "Pin Functions for Each Processor Mode", for details.

11.3.5 **External Bus Control**

The following describes the signals needed for accessing external devices and the functionality of software wait states.

11.3.5.1 Address Bus

The address bus consists of 20 lines: A0 to A19. The address bus width can be set to 12, 16, or 20 bits using the PM06 bit in the PM0 register, and the PM11 bit in the PM1 register. Table 11.5 lists the Set Value of Bits PM06 and PM11 and the Corresponding Address Bus Widths.

Table 11.5 Set Value of Bits PM06 and PM11 and the Corresponding Address Bus Widths

Bit Set Value (1)	Pin Function	Address Bus Width
PM11 = 1	P3_4 to P3_7	12 bits
PM06 = 1	P4_0 to P4_3	
PM11 = 0	A12 to A15	16 bits
PM06 = 1	P4_0 to P4_3	
PM11 = 0	A12 to A15	20 bits
PM06 = 0	A16 to A19	

Note:

1. Only the values listed above can be set.

When the processor mode is changed from single-chip mode to memory expansion mode, the address bus is undefined until an external area is accessed.

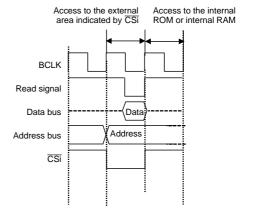
11.3.5.2 **Data Bus**

When input to the BYTE pin is high (8-bit width), eight lines (D0 to D7) comprise the data bus. When input to the BYTE pin is low (16-bit width), 16 lines (D0 to D15) comprise the data bus. Do not change the input level to the BYTE pin.

11.3.5.3 Chip Select Signal

The chip select signals (hereafter referred to as \overline{CS}) are output from the \overline{CSi} (i = 0 to 3) pin. These pins can be set to function as I/O ports or as $\overline{\text{CS}}$ using the $\overline{\text{CSi}}$ bit in the CSR register.

In 1-Mbyte mode, the external area can be separated into a maximum of four spaces by the CSi signal. In 4-Mbyte mode, a \overline{CSi} signal or bank number is output from the \overline{CSi} pin. Refer to 12. "Memory Space Expansion Function". Figure 11.2 shows Examples of Address Bus and CSi Signal Output in 1-Mbyte Mode.


Accessing the external area indicated by $\overline{\text{CSj}}$ in the next cycle after accessing the external area indicated by $\overline{\text{CSi}}$.

The address bus and chip select signal both change state between these

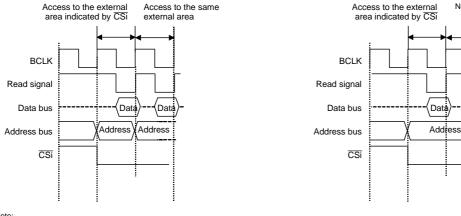
Access to the external area indicated by CSi Access to the external area indicated by $\overline{\text{CSj}}$ BCLK Read signal Data bus (Data ⟨Data Address bus Address Address CSi CSi

Accessing the internal ROM or internal RAM in the next cycle after accessing the external area indicated by CSi.

The chip select signal changes state but the address bus does not change

Example 3

Accessing the external area indicated by $\overline{\text{CSi}}$ in the next cycle after accessing the external area indicated by the same $\overline{\text{CSi}}$.


The address bus changes state but the chip select signal does not change

Example 4

Not accessing any area (no instruction prefetch generated) in the next cycle after accessing the external area indicated by $\overline{\text{CSi.}}$

Neither the address bus nor the chip select signal changes state between these

No access

1. These examples show the address bus and chip select signal when accessing areas in two successive cycles. The chip select bus cycle may be extended to more than two cycles depending on the combination of these examples.

Shown above is the case where separate bus is selected and the area is accessed for read without wait states. i = 0 to 3, j = 0 to 3 (not including i, however)

Figure 11.2 Examples of Address Bus and CSi Signal Output in 1-Mbyte Mode

11.3.5.4 **Read and Write Signals**

When the data bus is 16 bits wide, the read and write signals can be selected based on combinations of RD, BHE, and WR, or combinations of RD, WRL, and WRH using the PM02 bit in the PM0 register. When the data bus is 8 bits wide, use combinations of \overline{RD} , \overline{WR} , and \overline{BHE} .

Table 11.6 shows Operation of the RD, WRL and WRH Signals. Table 11.7 shows Operation of the RD, WR and BHE Signals.

Operation of the RD, WRL and WRH Signals **Table 11.6**

Data Bus Width	RD	WRL	WRH	Status of External Data Bus
16-bit	L	Н	Н	Read data
(BYTE pin input = low)	Н	L	Н	Write 1 byte of data to an even address
Н		Н	L	Write 1 byte of data to an odd address
	Н	L	L	Write data to both even and odd addresses

Operation of the RD, WR and BHE Signals **Table 11.7**

Data Bus Width	RD	WR	BHE	A0	Status of External Data Bus
16-bit	Н	L	L	Н	Write 1 byte of data to an odd address.
(BYTE pin	L	Н	L	Н	Read 1 byte of data from an odd address.
input = low)	Н	L	Н	L	Write 1 byte of data to an even address.
	L	Н	Н	L	Read 1 byte of data from an even address.
	Н	L	L	L	Write data to both even and odd addresses.
	L	Н	L	L	Read data from both even and odd addresses.
8-bit (BYTE pin	Н	L	_ (1)	H or L	Write 1 byte of data.
input = high)	L	Н	_ (1)	H or L	Read 1 byte of data.

Note:

11.3.5.5 **ALE Signal**

The ALE signal is used to latch the address when a multiplexed bus space is accessed. Latch the address at the falling edge of the ALE signal.

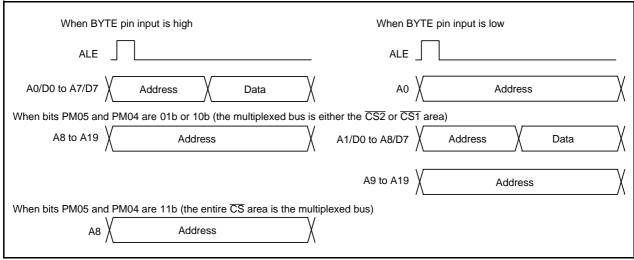


Figure 11.3 ALE Signal, Address Bus, and Data Bus

Do not use. 1.

11.3.5.6 **RDY** Signal

This signal is provided for accessing external devices which need to be accessed at low speed. If input to the RDY pin is low at the last falling edge of BCLK in the bus cycle, one wait state is inserted in the bus cycle. While in wait state, the following signals retain the state in which they were when the RDY signal was acknowledged:

A0 to A19, D0 to D15, CS0 to CS3, RD, WRL, WRH, WR, BHE, ALE, HLDA

Then, when input to the RDY pin is detected high at the falling edge of BCLK, the remaining bus cycle is executed. Figure 11.4 shows Examples in Which Wait State Was Inserted into Read Cycle by RDY Signal. To use the RDY signal, set the corresponding bit (among bits CS3W to CS0W) in the CSR register to 0 (with wait state). When not using the \overline{RDY} signal, pull-up the \overline{RDY} pin.

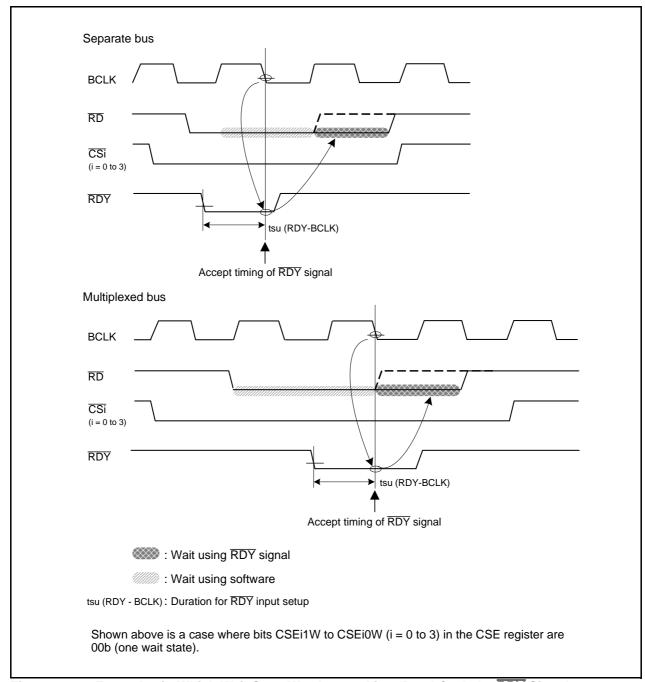


Figure 11.4 Examples in Which Wait State Was Inserted into Read Cycle by RDY Signal

11.3.5.7 **HOLD** Signal

This signal is used to transfer control of the bus from the CPU or DMAC to an external circuit. When input to the HOLD pin is pulled low, the bus is placed in a hold state after the current bus access is completed. While the HOLD pin is held low, the bus remains in a hold state. When the bus is in a hold state, the HLDA pin outputs a low-level signal.

Table 11.8 shows the Pin Status in Hold State Caused by the HOLD Input.

Table 11.8 Pin Status in Hold State Caused by the HOLD Input

	Item	Status		
BCLK		Output		
A0 to A19, D0 to D15 WR, BHE	, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{RD}}$, $\overline{\text{WRL}}$, $\overline{\text{WRH}}$,	High-impedance		
I/O ports	P0, P1, P3, P4 ⁽¹⁾	High-impedance		
	P6 to P14	Maintains status when HOLD signal is received		
HLDA		Low-level output		
ALE		Undefined		

Note:

1. When I/O port function is selected.

11.3.5.8 **BCLK Output**

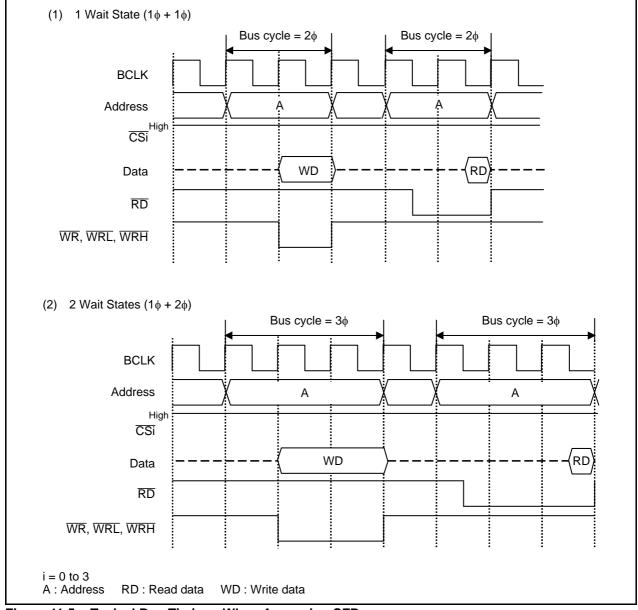
When the PM07 bit in the PM0 register is set to 0 (output enabled), a clock with the same frequency as the CPU clock is output as BCLK from the BCLK pin. Refer to 8.4 "CPU Clock and Peripheral Function Clocks".

Table 11.9 Pin Functions for Each Processor Mode

Data bus width BYTE Pin P0_0 to P0_7 P1_0 to P1_7 P2_0 P2_1 to P2_7 P3_0 P3_1 to P3_3	M04 M11 = 0	8 bits High D0 to D7 I/O ports A0 A1 to A7	16 bits Low D0 to D7 D8 to D15 A0 A1 to A7	the others are for 10b (CS1 is for a	multiplexed bus and or separate bus) multiplexed bus and or separate bus) 16 bits Low D0 to D7 (6) D8 to D15(6) A0	Expansion Mode 11b (the entire space of CS is for multiplexed bus) (1), (2), (3) 8 bits High I/O ports I/O ports		
BYTE Pin P0_0 to P0_7 P1_0 to P1_7 P2_0 P2_1 to P2_7 P3_0 P3_1 to P3_3	M11 - 0	High D0 to D7 I/O ports A0 A1 to A7	D0 to D7 D8 to D15 A0	High D0 to D7 ⁽⁶⁾ I/O ports A0/D0 ⁽⁴⁾	D0 to D7 ⁽⁶⁾ D8 to D15 ⁽⁶⁾	High I/O ports		
P1_0 to P1_7 P2_0 P2_1 to P2_7 P3_0 P3_1 to P3_3	M11 - 0	I/O ports A0 A1 to A7	D8 to D15 A0	I/O ports A0/D0 ⁽⁴⁾	D8 to D15 ⁽⁶⁾	·		
P2_0 P2_1 to P2_7 P3_0 P3_1 to P3_3	M11 - 0	A0 A1 to A7	A0	A0/D0 (4)	+	I/O ports		
P2_1 to P2_7 P3_0 P3_1 to P3_3	M11 - 0	A1 to A7			۸٥			
P3_0 P3_1 to P3_3	M11 - 0		A1 to A7	A1 to A7	AU	A0/D0		
P3_1 to P3_3	M11 - 0	A8		/D1 to D7 ⁽⁴⁾	A1 to A7 /D0 to D6 ⁽⁴⁾	A1 to A7 /D1 to D7		
	M11 – 0		A8	A8	A8/D7 ⁽⁴⁾	A8		
	M11 - 0	A9 to A11	1	•		I/O ports		
P3_4 to PN	IVI I — U	A12 to A15				I/O ports		
P3_7 PN	M11 = 1	I/O ports						
	M06 = 0	A16 to A19	I/O ports					
P4_3 PN	M06 = 1	I/O ports						
P4_4 CS	S0 = 0	I/O ports						
CS	S0 = 1	CS0						
P4_5 CS	S1 = 0	I/O ports						
CS	S1 = 1	CS1						
P4_6 CS	S2 = 0	I/O ports						
CS	S2 = 1	CS2						
P4_7 CS	S3 = 0	I/O ports						
CS	S3 = 1	CS3						
P5_0 PN	M02 = 0	WR	T			·		
PN	M02 = 1	_ (5)	WRL	_ (5)	WRL	_ (5)		
P5_1 PN	M02 = 0	BHE						
PN	M02 = 1	_ (5)	WRH	_ (5)	WRH	_ (5)		
P5_2		RD						
P5_3		BCLK						
P5_4		HLDA						
P5_5		HOLD						
P5_6		ALE						
P5_7		RDY						

I/O port: Functions as I/O ports or peripheral function I/O pins.

Notes:


- When bits PM01 to PM00 are 01b (memory expansion mode), and bits PM05 to PM04 are set to 11b 1. (multiplexed bus assigned to the entire $\overline{\text{CS}}$ space), apply a high-level signal to the BYTE pin (external data bus 8 bits wide).
- 2. While the CNVSS pin is driven high (= VCC1), do not set bits PM05 to PM04 to 11b.
- 3. When bits PM05 to PM04 are set to 11b in memory expansion mode, P3_1 to P3_7 and P4_0 to P4_3 become I/O ports, in which case the accessible area for each CS is 256 bytes.
- 4. In separate bus mode, these pins serve as the address bus.
- When the data bus is 8 bits wide, set the PM02 bit to 0 (\overline{RD} , \overline{BHE} , \overline{WR}).
- When accessing an area using a multiplexed bus, these pins output an undefined value while writing.

11.3.5.9 **External Bus Status When Internal Area is Accessed**

Table 11.10 lists the External Bus Status When an Internal Area is Accessed. Figure 11.5 shows the Typical Bus Timings When Accessing SFRs.

Table 11.10 External Bus Status When an Internal Area is Accessed

	Item	SFR Accessed	Internal ROM or RAM Accessed	
A0 to A19		Address output	Maintain the last accessed address of external area or SFR	
D0 to D15	Read	High-impedance	High-impedance	
	Write	Data output	Undefined	
RD, WR, W	RL, WRH	RD, WR, WRL, WRH output	High-level output	
BHE		BHE output	Maintain the last accessed status of external area or SFRs	
CS0 to CS3		High-level output	High-level output	
ALE		Low-level output	Low-level output	

Typical Bus Timings When Accessing SFRs

11.3.5.10 Software Wait States

The PM17 bit in the PM1 register, which is a software-wait-related bit, affects both the internal memory and the external area.

Software wait states can be inserted to the external area by setting the PM17 bit or setting the CSiW bit in the CSR register or bits CSEi1W to CSEi0W in the CSE register for each \overline{CSi} (i = 0 to 3). To use the RDY signal, set the corresponding CSiW bit to 0 (wait state). Refer to Table 11.11 "Bits and Bus Cycles Related to Software Wait States (External Area)", for details.

Bits and Bus Cycles Related to Software Wait States (External Area)

Area	Bus Mode	Settin	g of Softwai	re-Wait-Rela	ated Bits	Software	Bus Cycles
		PM17	CSiW	CSEi1W,	EWCi1,	Wait	
				CSEi0W	EWCi0	Cycles	
External	Separate	0	1	00b	-	None	1 BCLK cycle
area	bus						(read)
							2 BCLK cycles
							(write)
		-	0	00b	-	$1 (1\phi + 1\phi)$	2 BCLK cycles (4)
		-	0	01b	-	$2(1\phi + 2\phi)$	3 BCLK cycles
		-	0	10b	-	$3(1\phi + 3\phi)$	4 BCLK cycles
		-	0	11b	00b	$(2\phi + 3\phi)$	5 BCLK cycles
					01b	$(2\phi + 4\phi)$	6 BCLK cycles
					10b	$(3\phi + 4\phi)$	7 BCLK cycles
					11b	$(4\phi + 5\phi)$	9 BCLK cycles
		1	0 (3)	00b	-	$1 (1\phi + 1\phi)$	2 BCLK cycles
	Multiplexed	-	0 (2)	00b	-	1	3 BCLK cycles
	bus	-	0 (2)	01b	-	2	3 BCLK cycles
		-	0 (2)	10b	-	3	4 BCLK cycles
		1	0 (2), (3)	00b	-	1	3 BCLK cycles

i = 0 to 3

- indicates that either 0 or 1 can be set.

PM17: Bit in the PM1 register CSiW: Bits in the CSR register (1)

CSEi1W, CSEi0W: Bits in the CSE register EWCi1, EWCi0: Bits in the EWC register

Notes:

- 1. To use the RDY signal, set the CSiW bit to 0 (wait state).
- 2. To access in multiplexed bus mode, set the CSiW bit to 0 (wait state).
- 3. To access an external area when the PM17 bit is 1, set the CSiW bit to 0 (wait state).
- 4. After reset, the PM17 bit is set to 0 (no wait state), bits CS0W to CS3W are set to 0 (wait state), and the CSE register is set to 00h (one wait state for CS0 to CS3). Therefore, all external areas are accessed with one wait state.

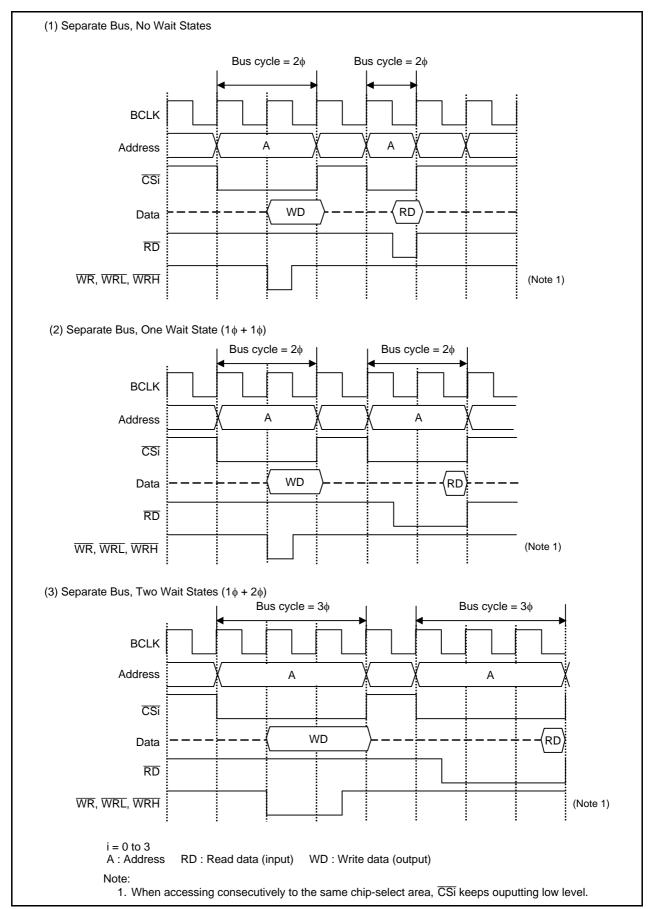
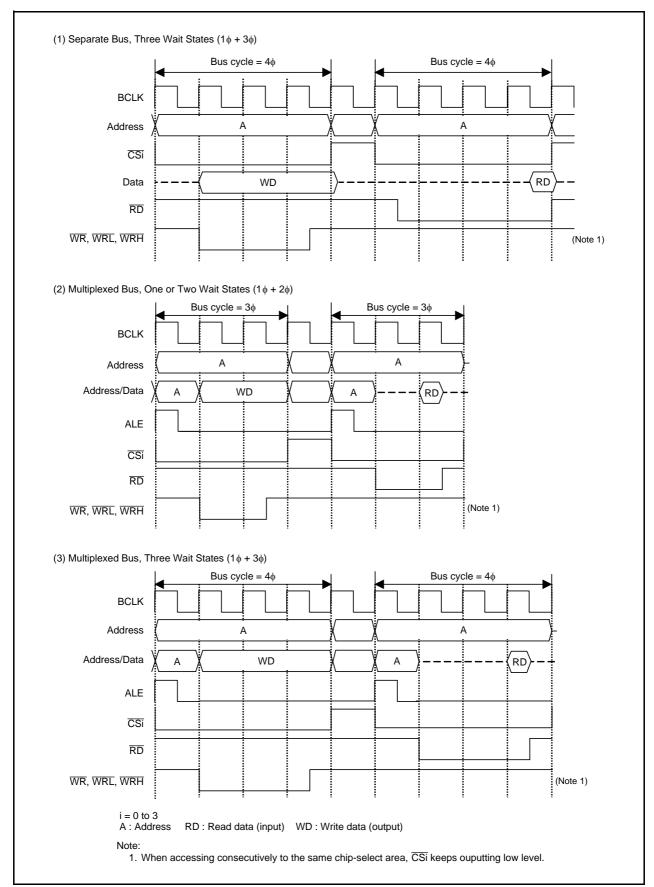



Figure 11.6 Typical Bus Timings Using Software Wait States (1/4)

Typical Bus Timings Using Software Wait States (2/4) Figure 11.7

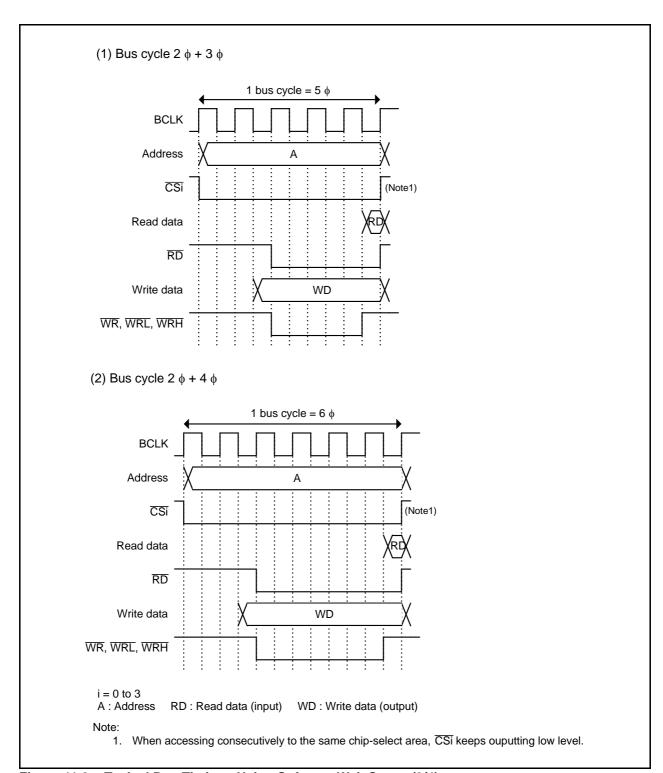


Figure 11.8 Typical Bus Timings Using Software Wait States (3/4)

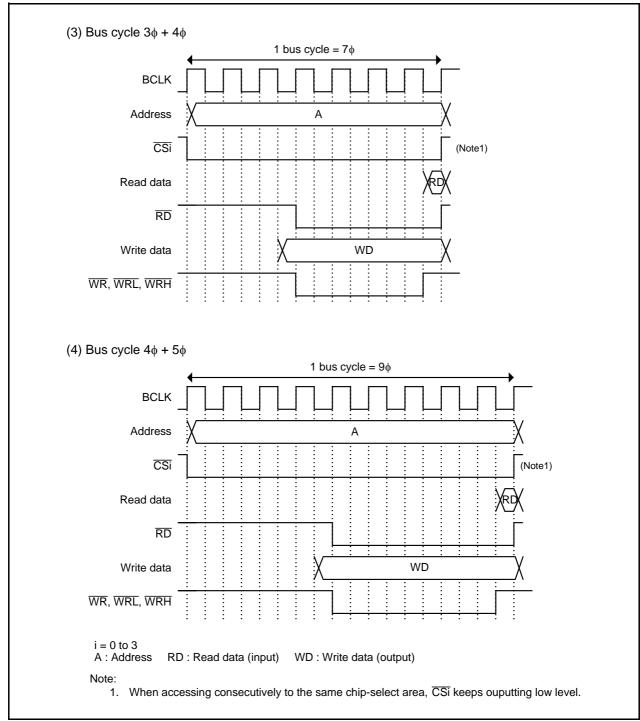


Figure 11.9 Typical Bus Timings Using Software Wait States (4/4)

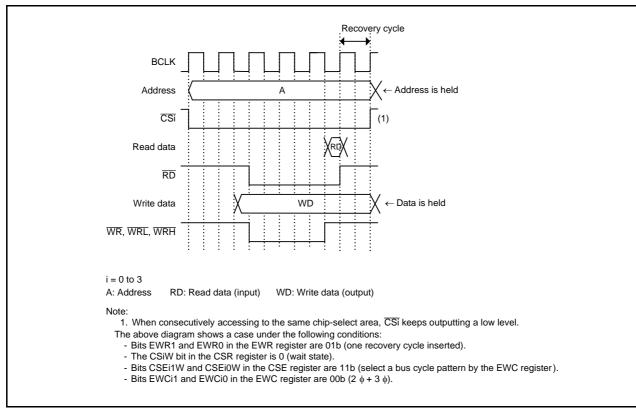


Figure 11.10 Recovery Cycle

11.4 **Notes on Bus**

11.4.1 Reading Data Flash

When 2.7 V \leq VCC1 \leq 3.0 V and f(BCLK) \geq 16 MHz, or when 3.0 V < VCC1 \leq 5.5 V and f(BCLK) \geq 20 MHz, one wait state is necessary to read data flash. Use the PM17 bit or the FMR17 bit to specify one wait state.

11.4.2 **External Bus**

When a hardware reset, power-on reset or voltage monitor 0 reset is performed with a high-level input on the CNVSS pin, contents of internal ROM cannot be read.

External Access Soon After Writing to the SFRs

When writing to the SFRs is followed by accessing to an external device, the write signal and CSi signal switch simultaneously. Thus, adjust the capacity of individual signal not to make a write signal delay.

12. Memory Space Expansion Function

Note •

Do not use this function for the 80-pin package.

12.1 Introduction

The following describes the memory space expansion function. In memory expansion or microprocessor mode, the memory space expansion function allows the access space to be expanded. Table 12.1 lists Specifications of Memory Space Expansion Function. In this chapter, the space for the external devices accessed by the \overline{CSi} (i = 0 to 3) signal is referred to as the \overline{CSi} area.

Table 12.1 Specifications of Memory Space Expansion Function

Item	Specifications	
1-Mbyte mode	Memory space 1 Mbyte (no expansion)	
	• Specify the space for the external devices accessed by the CSi signal.	
4-Mbyte mode	Memory space 4 Mbytes	
	 Select bank numbers to access to data. 	
	Allows the accessed address to be offset by 40000h	
	• The CSi pin function differs depending on the area to be accessed.	

i = 0 to 3

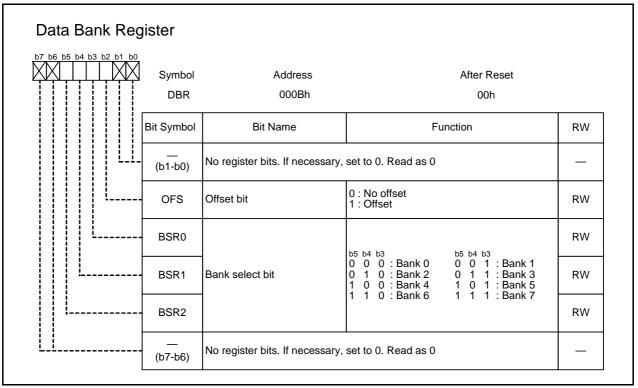
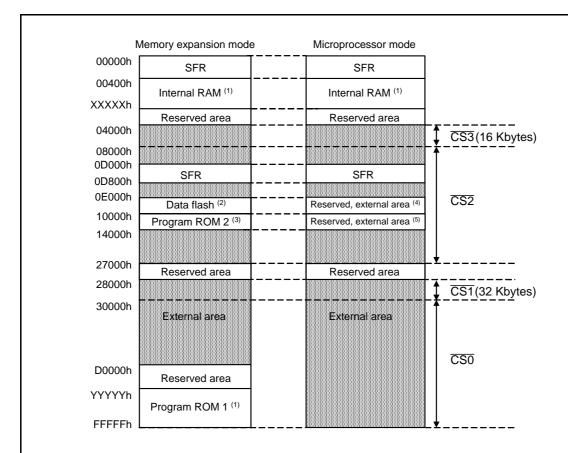

12.2 Registers

Table 12.2 lists registers related to the memory expansion function. Refer to 10. "Processor Mode" for the PM1 register.

Table 12.2 Register Structure

Address	Register Name	Register Symbol	After Reset
0005h	Processor Mode Register 1	PM1	0000 1000b
000Bh	Data Bank Register	DBR	00h

12.2.1 **Data Bank Register (DBR)**

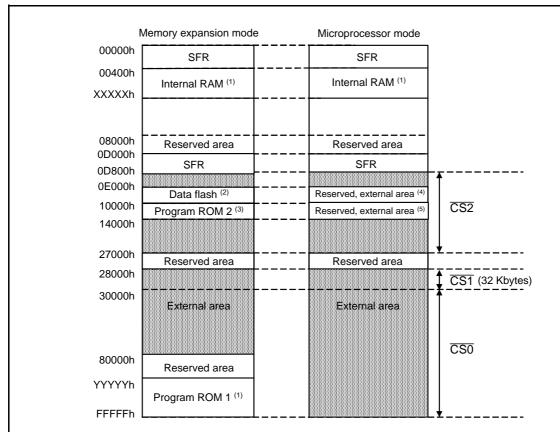

The DBR register is valid when bits PM01 to PM00 in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode).

A write to the DBR register is enabled when bits PM15 to PM14 in the PM1 register is 11b (4-Mbyte mode).

12.3 **Operations**

12.3.1 1-Mbyte Mode

In 1-Mbyte mode, the memory space is 1 Mbyte. The external area to be accessed is specified using the CSi signals. Figure 12.1 and Figure 12.2 show the memory mapping and CS areas in 1-Mbyte mode.


Notes:

1. When the PM13 bit in the PM1 register is 0, 15 Kbytes of the internal RAM and 192 Kbytes of the internal ROM can be used. See the table below for addresses XXXXXh and YYYYYh.

Inter	nal RAM	Program ROM1	
Capacity	Address XXXXXh	Capacity	Address YYYYYh
12 Kbytes	033FFh	128 Kbytes	E0000h
20 Kbytes	03FFFh	256 Kbytes	D0000h
31 Kbytes	03FFFh	384 Kbytes	D0000h
47 Kbytes	03FFFh	512 Kbytes	D0000h
		640 Kbytes	D0000h
		768 Kbytes	D0000h

- 2. When the PM10 bit is 0, this area is used as an external area; when 1, used as internal ROM (data flash).
- 3. When the PRG2C0 bit in the PRG2C register is 1, this area is used as an external area; when 0, used as internal ROM (program ROM 2).
- When the PM10 bit is 0, this area is used as an external area; when 1, used as a reserved area.
- When the PRG2C0 bit in the PRG2C register is 1, this area is used as an external area; when 0, used as a reserved area.

Memory Mapping and \overline{CS} Areas in 1-Mbyte Mode (PM13 = 0) Figure 12.1

Notes:

1. See the table below for addresses XXXXXh and YYYYYh.

Internal RAM		Program ROM1	
Capacity	Address XXXXXh	Capacity	Address YYYYYh
12 Kbytes	033FFh	128 Kbytes	E0000h
20 Kbytes	053FFh	256 Kbytes	C0000h
31 Kbytes	07FFFh	384 Kbytes	A0000h
47 Kbytes	0BFFFh	512 Kbytes	80000h
		640 Kbytes	80000h (when IRON = 0) 60000h (when IRON = 1)
		768 Kbytes	80000h (when IRON = 0) 40000h (when IRON = 1)

IRON: Bit in the PRG2C register

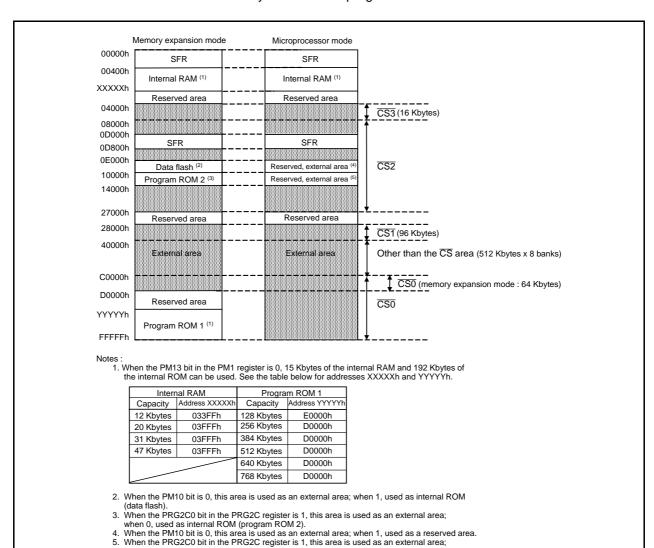
- 2. When the PM10 bit is 0, this area is used as an external area; when 1, used as internal ROM (data flash).
- 3. When the PRG2C0 bit in the PRG2C register is 1, this area is used as an external area; when 0, used as internal ROM (program ROM 2).
- 4. When the PM10 bit is 0, this area is used as an external area; when 1, used as a reserved area.
- 5. When the PRG2C0 bit in the PRG2C register is 1, this area is used as an external area; when 0, used as a reserved area.

Memory Mapping and \overline{CS} Areas in 1-Mbyte Mode (PM13 = 1) Figure 12.2

12.3.2 4-Mbyte Mode

In 4-Mbyte mode, the memory space is 4 Mbytes. Set the IRON bit in the PRG2C register to 0 (program ROM 1 addresses 40000h to 7FFFFh disabled). Bits BSR2 to BSR0 in the DBR register select the bank number to be accessed to read or write data. Setting the OFS bit to 1 (offset) allows the accessed address to be offset by 40000h.

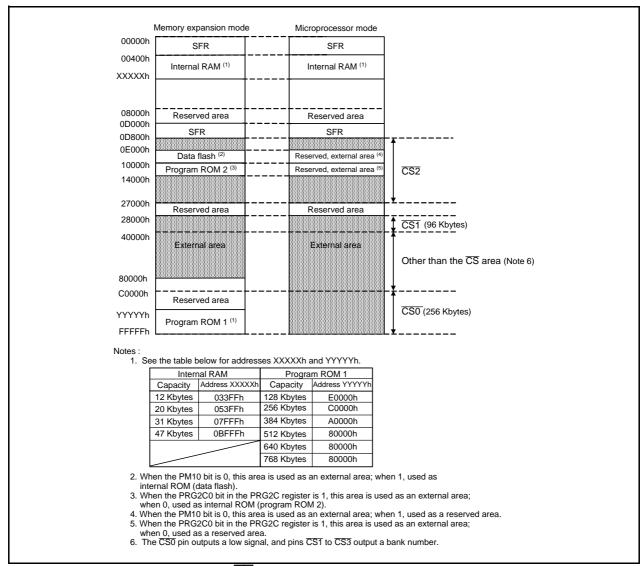
In 4-Mbyte mode, the CSi pin function differs depending on the area to be accessed.


Addresses 04000h to 3FFFFh, C0000h to FFFFFh 12.3.2.1

• The CSi signal is output from the CSi pin (same operation as 1-Mbyte mode, except the last address of the CS1 area is up to 3FFFFh).

12.3.2.2 Addresses 40000h to BFFFFh

- The CSO pin outputs a low-level signal.
- Pins CS1 to CS3 output the setting values of bits BSR2 to BSR0 (bank number).


Figure 12.3 and Figure 12.4 show the memory mapping and \overline{CS} areas in 4-Mbyte mode. Note that banks 0 to 6 are data-only areas. Place programs in bank 7 or the CSi area.

Memory Mapping and \overline{CS} Areas in 4-Mbyte Mode (PM13 = 0) Figure 12.3

when 0, used as a reserved area.

6. The CS0 pin outputs a low signal, and pins CS1 to CS3 output a bank number.

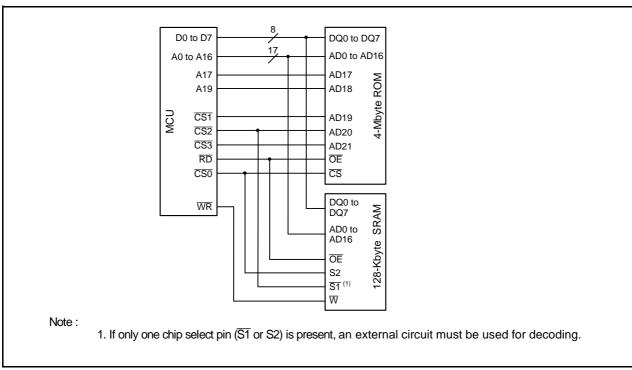
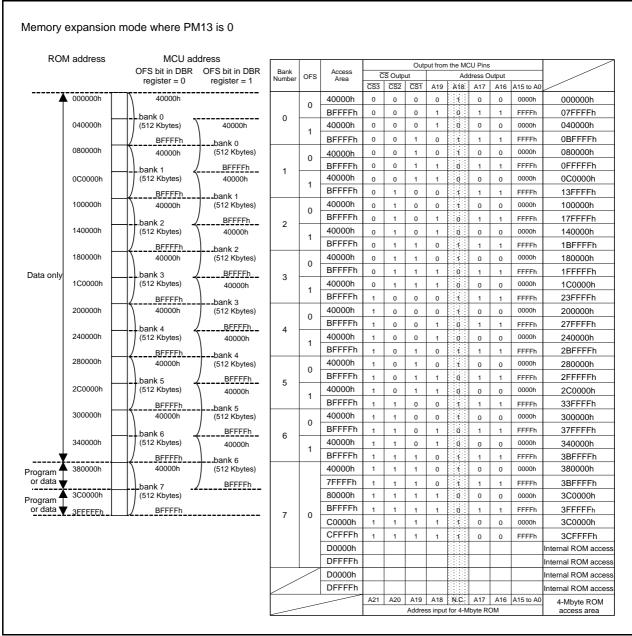
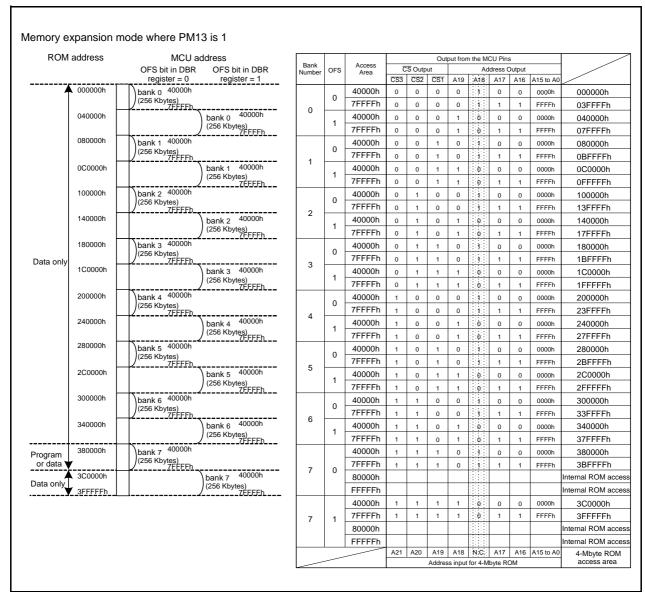
Memory Mapping and \overline{CS} Areas in 4-Mbyte Mode (PM13 = 1) Figure 12.4

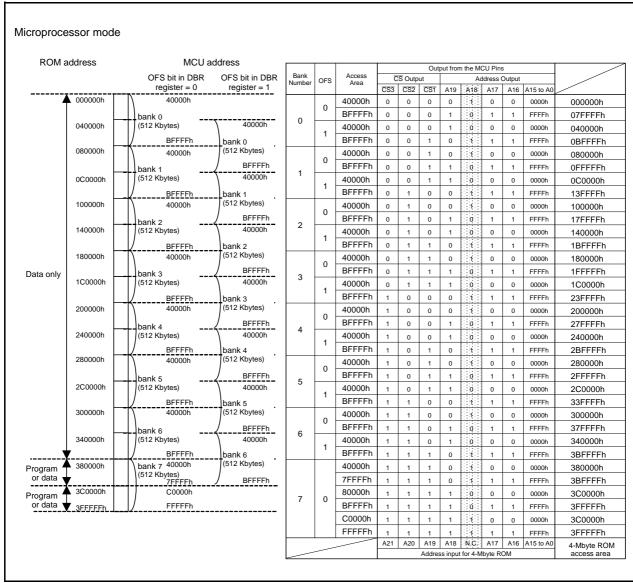
In the example below, the $\overline{\text{CS}}$ pin of a 4-Mbyte ROM is connected to the MCU's $\overline{\text{CSO}}$ pin. The 4-Mbyte ROM address input pins AD21, AD20, and AD19 are connected to the MCU's CS3, CS2, and CS1 pins, respectively. The address input AD18 pin is connected to the MCU's A19 pin. Figure 12.6 to Figure 12.8 show the relationship of addresses between the 4-Mbyte ROM and the MCU in the connection example of Figure 12.5.

In microprocessor mode or memory expansion mode, where the PM13 bit in the PM1 register is 0, banks are located every 512 Kbytes. Setting the OFS bit in the DBR register to 1 (offset) allows the accessed address to be offset by 40000h, allowing even data overlapping at a bank boundary to be accessed in succession.

In memory expansion mode, where the PM13 bit is 1, each 512-Kbyte bank can be accessed in 256 Kbyte units by switching them with the OFS bit.

Because the SRAM can be accessed when the chip select signals S2 is high and $\overline{S1}$ is low, $\overline{CS0}$ and CS2 can be connected to S2 and S1, respectively. If SRAM does not have the input pins that accept high active and low active chip select signals (S1, S2), CS0 and CS2 should be decoded externally to the chip.


Figure 12.5 **External Memory Connection Example in 4-Mbyte Mode**

Relationship between Addresses in 4-Mbyte ROM and Those in MCU (1/3) Figure 12.6

Relationship between Addresses in 4-Mbyte ROM and Those in MCU (2/3)

Relationship between Addresses in 4-Mbyte ROM and Those in MCU (3/3)

13. Programmable I/O Ports

Note •

P1, P4_4 to P4_7, P7_2 to P7_5, and P9_1 of the 80-pin package have no external connections. Program the direction bits of these ports to 1 (output mode) and the output data to 0 (low level). For the 80-pin and 100-pin packages, do not access the addresses of registers P11 to P14, PD11 to PD14 and PUR3.

13.1 Introduction

Table 13.1 lists Programmable I/O Ports Specifications (hereafter referred to as I/O ports).

Each pin functions as an I/O port, a peripheral function input/output, or a bus control pin.

To set peripheral functions, refer to the description for the individual function. To use ports as peripheral function input/output pins, refer to 13.4 "Peripheral Function I/O".

To use ports as bus control pins, refer to 11.3.5 "External Bus Control".

Table 13.1 Programmable I/O Ports Specifications

ltem		Specification		
	item	128-pin package	100-pin package	80-pin package
The number	Total	114	88	71
of ports	CMOS output	111	85	68
	N-channel open-drain output	3	3	3
Input/output	VCC2 level	P0 to P5, P12, P13 ⁽¹⁾	P0 to P5	-
	VCC1 level	P6 to P11, P14 ⁽¹⁾	P6 to P10	P0, P2 to P10
Input/output level		Select input or output for each individual port by a program.		
Select function		Select a pull-up resistor in 4-bit units.		

Note:

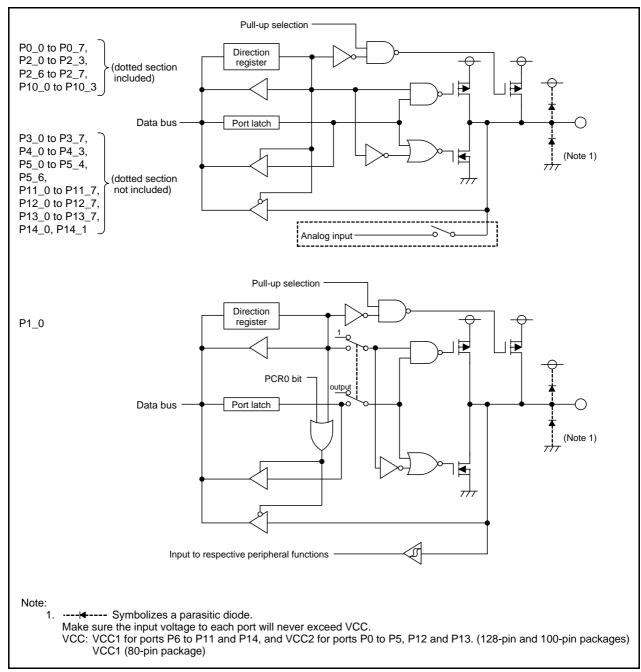

1. P11 to P14 can be used when the PU37 bit in the PUR3 register is 1 (P11 to P14 enabled).

Table 13.2 I/O Pins

Pin Name	I/O Type	Function
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7		Input/output port CMOS output, pull-up resistor selectable
P7_0 to P7_7	I/O	Input/output port P7_0 to P7_1: N-channel open-drain output, no pull-up resistor P7_2 to P7_7: CMOS output, pull-up resistor selectable
P8_0 to P8_7	I/O	Input/output port P8_0 to P8_4, P8_6, P8_7: CMOS output, pull-up resistor selectable P8_5: N-channel open-drain output, no pull-up resistor
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_1	I/O	Input/output port CMOS output, pull-up resistor selectable

13.2 I/O Ports and Pins

Figure 13.1 to Figure 13.9 show I/O Ports, and Figure 13.10 shows I/O Pins.

I/O Ports (1/9) Figure 13.1

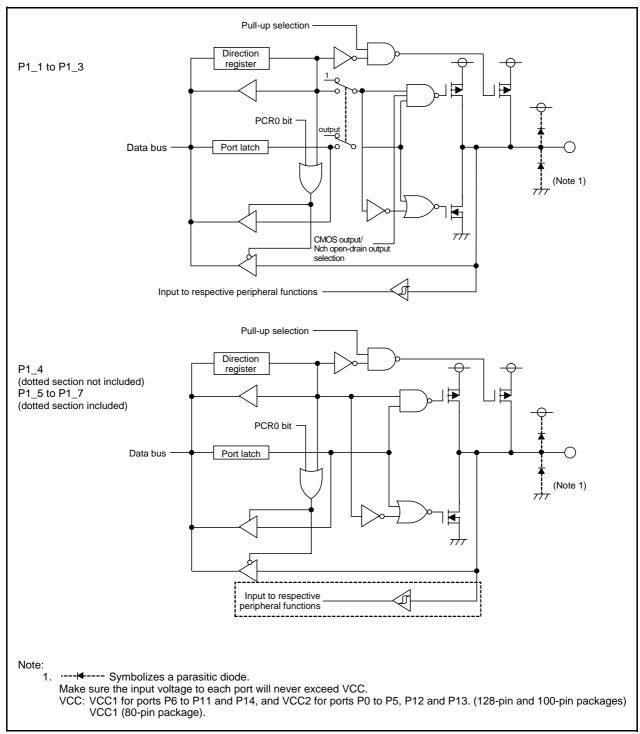


Figure 13.2 I/O Ports (2/9)

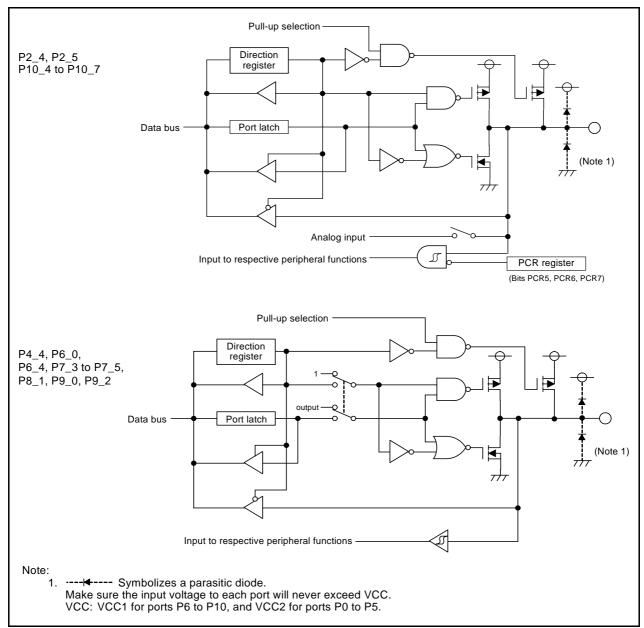


Figure 13.3 I/O Ports (3/9)

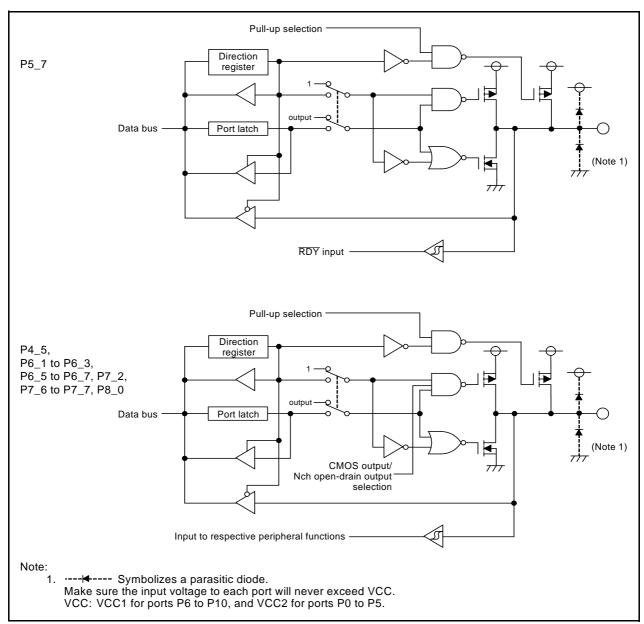


Figure 13.4 I/O Ports (4/9)

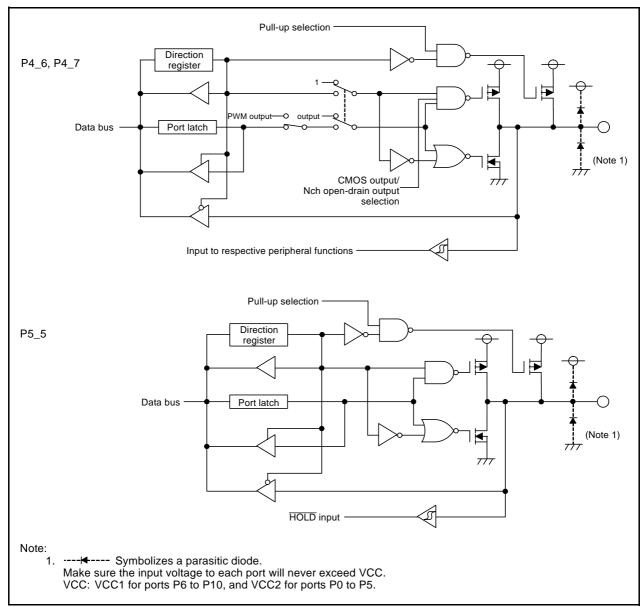


Figure 13.5 I/O Ports (5/9)

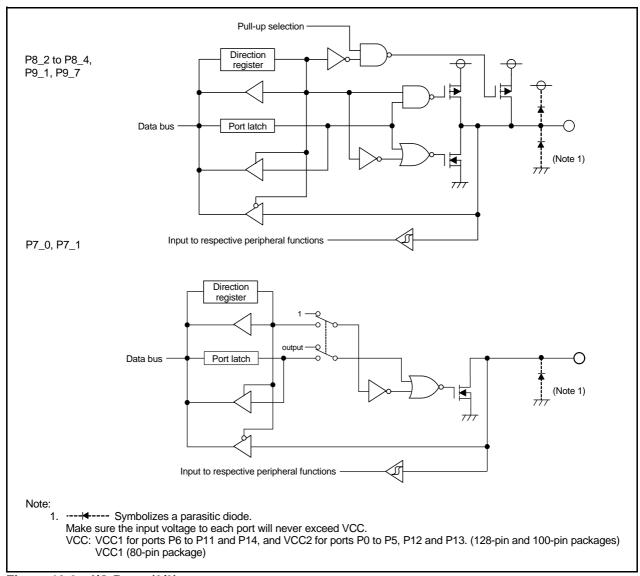
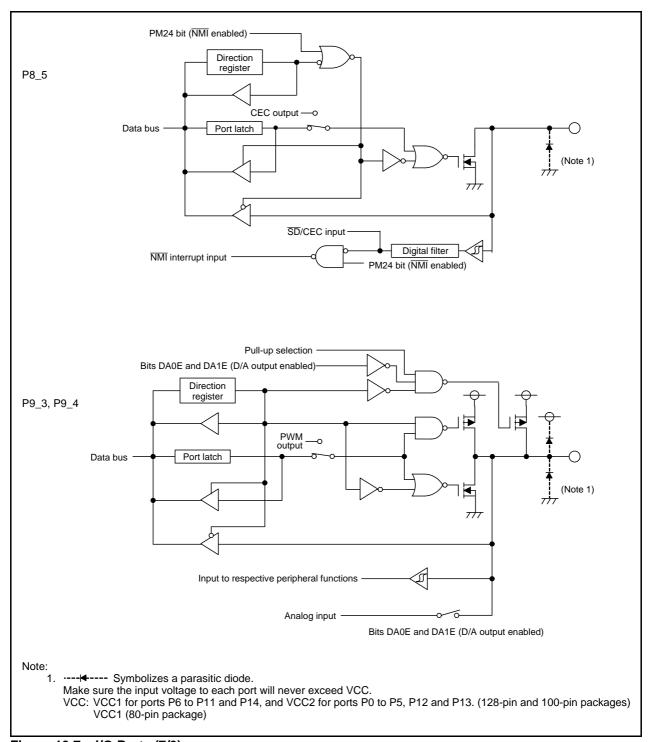



Figure 13.6 I/O Ports (6/9)

I/O Ports (7/9) Figure 13.7

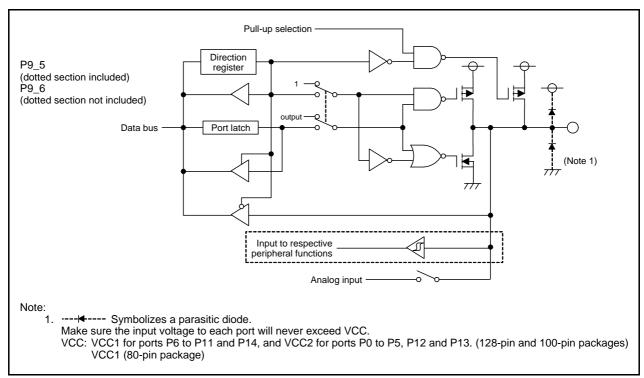


Figure 13.8 I/O Ports (8/9)

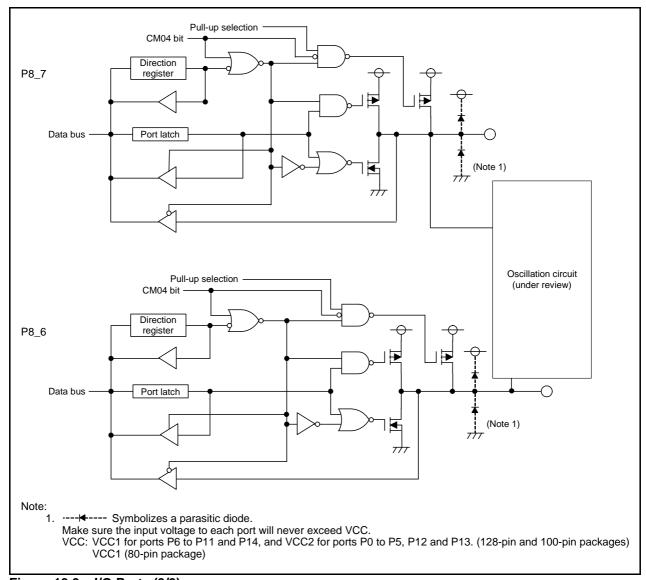


Figure 13.9 I/O Ports (9/9)

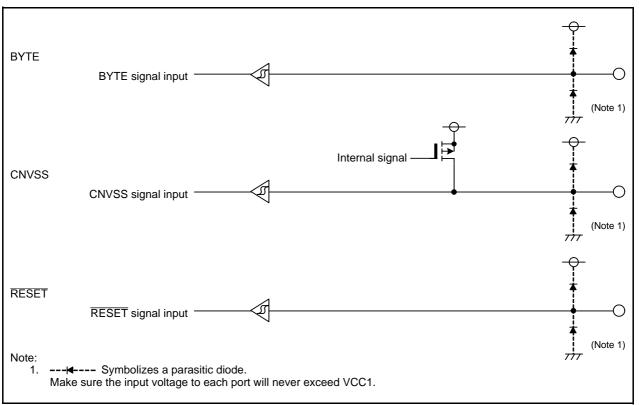


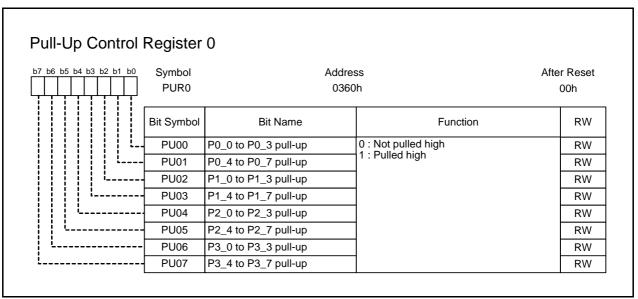
Figure 13.10 I/O Pins

M16C/65 Group

13.3 Registers

Table 13.3 Register Structure

Address	Register Name	Register Symbol	After Reset
0360h	Pull-Up Control Register 0	PUR0	00h
0361h	Pull-Up Control Register 1	PUR1	0000 0000b ⁽¹⁾
			0000 0010b
0362h	Pull-Up Control Register 2	PUR2	00h
0363h	Pull-Up Control Register 3	PUR3	00h
0366h	Port Control Register	PCR	0000 0XX0b
0369h	NMI/SD Digital Filter Register	NMIDF	XXXX X000b
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EBh	Port P5 Direction Register	PD5	00h
03ECh	Port P6 Register	P6	XXh
03EDh	Port P7 Register	P7	XXh
03EEh	Port P6 Direction Register	PD6	00h
03EFh	Port P7 Direction Register	PD7	00h
03F0h	Port P8 Register	P8	XXh
03F1h	Port P9 Register	P9	XXh
03F2h	Port P8 Direction Register	PD8	00h
03F3h	Port P9 Direction Register	PD9	00h
03F4h	Port P10 Register	P10	XXh
03F5h	Port P11 Register	P11	XXh
03F6h	Port P10 Direction Register	PD10	00h
03F7h	Port P11 Direction Register	PD11	00h
03F8h	Port P12 Register	P12	XXh
03F9h	Port P13 Register	P13	XXh
03FAh	Port P12 Direction Register	PD12	00h
03FBh	Port P13 Direction Register	PD13	00h
03FCh	Port P14 Register	P14	XXh
03FEh	Port P14 Direction Register	PD14	XXXX XX00b

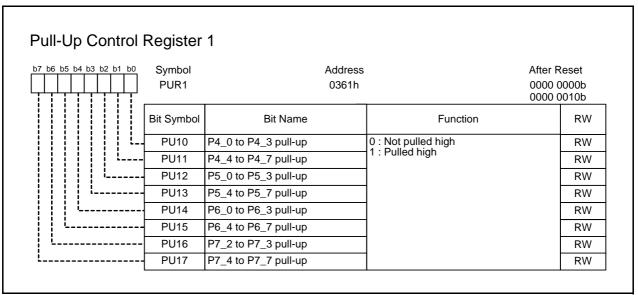

Note:

- Values after hardware reset, power-on reset, or voltage monitor 0 reset are as follows:
 - 00000000b when input on the CNVSS pin is low
 - 00000010b when input on the CNVSS pin is high

Values after voltage monitor 1 reset, voltage monitor 2 reset, software reset, watchdog timer reset, or oscillation stop detection reset are as follows:

- 00000000b when bits PM01 to PM00 in the PM0 register are 00b (single-chip mode).
- 00000010b when bits PM01 to PM00 in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode).

13.3.1 Pull-Up Control Register 0 (PUR0)



In memory expansion or microprocessor mode, the corresponding register contents can be modified, but the pins are not pulled high.

PU0i Bit (b7-b0) (i = 0 to 7)

The pin for which the PU0i bit is 1 (pulled high) and the direction bit is 0 (input mode) is pulled high.

13.3.2 Pull-Up Control Register 1 (PUR1)

Values after hardware reset, power-on reset, or voltage monitor 0 reset are as follows:

- 00000000b when input on the CNVSS pin is low
- 00000010b when input on the CNVSS pin is high

Values after voltage monitor 1 reset, voltage monitor 2 reset, software reset, watchdog timer reset, ro oscillation stop detection reset are as follows:

- 00000000b when bits PM01 to PM00 are 00b (single-chip mode)
- 00000010b when bits PM01 to PM00 are 01b (memory expansion mode) or 11b (microprocessor mode)

PU10 (P4_0 to P4_3 Pull-Up) (b0)

PU11 (P4_4 to P4_7 Pull-Up) (b1)

PU12 (P5_0 to P5_3 Pull-Up) (b2)

PU13 (P5_4 to P5_7 Pull-Up) (b3)

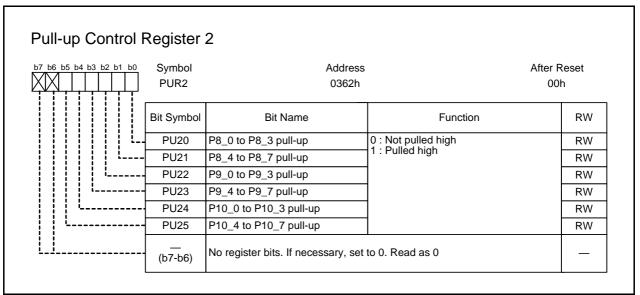
The pin for which the bit in the PU1i bit (i = 0 to 3) is 1 (pulled high) and the direction bit is 0 (input mode) is pulled high.

In memory expansion and microprocessor modes, pins are not pulled high although the contents of these bits can be modified.

PU14 (P6_0 to P6_3 Pull-Up) (b4)

PU15 (P6 4 to P6 7 Pull-Up) (b5)

PU17 (P7_4 to P7_7 Pull-Up) (b7)

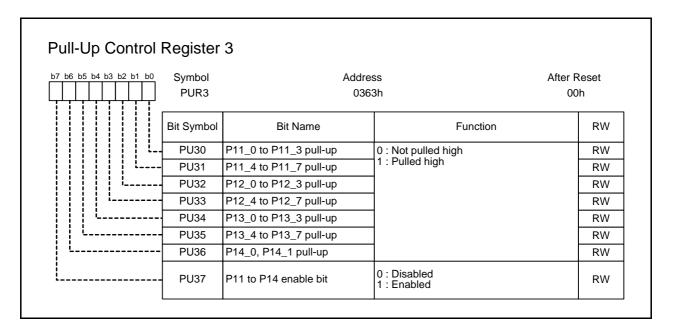

The pin for which the bit in the PU1i bit (i = 4, 5, 7) is 1 (pulled high) and the direction bit is 0 (input mode) is pulled high.

PU16 (P7_2 to P7_3 Pull-Up) (b6)

The pin for which the bit in the PU16 bit is 1 (pulled high) and the direction bit is 0 (input mode) is pulled high.

Pins P7 0 and P7 1 are not pulled high.

Pull-Up Control Register 2 (PUR2) 13.3.3

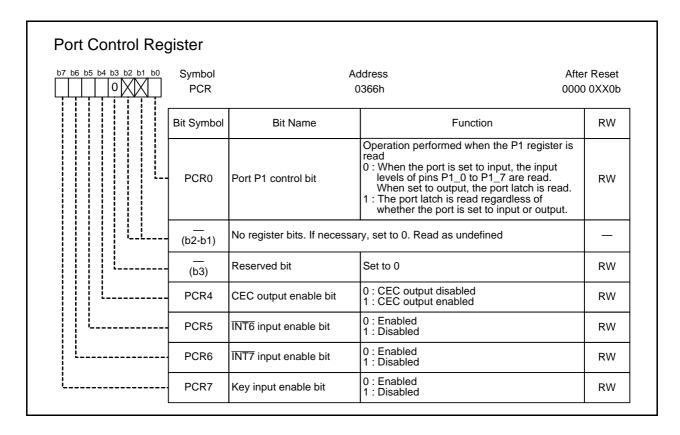


The pin for which the bit in the PUR2 register is 1 (pulled high) and the direction bit is 0 (input mode) is pulled high.

PU21 (P8_4 to P8_7 Pull-Up) (b1)

The P8_5 pin is not pulled high.

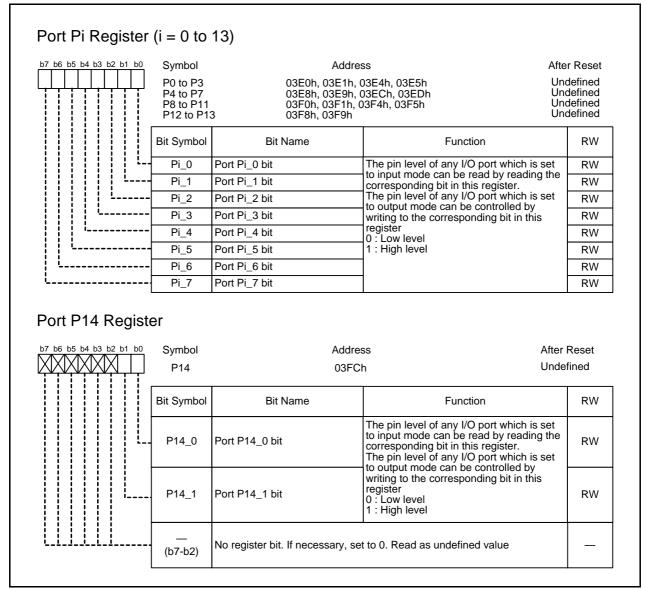
13.3.4 **Pull-Up Control Register 3 (PUR3)**


PU3i Bit (b6-b0) (i = 0 to 6)

The pin for which the PU3i bit is 1 (pulled high) and the direction bit is 0 (input mode) is pulled high.

PU37 (P11 to P14 Enable Bit) (b7)

When the PU37 bit is 1 (P11 to P14 enabled), registers P11 to P14 and registers PD0 to PD14 are enabled.


Port Control Register (PCR) 13.3.5

PCR0 (Port P1 Control Bit) (b0)

When the P1 register is read after the PCR0 bit is set to 1, the corresponding port latch is read regardless of the PD1 register setting.

Port Pi Registers (Pi) (i = 0 to 14) 13.3.6

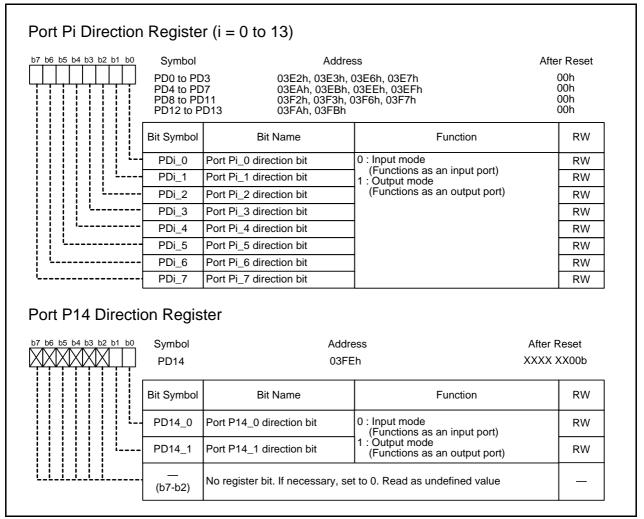
Data input/output to and from external devices are accomplished by reading and writing to the Pi

Each bit of the Pi register consists of a port latch to hold the output data and a circuit to read the pin

For ports set to input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set to output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. Each bit in the Pi register corresponds to one port.

In memory expansion and microprocessor modes, the Pi register for the pins functioning as bus control pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA, and BCLK) cannot be modified (writing a value has no effect).

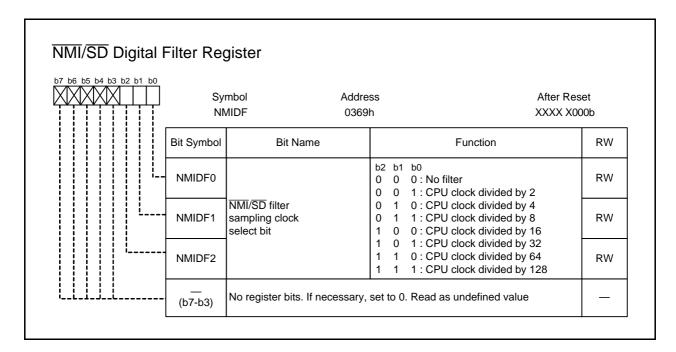

Since P7_0, P7_1, and P8_5 are N-channel open- drain ports, when set to 1, the pin status becomes high-impedance.

When the CM04 bit in the CM0 register is 1 (XCIN-XCOUT oscillation function) and bits PD8_6 and PD8_7 in the PD8 register are 0 (input mode), values of bits P8_6 and P8_7 in the P8 register are undefined.

Under development

Registers P11 to P14 are enabled when the PU37 bit in the PUR3 register is 1 (P11 to P14 enabled). Access to registers P11 to P14 after setting the PU37 bit to 1. When the PU37 bit in the PUR3 register is 0 (P11 to P14 disabled), the contents of registers P11 to P14 are retained. In this case, read as undefined value.

13.3.7 Port Pi Direction Registers (PDi) (i = 0 to 14)


Write to the PD9 register in the next instruction after setting the PRC2 bit in the PRCR register to 1 (write enabled).

These registers select whether I/O ports are to be used for input or output. Each bit in the PDi register has its corresponding port.

In memory expansion mode or microprocessor mode, the PDi register for the pins functioning as bus control pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA, and BCLK) cannot be modified (Writing a value has no effect).

Registers PD11 to PD14 are enabled when the PU37 bit in the PUR3 register is 1 (P11 to P14 enabled). Access to registers PD11 to PD14 after setting the PU37 bit to 1. When the PU37 bit in the PUR3 register is 0 (P11 to P14 disabled), the contents of registers PD11 to PD14 are retained. In this case, read as undefined value.

NMI/SD Digital Filter Register (NMIDF) 13.3.8

13.4 Peripheral Function I/O

13.4.1 Peripheral Function I/O and Port Direction Bits

Programmable I/O ports can share pins with peripheral function I/O. (See to Table 1.11 to Table 1.12 "Pin Names, Pin Package".) Some peripheral function I/O are affected by a port direction bit which shares the same pin. Table 13.4 lists The Setting of Direction Bits Functioning as Peripheral Function I/ O. For peripheral function settings, see descriptions of each function.

Table 13.4 The Setting of Direction Bits Functioning as Peripheral Function I/O

Peripheral Function I/O		The Setting of the Port Direction Bit Sharing the Same Pin
Input		Set to 0 (input mode).
Output	PWM	Set to 1 (output mode).
	D/A converter	Set to 0 (input mode).
Others		Set to either 0 or 1. (Outputs regardless of the direction bit setting)

Priority Level of Peripheral Function I/O 13.4.2

Multiple peripheral functions can share the same pin.

For example, when peripheral function A and peripheral function B share a pin, input and output are as follows:

- When the pin functions as input for peripheral functions A and B The same signal is input as each input signal. However, the timing of accepting the signal differs depending on conditions (e.g. internal delay) of functions A and B.
- When the pin functions as output for peripheral function A and as input for peripheral function B Peripheral function A outputs a signal from the pin, and peripheral function B inputs the signal.
- When the pin functions as output for peripheral functions A and B Peripheral function with higher priority is output. Table 13.5 lists Priority Level of Peripheral Function Output.

Table 13.5 Priority Level of Peripheral Function Output

Priority Level	Function	Output Pin
	Multi-master I ² C-bus interface	SCLMM, SDAMM
High	PWM	PWM0, PWM1
	Serial interface UART0 to UART2, UART5 to UART7, SI/O3, SI/O4	RTSi, CLKi, TXDi, SCLi, SDAi (i = 0 to 2, 5 to 7), CLK3, SOUT3, CLK4, SOUT4
	CEC	CEC
	Timer timer A, three-phase control timer function	TA0OUT, TA1OUT, TA2OUT, TA3OUT, TA4OUT U, V, W, $\overline{\mathbf{U}}$, $\overline{\mathbf{V}}$, $\overline{\mathbf{W}}$
Low	Real-time clock	RTCOUT
	D/A converter	DA0, DA1

13.4.3 NMI/SD Digital Filter

The NMI/SD input circuit includes a digital filter. Sampling clock can be selected by bits NMIDF2 to NMIDF0 in the NMIDF register. The NMI level is sampled for every sampling clock. When the same sampled level is detected three times in a row, the level is transferred to the internal circuit.

When using the NMI/SD digital filter, do not enter wait mode or stop mode.

Port P8_5 is not affected by the digital filter.

When using the CEC function, set bits NMIDF2 to NMIDF0 to 000b (NMI/SD digital filter disabled).

Figure 13.11 shows NMI/SD Digital Filter, and Figure 13.12 shows NMI/SD Digital Filter Operation Example.

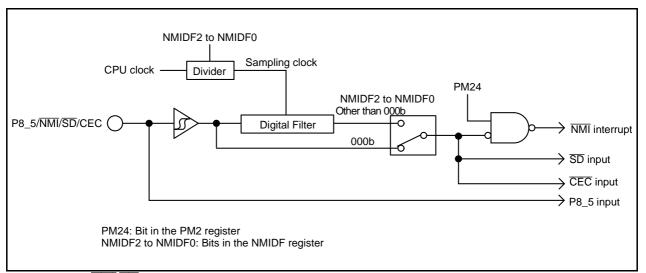


Figure 13.11 NMI/SD Digital Filter

Figure 13.12 NMI/SD Digital Filter Operation Example

13.4.4 **CNVSS**

The built-in pull-up resistor of the CNVSS pin is activated after watchdog timer reset, hardware reset, power-on reset or voltage monitor 0 reset. Thus, the CNVSS pin outputs a high-level signal up to two cycles of the fOCO-S. Connect the CNVSS pin to VSS via a resistor to use it in single-chip mode.

13.5 **Unassigned Pin Handling**

Table 13.6 Unassigned Pin Handling in Single-Chip Mode

Pin Name	Connection (2)
Ports P0 to P5, P12,	One of the following:
P13	• Set to input mode and connect a pin to VSS via a resistor (pull-down)
	• Set to input mode and connect a pin to VCC2 via a resistor (pull-up) (5)
	• Set to output mode and leave the pins open (1)
Ports P6 to P11, P14	One of the following:
	• Set to input mode and connect a pin to VSS via a resistor (pull-down)
	• Set to input mode and connect a pin to VCC1 via a resistor (pull-up)
	• Set to output mode and leave the pins open (1), (3)
XOUT (4)	Open
XIN	Connect to VCC1 via a resistor (pull-up)
AVCC	Connect to VCC1
AVSS, VREF, BYTE	Connect to VSS

Notes:

- When setting a port to output mode and leaving it open, be aware that the port remains in input mode until it is switched to output mode by a program after reset. For this reason, the voltage level on the pin becomes undefined, causing the power supply current to increase while the port remains in input mode. Furthermore, since the contents of the direction registers could be changed by noise or noise-induced loss of control, it is recommended that the contents of the direction registers be regularly reset in software to improve the reliability of the program.
- Make sure the unassigned pins are connected with the shortest possible wiring from the MCU pins (maximum 2 cm).
- Ports P7_0, P7_1 and P8_5 are N-channel open-drain outputs. When ports P7_0, P7_1 and P8_5 are set to output mode, make sure a low-level signal is output from the
- 4. This applies when an external clock is input to the XIN pin or when VCC1 is connected via a resistor.
- In 80-package, a port is set to input mode and is connected to VCC1 via a resistor (pull-up).

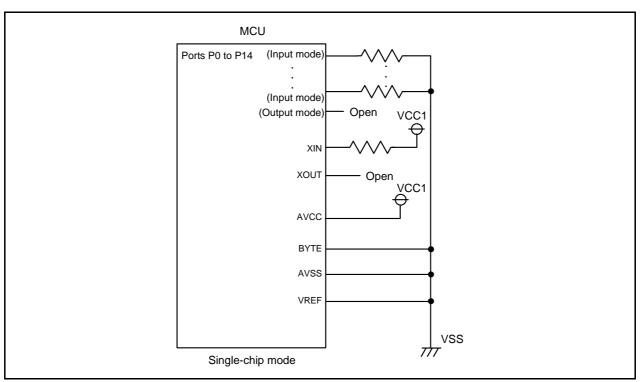


Figure 13.13 Unassigned Pin Handling in Single-Chip Mode

Table 13.7 Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode

Pin Name	Connection (2)
Ports P0 to P5, P12, P13	One of the following: Set to input mode and connect a pin to VSS via a resistor (pull-down) Set to input mode and connect a pin to VCC2 via a resistor (pull-up) Set to output mode and leave the pins open (1), (3)
Ports P6 to P11, P14	One of the following: Set to input mode and connect a pin to VSS via a resistor (pull-down) Set to input mode and connect a pin to VCC1 via a resistor (pull-up) Set to output mode and leave the pins open (1), (4)
BHE, ALE, HLDA, XOUT (5), BCLK (6)	Open
HOLD, RDY	Connect to VCC2 via a resistor (pull-up)
XIN	Connect to VCC1 via a resistor (pull-up)
AVCC	Connect to VCC1
AVSS, VREF	Connect to VSS

Notes:

- When setting a port to output mode and leaving it open, be aware that the port remains in input mode until it is switched to output mode by a program after reset. For this reason, the voltage level on the pin becomes undefined, causing the power supply current to increase while the port remains in input mode. Furthermore, since the contents of the direction registers could be changed by noise or noise-induced loss of control, it is recommended that the contents of the direction registers be regularly reset in software to improve the reliability of the program.
- Make sure the unassigned pins are connected with the shortest possible wiring from the MCU pins (maximum 2 cm).
- If the CNVSS pin has the VSS level applied to it, these pins are set as input ports until the processor mode is switched by a program after reset. For this reason, the voltage levels on these pins become undefined, causing the power supply current to increase while they remain set as input ports.
- Ports P7_0, P7_1, and P8_5 are N-channel open-drain outputs. When ports P7_0, P7_1, and P8_5 are set to output mode, make sure a low-level signal is output from the
- This applies when an external clock is input to the XIN pin or when VCC1 is connected via a resistor.
- If the PM07 bit in the PM0 register is set to 1 (BCLK not output), connect this pin to VCC2 via a resistor (pulled high).

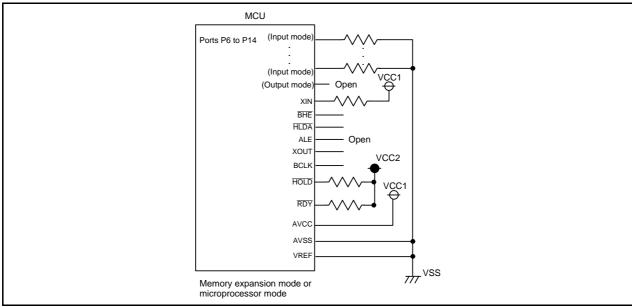


Figure 13.14 Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode

13.6 Notes on Programmable I/O Ports

Influence of the SD Input 13.6.1

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on the \overline{SD} pin enabled), pins P7_2 to P7_5 and P8_0 and P8_1 go to the high-impedance state.

13.6.2 Influence of SI/O3 and SI/O4

Setting the SM32 bit in the S3C register to 1 causes the P9_2 pin to go to the high-impedance state. Similarly, setting the SM42 bit in the S4C register to 1 causes the P9_6 pin to go to the high-impedance state.

13.6.3 100-Pin Package

Do not access to the addresses assigned to registers P11 to P14 and the PUR register.

13.6.4 80-Pin Package

Do not access to the addresses assigned to registers P11 to P14 and the PUR register. Set the direction bits of the ports corresponding to P1, P4_4 to P4_7, P7_2 to P7_5 and P9_1 to 1 (output mode). Set the output data to 0 (low-level signal).

14. Interrupts

Note •

Do not use INT3 to INT5 for the 80-pin package.

14.1 Introduction

Table 14.1 lists Types of Interrupt, and Table 14.2 lists I/O Pins. The pins shown in Table 14.2 are external interrupt input pins. Refer to the peripheral functions for the pins related to the peripheral functions.

Table 14.1 Types of Interrupt

Ту	/pe	Interrupt	Function
Software		Undefined instruction (UND instruction) Overflow (INTO instruction) BRK instruction INT instruction	An interrupt is generated by executing an instruction. Non-maskable interrupt ⁽²⁾
Hardware	Specific	NMI Watchdog timer Oscillation stop and re-oscillation detection Voltage monitor 1 Voltage monitor 2 Address match Single step (1) DBC (1)	Interrupt by the MCU hardware Non-maskable interrupt (2)
	Peripheral function	INT, timers, etc. (See 14.6.2 "Relocatable Vector Tables".)	Interrupt by the peripheral functions in the MCU Maskable interrupt (interrupt priority level: 7 levels) (2)

Notes:

- 1. This interrupt is provided exclusively for developers and should not be used.
- Maskable interrupt: Interrupt status (enabled or disabled) can be selected by the interrupt 2. enable flag (I flag).

Interrupt priority can be changed by the interrupt priority level.

Non-maskable interrupt: Interrupt status (enabled or disabled) cannot be selected by the interrupt enable flag (I flag).

Interrupt priority cannot be changed by the interrupt priority level.

Table 14.2 I/O Pins

Pin Name	I/O Type	Function
NMI	I	NMI interrupt input
ĪNTi	J (1)	INTi interrupt input
KI0 to KI3	J (1)	Key input

i = 0 to 7

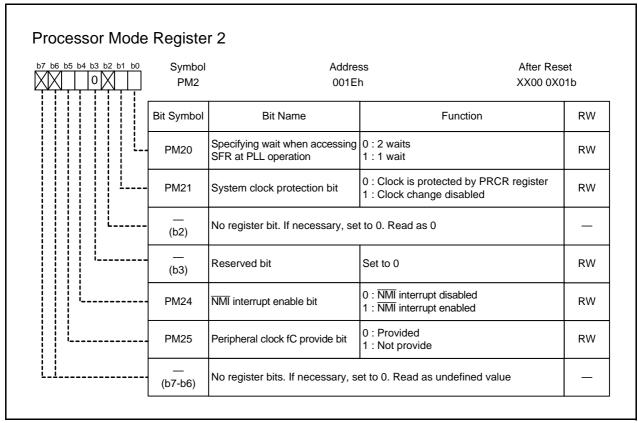
Note:

Set the port direction bits which share pins to 0 (input mode).

M16C/65 Group

14.2

Table 14.3 Register Structure (1/2)


Registers

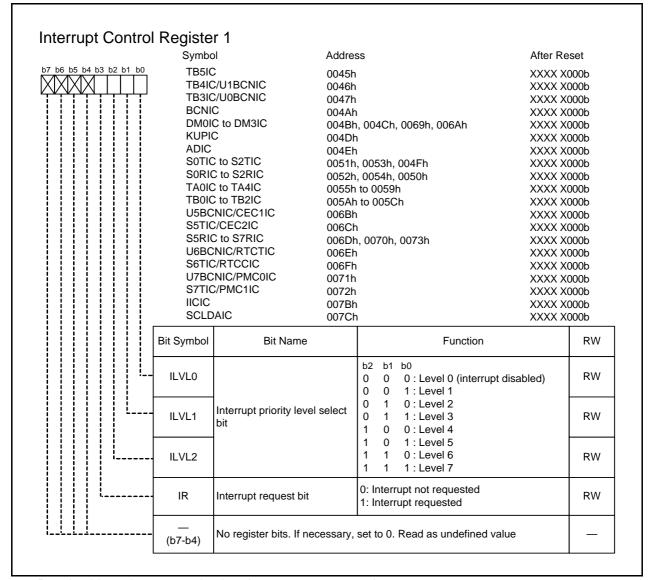
able 14.3	Register Structure (1/2)		
Address	Register Name	Register Symbol	After Reset
001Eh	Processor Mode Register 2	PM2	XX00 0X01b
0042h	INT7 Interrupt Control Register	INT7IC	XX00 X000b
0043h	INT6 Interrupt Control Register	INT6IC	XX00 X000b
0044h	INT3 Interrupt Control Register	INT3IC	XX00 X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	XXXX X000b
0046h	Timer B4 Interrupt Control Register UART1 Bus	TB4IC,	XXXX X000b
	Collision Detection Interrupt Control Register	U1BCNIC	
0047h	Timer B3 Interrupt Control Register, UART0 Bus	TB3IC,	XXXX X000b
	Collision Detection Interrupt Control Register	U0BCNIC	
0048h	SI/O4 Interrupt Control Register,	S4IC, INT5IC	XX00 X000b
	INT5 Interrupt Control Register		
0049h	SI/O3 Interrupt Control Register,	S3IC, INT4IC	XX00 X000b
	INT4 Interrupt Control Register		
004Ah	UART2 Bus Collision Detection Interrupt Control	BCNIC	XXXX X000b
	Register		
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXX X000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXX X000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXX X000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXX X000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXX X000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXX X000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXX X000b
0052h	UART0 Receive Interrupt Control Register	S0RIC	XXXX X000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXX X000b
0054h	UART1 Transmit Interrupt Control Register	S1TIC	XXXX X000b
0055h	Timer A0 Interrupt Control Register	TA0IC	XXXX X000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXX X000b
0058h	Timer A3 Interrupt Control Register	TA3IC	XXXX X000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXX X000b
005Ah	Timer B0 Interrupt Control Register	TB0IC	XXXX X000b
005Bh	Timer B1 Interrupt Control Register	TB1IC	XXXX X000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b
005Dh	INTO Interrupt Control Register	INT0IC	XX00 X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00 X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00 X000b
0069h	DMA2 Interrupt Control Register	DM2IC	XXXX X000b
006Ah	DMA3 Interrupt Control Register	DM3IC	XXXX X000b
006Bh	UART5 Bus Collision Detection Interrupt Control	U5BCNIC,	XXXX X000b
	Register CEC1 Interrupt Control Register	CEC1IC	
006Ch	UART5 Transmit Interrupt Control Register	S5TIC,	XXXX X000b
	CEC2 Interrupt Control Register	CEC2IC	
006Dh	UART5 Receive Interrupt Control Register	S5RIC	XXXX X000b

Register Structure (2/2) **Table 14.4**

Address	Register Name	Register Symbol	After Reset
006Eh	UART6 Bus Collision Detection Interrupt Control Register, Real-Time Clock Period Interrupt	U6BCNIC, RTCTIC	XXXX X000b
	Control Register		
006Fh	UART6 Transmit Interrupt Control Register,	S6TIC,	XXXX X000b
	Real-Time Clock Compare Match Interrupt Control Register	RTCCIC	
0070h	UART6 Receive Interrupt Control Register	S6RIC	XXXX X000b
0071h	UART7 Bus Collision Detection Interrupt Control Register, Remote Control Signal Receiver 0 Interrupt Control Register	U7BCNIC, PMC0IC	XXXX X000b
0072h	UART7 Transmit Interrupt Control Register, Remote Control Signal Receiver 1 Interrupt Control Register	S7TIC, PMC1IC	XXXX X000b
0073h	UART7 Receive Interrupt Control Register	S7RIC	XXXX X000b
007Bh	IICBus Interface Interrupt Control Register	IICIC	XXXX X000b
007Ch	SCL/SDA Interrupt Control Register	SCLDAIC	XXXX X000b
0205h	Interrupt Source Select Register 3	IFSR3A	00h
0206h	Interrupt Source Select Register 2	IFSR2A	00h
0207h	Interrupt Source Select Register	IFSR	00h
020Eh	Address Match Interrupt Enable Register	AIER	XXXX XX00b
020Fh	Address Match Interrupt Enable Register 2	AIER2	XXXX XX00b
0210h	Address Match Interrupt Register 0	RMAD0	00h
0211h			00h
0212h			X0h
0214h	Address Match Interrupt Register 1	RMAD1	00h
0215h			00h
0216h			X0h
0218h	Address Match Interrupt Register 2	RMAD2	00h
0219h			00h
021Ah			X0h
021Ch	Address Match Interrupt Register 3	RMAD3	00h
021Dh			00h
021Eh			X0h
0366h	Port Control Register	PCR	0000 0XX0b
0369h	NMI/SD Digital Filter Register	NMIDF	XXXX X000b

14.2.1 **Processor Mode Register 2 (PM2)**

Set the PRC1 bit in the PRCR register to 1 (write enabled) before the PM2 register is rewritten.

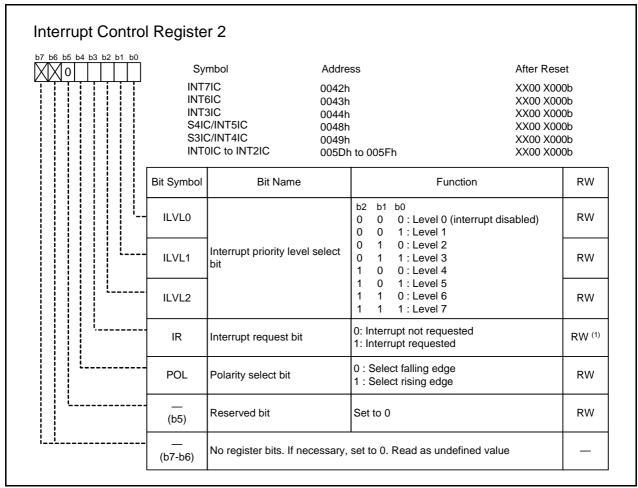

PM24 (NMI Interrupt Enable Bit) (b4)

Once this bit is set to 1, it cannot be set to 0 by a program (writing a 0 has no effect).

M16C/65 Group

Interrupt Control Register 1 14.2.2

(TB5IC, TB4IC/U1BCNIC, TB3IC/U0BCNIC, BCNIC, DM0IC to DM3IC, KUPIC, ADIC, SOTIC to S2TIC, SORIC to S2RIC, TAOIC to TA4IC, TB0IC to TB2IC, U5BCNIC/CEC1IC, S5TIC/CEC2IC, S5RIC to S7RIC, U6BCNIC/RTCTIC, S6TIC/RTCCIC, U7BCNIC/PMC0IC, S7TIC/PMC1IC, IICIC, SCLDAIC)


Rewrite this register at a point that does not generate an interrupt request.

When multiple interrupt sources share the register, select an interrupt source in registers IFSR2A and IFSR3A.

IR (Interrupt Request Bit) (b3)

The IR bit can only be set to 0 (do not write 1).

14.2.3 Interrupt Control Register 2 (INT7IC, INT6IC, INT3IC, S4IC/INT5IC, S3IC/INT4IC, INT0IC to INT2IC)

Rewrite this register at a point that does not generate an interrupt request.

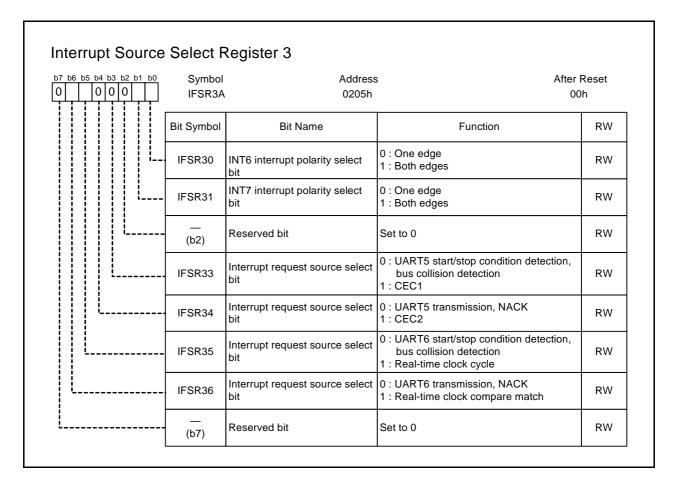
When multiple interrupt sources share the register, select an interrupt source in the IFSR register.

ILVL2-ILVL0 (Interrupt Priority Level Select Bit) (b2-b0)

In memory expansion or microprocessor mode, set bits ILVL2 to ILVL0 in registers INT6IC and INT7IC to 000b (interrupts disabled).

When the BYTE pin is low in memory expansion or microprocessor mode, set bits ILVL2 to ILVL0 in registers INT3IC, INT4IC, and INT5IC to 000b (interrupts disabled).

IR (Interrupt Request Bit) (b3)


The IR bit can only be set to 0 (do not write 1).

POL (Polarity Select Bit) (b4)

When the IFSRi bit in the IFSR register is 1 (both edges), set the POL bit in the INTiIC register to 0 (falling edge) (i = 0 to 5). Similarly, when bits IFSR30 and IFSR31 in the IFSR3A register are 1 (both edges), set the POL bit in registers INT6IC and INT7IC to 0 (falling edge).

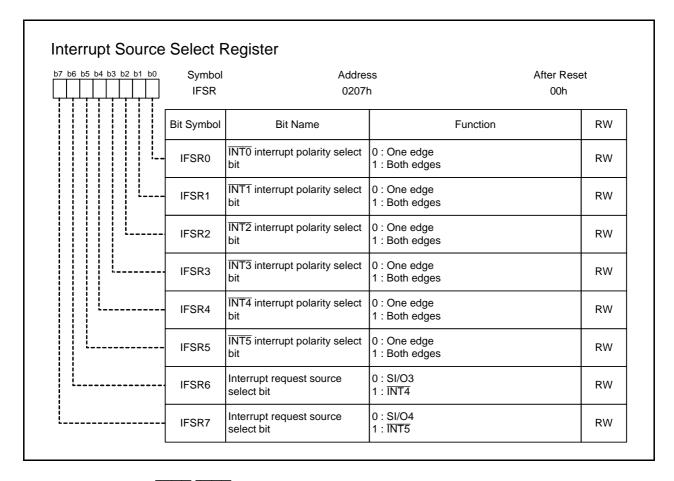
Set the POL bit in the S3IC or S4IC register to 0 (falling edge) when the IFSR6 bit in the IFSR register is 0 (SI/O3 selected) or IFSR7 bit is 0 (SI/O4 selected), respectively.

14.2.4 **Interrupt Source Select Register 3 (IFSR3A)**

IFSR30 (INT6 Interrupt Polarity Select Bit) (b0)

When setting this bit to 1 (both edges), make sure the POL bit in the INT6IC register is set to 0 (falling edge).

IFSR31 (INT7 Interrupt Polarity Select Bit) (b1)


When setting this bit to 1 (both edges), make sure the POL bit in the INT7IC register is set to 0 (falling edge).

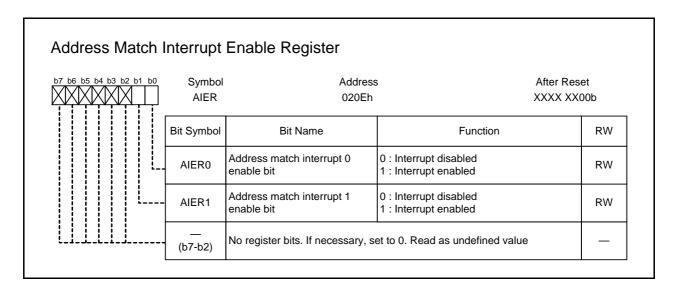
Interrupt Source Select Register 2 (IFSR2A) 14.2.5

Under development

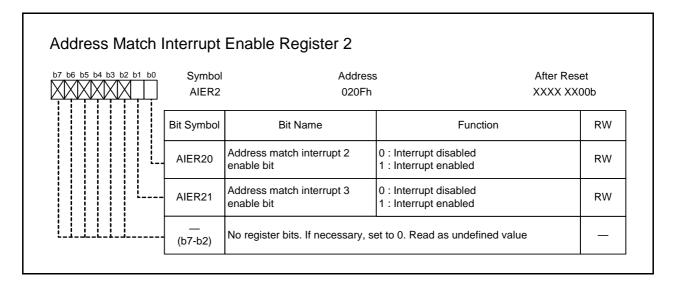
7 b6 b5 b4 b3 b2 b1 b0	Symbol	Address	S A	fter Reset
	IFSR2A	0206h		00h
	Bit Symbol	Bit Name	Function	RW
	— (b1-b0)	Reserved bits	Set to 0	RW
	IFSR22	Interrupt request source select bit	0 : Not used 1 : I ² C bus interface	RW
	IFSR23	Interrupt request source select bit	0 : Not used 1 : SCL/SDA	RW
	IFSR24	Interrupt request source select bit	UART7 start/stop condition detection bus collision detection Remote control 0	on, RW
	IFSR25	Interrupt request source select bit	0 : UART7 transmission, NACK 1 : Remote control 1	RW
	IFSR26	Interrupt request source select bit	Timer B3 : UART0 start/stop condition detection bus collision detection	on, RW
	IFSR27	Interrupt request source select bit	Timer B4 UART1 start/stop condition detection bus collision detection	on, RW

14.2.6 **Interrupt Source Select Register (IFSR)**

IFSR5-IFSR0 (INT5-INT0 Interrupt Polarity Select Bit) (b5-b0)

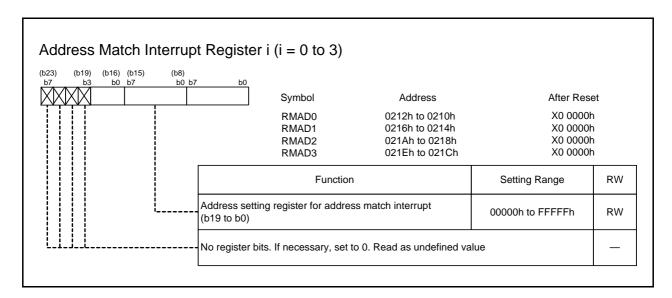

When setting this bit to 1 (both edges), make sure the POL bit in registers INT0IC to INT5IC are set to 0 (falling edge).

IFSR7, IFSR6 (Interrupt Request Source Select Bit) (b7, b6)

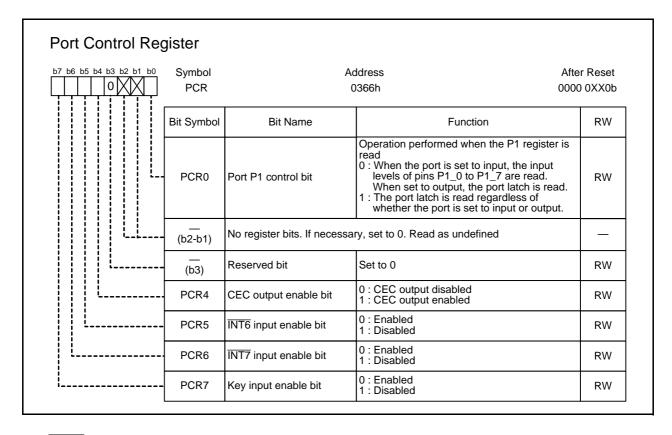

In memory expansion or microprocessor mode, when the data bus is 16 bits wide (BYTE pin is low), set this bit to 0 (SI/O3, SI/O4).

When setting this bit to 0 (SI/O3, SI/O4), make sure the POL bit in registers S3IC and S4IC are set to 0 (falling edge).

14.2.7 Address Match Interrupt Enable Register (AIER)



14.2.8 Address Match Interrupt Enable Register 2 (AIER2)

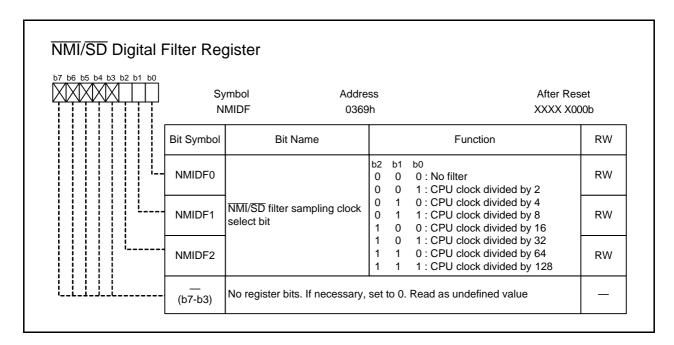


Under development

Address Match Interrupt Register i (RMADi) (i = 0 to 3) 14.2.9

14.2.10 Port Control Register (PCR)

INT6 Input Enable Bit (PCR5) (b5)


To use the AN2_4 pin as an analog input pin, set the PCR5 bit to 1 (INT6 input disabled).

INT7 Input Enable Bit (PCR5) (b5)

To use the AN2_5 pin as an analog input pin, set the PCR6 bit to 1 (INT7 input disabled). Key Input Enable Bit(PCR7) (b7)

To use pins AN4 to AN7 as analog input pins, set the PCR7 bit to 1 (key input disabled).

14.2.11 NMI/SD Digital Filter Register (NMIDF)

14.3 Types of Interrupt

Figure 14.1 shows Types of Interrupt.

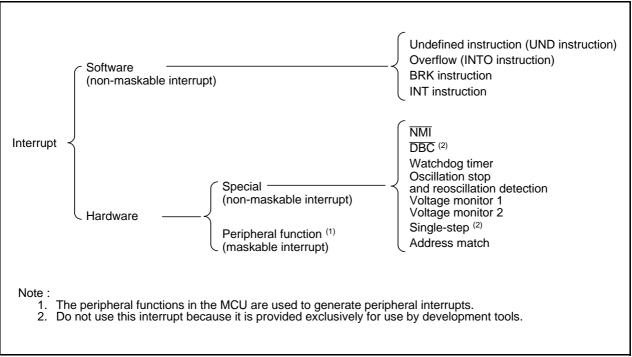


Figure 14.1 Types of Interrupt

 Maskable interrupt : The interrupt priority can be changed by enabling (disabling) an

interrupt with the interrupt enable flag (I flag) or by using interrupt

priority levels.

 Non-maskable interrupt : The interrupt priority cannot be changed by enabling (disabling) an

interrupt with the interrupt enable flag (I flag) or by using interrupt

priority levels.

14.4 **Software Interrupts**

A software interrupt occurs when executing instructions. Software interrupts are non-maskable interrupts.

Undefined Instruction Interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

14.4.2 **Overflow Interrupt**

An overflow interrupt occurs when executing the INTO instruction with the O flag in the FLG register set to 1 (the operation resulted in an overflow). The following are instructions whose O flag changes by an arithmetic operation:

ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, and SUB

14.4.3 **BRK Interrupt**

A BRK interrupt occurs when the BRK instruction is executed.

14.4.4 **INT Instruction Interrupt**

An INT instruction interrupt occurs when the INT instruction is executed. Software interrupt numbers 0 to 63 can be specified for the INT instruction. Because software interrupt numbers 2 to 31, 41 to 51, 59, and 60 are assigned to peripheral function interrupts, the same interrupt routine used for peripheral function interrupts can be executed by executing the INT instruction.

For software interrupt numbers 0 to 31, the U flag is saved on the stack during instruction execution and is cleared to 0 (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. For software interrupt numbers 32 to 63, the U flag does not change state during instruction execution, and the SP selected at the time is used.

14.5 **Hardware Interrupts**

Hardware interrupts are classified into two types: special interrupts and peripheral function interrupts.

14.5.1 **Special Interrupts**

Special interrupts are non-maskable interrupts.

NMI Interrupt

An NMI interrupt is generated when input on the NMI pin changes state from high to low. For details about the NMI interrupt, refer to 14.9 "NMI Interrupt".

14.5.1.2 **DBC** Interrupt

Do not use this interrupt because it is provided exclusively for use by development tools.

14.5.1.3 **Watchdog Timer Interrupt**

The interrupt is generated by the watchdog timer. Once a watchdog timer interrupt is generated, be sure to refresh the watchdog timer. For details about the watchdog timer, refer to 15. "Watchdog Timer".

14.5.1.4 **Oscillation Stop and Re-Oscillation Detection Interrupt**

The interrupt is generated by the oscillation stop and re-oscillation detection function. For details about the oscillation stop and re-oscillation detection function, refer to 8. "Clock Generator".

14.5.1.5 **Voltage Monitor 1, Voltage Monitor 2**

The interrupt is generated by the voltage detection circuit. For details about the voltage detection circuit, refer to 7. "Voltage Detector".

14.5.1.6 Single-Step Interrupt

Do not use this interrupt because it is provided exclusively for use by development tools.

14.5.1.7 **Address Match Interrupt**

When the AIER0 or AIER1 bit in the AIER register, or the AIER20 or AIER21 bit in the AIER2 register is 1 (address match interrupt enabled), an address match interrupt is generated immediately before executing an instruction at the address indicated by the corresponding registers RMAD0 to RMAD3. For details about the address match interrupt, refer to 14.11 "Address Match Interrupt".

14.5.2 **Peripheral Function Interrupts**

A peripheral function interrupt occurs when a request from a peripheral function in the MCU is acknowledged. Peripheral function interrupts are maskable interrupts. See Table 14.6 and Table 14.7 "Relocatable Vector Tables". Refer to the descriptions of each function for details on how the corresponding peripheral function interrupt is generated.

14.6 **Interrupts and Interrupt Vectors**

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 14.2 shows an Interrupt Vector.

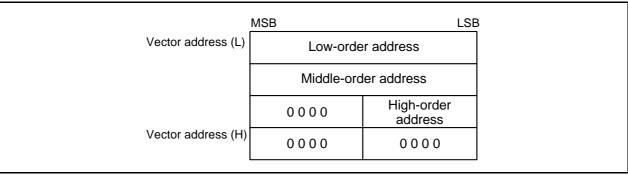


Figure 14.2 Interrupt Vector

14.6.1 **Fixed Vector Tables**

The fixed vector tables are allocated to addresses from FFFDCh to FFFFFh. Table 14.5 lists the Fixed Vector Tables. In the flash memory MCU version, the vector addresses (H) of fixed vectors are used for the ID code check function and OFS1 address. For details, refer to 30.5 "Flash Memory Rewrite Disable Function".

Table 14.5 Fixed Vector Tables

Interrupt Source	Vector Table Addresses Address (L) to Address (H)	Reference
Undefined instruction (UND instruction)	FFFDCh to FFFDFh	M16C/60, M16C/20, M16C/ Tiny Series Software Manual
Overflow (INTO instruction)	FFFE0h to FFFE3h	
BRK instruction (2)	FFFE4h to FFFE7h	
Address match	FFFE8h to FFFEBh	14.11 "Address Match Interrupt"
Single-step (1)	FFFECh to FFFEFh	-
Watchdog timer, oscillation stop and re-oscillation detection, voltage monitor 1, voltage monitor 2	FFFF0h to FFFF3h	15. "Watchdog Timer"8. "Clock Generator"7. "Voltage Detector"
DBC (1)	FFFF4h to FFFF7h	-
NMI	FFFF8h to FFFFBh	14.9 "NMI Interrupt"
Reset	FFFFCh to FFFFFh	6. "Resets"

Notes:

- 1. Do not use this interrupt because it is provided exclusively for use by development tools.
- 2. If the content of address FFFE6h is FFh, program execution starts from the address shown by the vector in the relocatable vector table.

14.6.2 **Relocatable Vector Tables**

The 256 bytes beginning with the start address set in the INTB register compose a relocatable vector table area. Table 14.6 and Table 14.7 list the Relocatable Vector Tables. Setting an even address in the INTB register results in the interrupt sequence being executed faster than setting an odd address.

Table 14.6 Relocatable Vector Tables (1/2)

		_	
Interrupt Source	Vector Address (1) Address (L) to Address (H)	Software Interrupt Number	Reference
BRK instruction (5)	+0 to +3 (0000h to 0003h)	0	M16C/60, M16C/20,
- (Reserved)		1	M16C/Tiny Series Software Manual
INT7	+8 to +11 (0008h to 000Bh)	2	14.8 "INT Interrupt"
ĪNT6	+12 to +15 (000Ch to 000Fh)	3	
ĪNT3	+16 to +19 (0010h to 0013h)	4	
Timer B5	+20 to +23 (0014h to 0017h)	5	18. "Timer B"
Timer B4, UART1 start/stop condition	+24 to +27 (0018h to 001Bh)	6	18. "Timer B"
detection, bus collision detection (4)			
Timer B3, UART0 start/stop condition	+28 to +31 (001Ch to 001Fh)	7	23. "Serial Interface UARTi
detection, bus collision detection (4)			(i = 0 to 2, 5 to 7)"
SI/O4, ĪNT5 (2)	+32 to +35 (0020h to 0023h)	8	14.8 "INT Interrupt"
SI/O3, INT4 (2)	+36 to +39 (0024h to 0027h)	9	24. "Serial Interface SI/O3 and SI/O4"
UART2 start/stop condition	+40 to +43 (0028h to 002Bh)	10	23. "Serial Interface UARTi
detection, bus collision detection (4)			(i = 0 to 2, 5 to 7)"
DMA0	+44 to +47 (002Ch to 002Fh)	11	16. "DMAC"
DMA1	+48 to +51 (0030h to 0033h)	12	
Key input interrupt	+52 to +55 (0034h to 0037h)	13	14.10 "Key Input Interrupt"
A/D converter	+56 to +59 (0038h to 003Bh)	14	27. "A/D Converter"
UART2 transmit, NACK2 (3)	+60 to +63 (003Ch to 003Fh)	15	23. "Serial Interface UARTi (i = 0 to 2, 5 to 7)"
UART2 receive, ACK2 (3)	+64 to +67 (0040h to 0043h)	16	
UART0 transmit, NACK0 (3)	+68 to +71 (0044h to 0047h)	17	
UART0 receive, ACK0 (3)	+72 to +75 (0048h to 004Bh)	18	
UART1 transmit, NACK1 (3)	+76 to +79 (004Ch to 004Fh)	19	
UART1 receive, ACK1 (3)	+80 to +83 (0050h to 0053h)	20	
Timer A0	+84 to +87 (0054h to 0057h)	21	17. "Timer A"
Timer A1	+88 to +91 (0058h to 005Bh)	22	
Timer A2	+92 to +95 (005Ch to 005Fh)	23	
Timer A3	+96 to +99 (0060h to 0063h)	24	
Timer A4	+100 to +103 (0064h to 0067h)	25	
Timer B0	+104 to +107 (0068h to 006Bh)	26	18. "Timer B"
Timer B1	+108 to +111 (006Ch to 006Fh)	27	
Timer B2	+112 to +115 (0070h to 0073h)	28	

Notes:

- 1. Address relative to address in INTB.
- 2. Use bits IFSR6 and IFSR7 in the IFSR register to select a source.
- 3. In I²C mode, NACK and ACK are interrupt sources.
- 4. Use bits IFSR26 and IFSR27 in the IFSR2A register to select a source.
- 5. These interrupts cannot be disabled using the I flag.

Table 14.7 Relocatable Vector Tables (2/2)

Interrupt Source	Vector Address (1) Address (L) to Address (H)	Software Interrupt Number	Reference	
ĪNT0	+116 to +119 (0074h to 0077h)	29	14.8 "INT Interrupt"	
INT1	+120 to +123 (0078h to 007Bh)	30		
ĪNT2	+124 to +127 (007Ch to 007Fh)	31		
INT instruction interrupt (3)	+128 to +131 (0080h to 0083h) to +160 to +163 (00A0h to 00A3h)	32 to 40	M16C/60, M16C/20, M16C/Tiny Series Software Manuall	
DMA2	+164 to +167 (00A4h to 00A7h)	41	16. "DMAC"	
DMA3	+168 to +171 (00A8h to 00ABh)	42		
UART5 start/stop condition detection, bus collision detection, CEC1 ⁽⁴⁾	+172 to +175 (00ACh to 0AFh)	43	23. "Serial Interface UARTi (i = 0 to 2, 5 to 7)"	
UART5 transmit, NACK5, CEC2 (2), (4)	+176 to +179 (00B0h to 00B3h)	44	26. "Consumer Electronics Control	
UART5 receive, ACK5 (2)	+180 to +183 (00B4h to 00B7h)	45	(CEC) Function"	
UART6 start/stop condition detection, bus collision detection, real-time clock cycle (5)	+184 to +187 (00B8h to 00BBh)	46	20. "Real-Time Clock" 23. "Serial Interface UARTi (i = 0 to 2, 5 to	
UART6 transmit, NACK6, real-time clock compare match (2), (5)	+188 to +191 (00BCh to 00BFh)	47	17) "	
UART6 receive, ACK6 (2)	+192 to +195 (00C0h to 00C3h)	48		
UART7 start/stop condition detection, bus collision detection, remote control 0 (6)	+196 to +199 (00C4h to 00C7h)	49	22. "Remote Control Signal Receiver" 23. "Serial Interface	
UART7 transmit, NACK7, remote control 1 ^{(2), (6)}	+200 to +203 (00C8h to 00CBh)	50	UARTi (i = 0 to 2, 5 to 7)"	
UART7 receive, ACK7 (2)	+204 to +207 (00CCh to 00CFh)	51		
- (Reserved)		52 to 58		
I ² C-bus interface interrupt ⁽⁷⁾	+236 to +239 (00ECh to 00EFh)	59	25. "Multi-Master I ² C-	
SCL/SDA interrupt (7)	+240 to +243 (00F0h to 00F3h)	60	bus Interface"	
- (Reserved)		61 to 63		

Notes:

- 1. Address relative to address in INTB.
- 2. In I²C mode, NACK and ACK are the interrupt sources.
- 3. These interrupts cannot be disabled using the I flag.
- 4. Use bits IFSR33 and IFSR34 in the IFSR3 register to select a source.
- 5. Use bits IFSR35 and IFSR36 in the IFSR3 register to select a source.
- Use bits IFSR24 and IFSR25 in the IFSR2 register to select a source.
- 7. Use bits IFSR22 and IFSR23 in the IFSR2 register to select a source.

14.7 **Interrupt Control**

14.7.1 **Maskable Interrupt Control**

The settings of enabling/disabling the maskable interrupts and of the acceptance priority are explained below. Note that these explanations do not apply to non-maskable interrupts.

Use the I flag in the FLG register, IPL, and bits ILVL2 to ILVL0 in the corresponding interrupt control register to enable or disable a maskable interrupt. Whether an interrupt is requested or not is indicated by the IR bit in the corresponding interrupt control register.

14.7.1.1 I Flag

The I flag enables or disables maskable interrupts. Setting the I flag to 1 (enabled) enables maskable interrupts. Setting the I flag to 0 (disabled) disables all maskable interrupts.

14.7.1.2 IR Bit

The IR bit is set to 1 (interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted, the IR bit is automatically set to 0 (interrupt not requested).

The IR bit can be set to 0 by a program. Do not write 1 to this bit.

14.7.1.3 Bits ILVL2 to ILVL0 and IPL

Interrupt priority levels can be set using bits ILVL2 to ILVL0.

Table 14.8 lists the Settings of Interrupt Priority Levels and Table 14.9 lists the Interrupt Priority Levels Enabled by IPL.

An interrupt request is accepted under the following conditions.

- I flag = 1
- IR bit = 1
- Interrupt priority level > IPL

The I flag, IR bit, bits ILVL2 to ILVL0 and IPL are independent each other. In no case do they affect one another.

Table 14.8 Settings of Interrupt Priority Levels

Bits ILVL2 to ILVL0	Interrupt Priority Level	Priority
000b	Level 0 (interrupt disabled)	-
001b	Level 1	Low
010b	Level 2	1
011b	Level 3	
100b	Level 4	
101b	Level 5	
110b	Level 6	▼
111b	Level 7	High

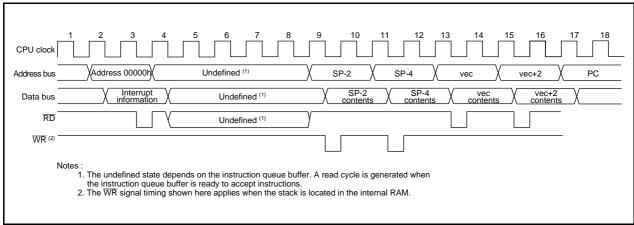
Table 14.9 Interrupt Priority Levels Enabled by IPL

IPL	Enabled Interrupt Priority Levels	
000b	Level 1 and above are enabled	
001b	Level 2 and above are enabled	
010b	Level 3 and above are enabled	
011b	Level 4 and above are enabled	
100b	Level 5 and above are enabled	
101b	Level 6 and above are enabled	
110b	Level 7 and above are enabled	
111b	All maskable interrupts are disabled	

14.7.2 Interrupt Sequence

The interrupt sequence is explained here. The sequence starts when an interrupt request is accepted and ends when the interrupt routine is executed.

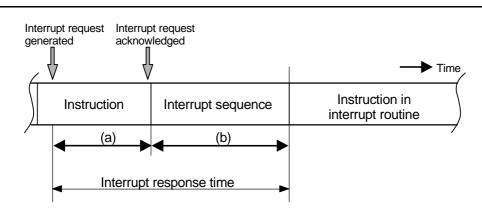
If an interrupt request occurs during execution of an instruction, the processor determines its priority after the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. However, if an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR, or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.


The CPU behavior during the interrupt sequence is described below. Figure 14.3 shows Time Required for Executing Interrupt Sequence.

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 00000h. Then, the IR bit applicable to the interrupt information is set to 0 (interrupt not requested).
- (2) The FLG register, prior to the interrupt sequence, is saved to a temporary register (1) within the CPU.
- (3) Flags I, D, and U in the FLG register are set as follows:
 - The I flag is set to 0 (interrupt disabled)
 - The D flag is set to 0 (single-step interrupt disabled).
 - The U flag is set to 0 (ISP selected). Note that the U flag does not change states when an INT instruction for software interrupt numbers 32 to 63 is executed.
- (4) The temporary register (1) within the CPU is saved on the stack.
- (5) The PC is saved on the stack.
- (6) The interrupt priority level of the acknowledged interrupt is set in the IPL.
- (7) The start address of the relevant interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt routine.

Note:


1. Temporary registers cannot be modified by users.

Time Required for Executing Interrupt Sequence

14.7.3 **Interrupt Response Time**

Figure 14.4 shows the Interrupt Response Time. The interrupt response or interrupt acknowledge time denotes the time from when an interrupt request is generated until the first instruction in the interrupt routine is executed. Specifically, it consists of the time from when an interrupt request is generated until the executing instruction is completed ((a) in Figure 14.4) and the time during which the interrupt sequence is executed ((b) in Figure 14.4).

- (a) The time from when an interrupt request is generated until the instruction currently executing is completed. The length of this time varies with the instruction being executed. The DIVX instruction requires the longest time, which is equal to 30 cycles (no wait state, and when the divisor is a register).
- (b) The time during which the interrupt sequence is executed. For details, see the table below. Note, however, that the values in this table must be increased by two cycles for the DBC interrupt and by one cycle for the address match and single-step interrupts.

Interrupt Vector Address	SP Value	16-Bit Bus, No Wait States	8-Bit Bus, No Wait States
Even	Even	18 cycles	20 cycles
Even	Odd	19 cycles	20 cycles
Odd	Even	19 cycles	20 cycles
Odd	Odd	20 cycles	20 cycles

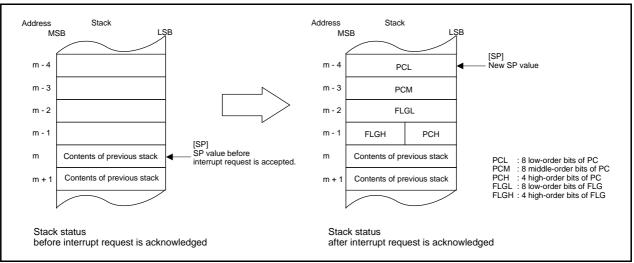
Figure 14.4 **Interrupt Response Time**

14.7.4 Variation of IPL When Interrupt Request is Accepted

When a maskable interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.

When a software interrupt or special interrupt request is accepted, one of the interrupt priority levels listed in Table 14.10 is set in the IPL. Table 14.10 lists the IPL Level Set in IPL When Software or Special Interrupt is Accepted.

Table 14.10 IPL Level Set in IPL When Software or Special Interrupt is Accepted


Interrupt Source	Level Set in IPL
Watchdog timer, NMI, oscillation stop and re-oscillation detection, voltage monitor1, voltage monitor 2	7
Software, address match, DBC, single-step	Not changed

14.7.5 **Saving Registers**

In the interrupt sequence, the FLG register and PC are saved on the stack.

At this time, the 4 high-order bits of the PC and the 4 high-order (IPL) and 8 low-order bits in the FLG register, 16 bits in total, are saved on the stack first. Next, the 16 low-order bits of the PC are saved. Figure 14.5 shows the Stack Status Before and After Acceptance of Interrupt Request.

The other necessary registers must be saved by a program at the beginning of the interrupt routine. Use the PUSHM instruction, and all registers except SP can be saved with a single instruction.

Stack Status Before and After Acceptance of Interrupt Request

The register save operation carried out in the interrupt sequence is dependent on whether the SP (1), at the time of acceptance of an interrupt request, is even or odd. If the SP (1) is even, the FLG register and the PC are saved 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. Figure 14.6 shows the Register Save Operation.

Note:

When an INT instruction with software numbers 32 to 63 has been executed, it is the SP indicated by the U flag. Otherwise, it is the ISP.

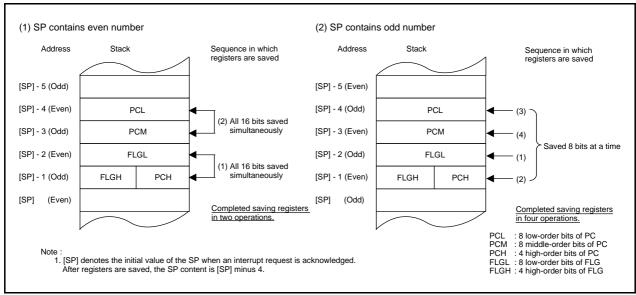


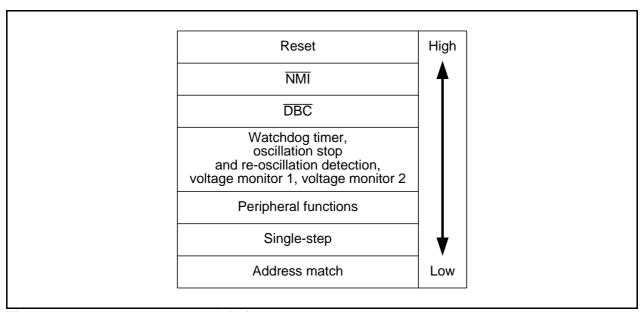
Figure 14.6 Register Save Operation

14.7.6 **Returning from an Interrupt Routine**

The FLG register and PC saved in the stack immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine. Then, the CPU returns to the program which was being executed before the interrupt request was accepted.

Restore the other registers saved by a program within the interrupt routine using the POPM or another instruction before executing the REIT instruction.

The register bank is switched back to the bank used prior to the interrupt sequence by the REIT instruction.


14.7.7 **Interrupt Priority**

If two or more interrupt requests occur at the same sampling points (the point in time at which interrupt requests are detected), the interrupt with the highest priority is acknowledged.

For maskable interrupts (peripheral function interrupts), any priority level can be selected using bits ILVL2 to ILVL0. However, if two or more maskable interrupts have the same priority level, their interrupt priority is selected by hardware, with the highest priority interrupt accepted.

The watchdog timer interrupt and other special interrupts have their priority levels set in hardware. Figure 14.7 shows the Hardware Interrupt Priority.

Software interrupts are not affected by the interrupt priority. When an instruction is executed, control always branches to the interrupt routine.

Hardware Interrupt Priority Figure 14.7

14.7.8 Interrupt Priority Level Select Circuit

The interrupt priority level select circuit selects the highest priority interrupt among sampled interrupt requests at the same sampling point.

Figure 14.8 shows the Interrupt Priority Select Circuit 1, and Figure 14.9 shows the Interrupt Priority Select Circuit 2.

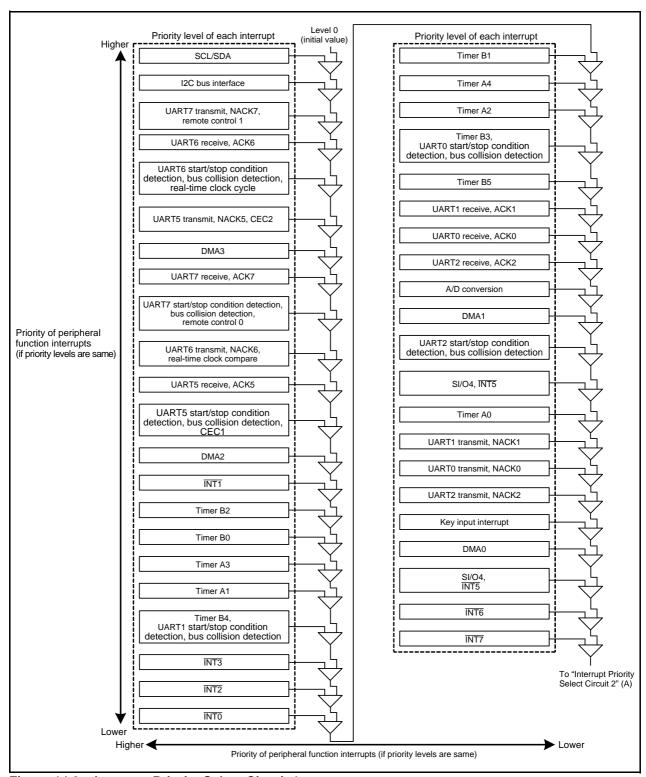
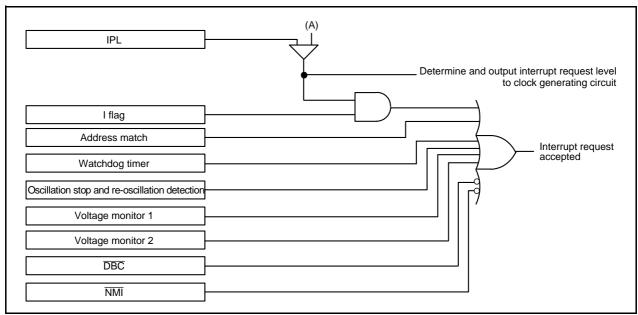



Figure 14.8 **Interrupt Priority Select Circuit 1**

Interrupt Priority Select Circuit 2 Figure 14.9

14.7.9 **Multiple Interrupts**

The following shows the internal bit states when control has branched to an interrupt routine.

• I flag = 0 (interrupt disabled) • IR bit = 0 (interrupt not requested)

• Interrupt priority level= IPL

By setting the I flag to 1 (interrupt enabled) in the interrupt routine, an interrupt request with higher priority than the IPL can be acknowledged.

The interrupt requests not acknowledged because of their low interrupt priority level are kept pending. When the IPL is restored by an REIT instruction and interrupt priority is resolved against it, the pending interrupt request is acknowledged if the following condition is met:

Interrupt priority level of pending interrupt request > Restored IP

14.8 **INT** Interrupt

The \overline{INTi} interrupt (i = 0 to 7) is triggered by the edges of external inputs. The edge polarity is selected using the IFSRi bit in the IFSR register, or the IFSR30 or IFSR31 bit in the IFSR3A register.

The INT4 and INT5 each share an interrupt vector and interrupt control register with SI/O3 and SI/O4, respectively. To use the INT4 interrupt, set the IFSR6 bit in the IFSR register to 1 (INT4). To use the INT5 interrupt, set the IFSR7 bit in the IFSR register to 1 (INT5).

After modifying the IFSR6 or IFSR7 bit, set the corresponding IR bit to 0 (interrupt not requested) before enabling the interrupt.

To use the INT6 interrupt, set the PCR5 bit in the PCR register to 0 (INT6 input enabled). To use the INT7 interrupt, set the PCR6 bit in the PCR register to 0 (INT7 input enabled).

NMI Interrupt 14.9

An NMI interrupt is generated when input to the NMI pin changes state from high to low. The NMI interrupt is a non-maskable interrupt. To use the NMI interrupt, set the PM24 bit in the PM2 register to 1 (NMI function). The NMI input uses the digital filter. Refer to 13. "Programmable I/O Ports" for the digital filter. Figure 14.10 shows NMI Interrupt Block Diagram.

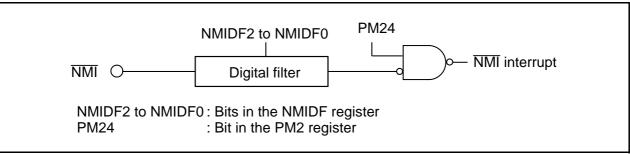


Figure 14.10 NMI Interrupt Block Diagram

14.10 Key Input Interrupt

If the PCR7 bit in the PCR register is 0 (KIO to KIO key input enabled), set bits PD10_4 to PD10_7 in the PD10 register to 0 (input). When input to any pin from P10_4 to P10_7 becomes low, the IR bit in the KUPIC register becomes 1 (key input interrupt request). When using any pin from $\overline{\text{KIO}}$ to $\overline{\text{KI3}}$ for the key input interrupt, do not use all four pins AN4 to AN7 as analog input pins. While input to any pin from P10_4 to P10_7 is low, inputs to all other pins of the port are not detected as interrupts.

Key input interrupts can be used as a key-on wake up function for getting the MCU out of wait or stop mode.

Figure 14.11 shows Block Diagram of Key Input Interrupt.

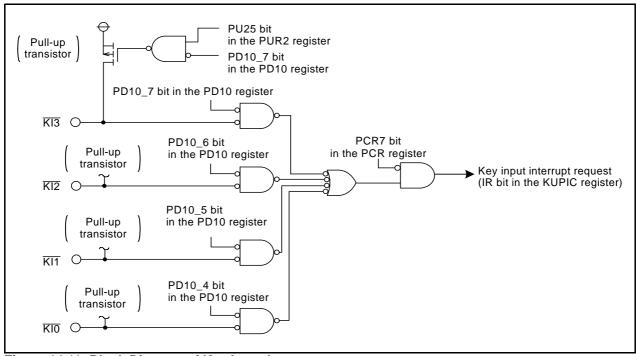


Figure 14.11 Block Diagram of Key Input Interrupt

14.11 Address Match Interrupt

An address match interrupt is generated immediately before executing the instruction at the address indicated by the RMADi register (i = 0 to 3). Set the start address of any instruction in the RMADi register. Use bits AIER0 and AIER1 in the AIER register, and bits AIER20 and AIER21 in the AIER2 register to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL. When an address match interrupt request is acknowledged, the value of the PC that is saved to the stack area (refer to 14.7.5 "Saving Registers") varies depending on the instruction at the address indicated by the RMADi register. (The value of the PC that is saved to the stack area is not the correct return address.) Therefore, follow one of the methods described below to return from the address match interrupt.

- Rewrite the contents of the stack and then use the REIT instruction to return.
- Restore the stack to its previous state by using the POP or other instructions before the interrupt request was accepted and then use a jump instruction to return.

Table 14.11 lists the Value of PC Saved on Stack Area When Address Match Interrupt Request Accepted. Note that when using an 8-bit external bus, no address match interrupts can be used for external areas. Refer to 14.2.7 "Address Match Interrupt Enable Register (AIER)", 14.2.8 "Address Match Interrupt Enable Register 2 (AIER2)", 14.2.9 "Address Match Interrupt Register i (RMADi) (i = 0 to 3)".

Table 14.11 Value of PC Saved on Stack Area When Address Match Interrupt Request Accepted

	Instruction at	Value of the PC that is saved to the stack area				
	peration code in shown below #IMM8, dest #IMM8, dest #IMM8, dest #IMM8, dest #IMM8 #IMM8	w among 8 SUB.B:S MOV.B:S STZX PUSHM JSRS	-bit operation #IMM8, dest #IMM8, dest #IMM81, #IMM src #IMM8	AND.B:S STZ	#IMM8, dest #IMM8, dest	The address indicated by the RMADi register +2
Instructions other than the above					The address indicated by the RMADi register +1	

Value of PC that saved on stack area: Refer to 14.7.5 "Saving Registers".

Table 14.12 Relationship between Address Match Interrupt Sources and Associated Registers

Address Match Interrupt Sources	Address Match Interrupt Enable Bit	Address Match Interrupt Register
Address match interrupt 0	AIER0	RMAD0
Address match interrupt 1	AIER1	RMAD1
Address match interrupt 2	AIER20	RMAD2
Address match interrupt 3	AIER21	RMAD3

14.12 Non-Maskable Interrupt Source Discrimination

The watchdog timer interrupt, oscillation stop and re-oscillation detection interrupt, voltage monitor 1 interrupt, and voltage monitor 2 interrupt share the same interrupt vector. When using some functions together, read the detect flags of the events in an interrupt processing program, and determine the interrupt source of the interrupt request. Table 14.13 lists Bits Used for Non-Maskable Interrupt Source Discrimination.

Table 14.13 Bits Used for Non-Maskable Interrupt Source Discrimination

Interrupt	Detect Flag				
Interrupt	Bit Position	Function			
Watchdog timer	VW2C3 bit in the VW2C register (watchdog timer underflow detected)	0: not detected 1: detected			
<u>'</u>	CM22 bit in the CM2 register (oscillation stop and re-oscillation detected)				
Voltage monitor 1	VW1C2 bit in the VW1C register (Vdet1 passage detected)				
Voltage monitor 2	VW2C2 bit in the VW2C register (Vdet2 passage detected)				

14.13 Notes on Interrupts

14.13.1 Reading Address 00000h

Do not read the address 00000h by a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from address 00000h during the interrupt sequence. At this time, the IR bit of the accepted interrupt is cleared to 0. If the address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. Thus, some problems may be caused: interrupts may be canceled, and an unexpected interrupt request may be generated.

14.13.2 **SP Setting**

Set a value in the SP (USP, ISP) before accepting an interrupt. The SP (USP, ISP) is set to 0000h after reset. Therefore, if an interrupt is accepted before setting a value in the SP (USP, ISP), the program may go out of control.

Especially when using the NMI interrupt, set a value in the ISP at the beginning of the program. For the first instruction after reset only, all interrupts including the NMI interrupt are disabled.

14.13.3 NMI Interrupt

- When the NMI interrupt is not used, set the PM24 bit in the PM2 register to 0 (NMI interrupt dis-
- Stop mode cannot be entered while the 24 bit is 1 (NMI interrupt enabled) and input on the NMI pin is low. When input on the MMI pin is low, the CM10 bit in the CM1 register is fixed to 0.
- Do not enter wait mode while the 24 bit is 1 (NMI interrupt enabled) and input on the NMI pin is low because the CPU clock remains active even though the CPU stops, and therefore, the current consumption of the chip does not drop. In this case, the normal condition is restored by the next interrupt generated.
- Set the low- and high-level durations of the input signal to the NMI pin to 2 CPU clock cycles + 300 ns or more.

14.13.4 Changing an Interrupt Source

If the interrupt source is changed, the IR bit in the interrupt control register may inadvertently be set to 1 (interrupt requested). To use an interrupt, change the interrupt source, and then set the IR bit to 0 (interrupt not requested).

In this section, the changing of an interrupt source refers to all elements (e.g. changing the mode of a peripheral function) used in changing the interrupt source, polarity, and timing assigned to each software interrupt number. When using an element to change the interrupt source, polarity, or timing, make the change before setting the IR bit to 0 (interrupt not requested). Refer to the descriptions of the individual peripheral functions for details of the peripheral function interrupts.

Figure 14.12 shows the Procedure for Changing the Interrupt Generate Factor.

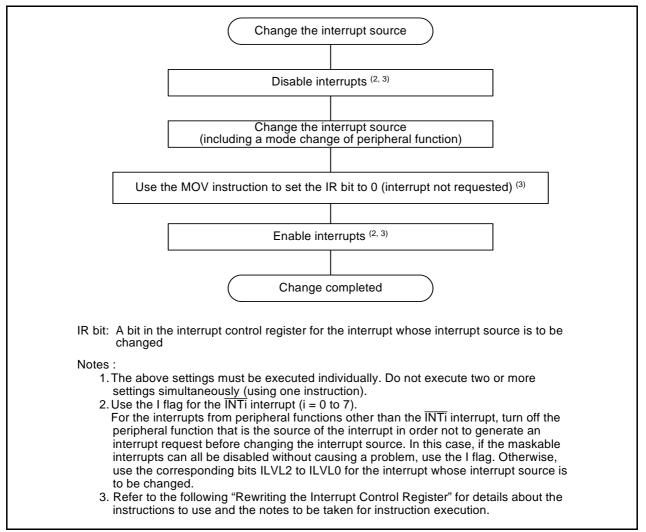


Figure 14.12 Procedure for Changing the Interrupt Generate Factor

14.13.5 Rewriting the Interrupt Control Register

- (a) The interrupt control register for any interrupt should be modified in places where no requests for that register may occur. If an interrupt request generation is a possibility, disable an interrupt and then rewrite the contents of the interrupt control register.
- (b) When rewriting the contents of the interrupt control register after disabling an interrupt, be careful with the instruction used.
 - Changing bits other than the IR bit

When interrupts corresponding to the register occur, the IR bit may not be set to 1 (interrupt requested) and the interrupts may be ignored. If this causes a problem, use one of the following instructions to change the registers.

Instructions: AND, OR, BCLR, or BSET.

· Changing the IR bit

Depending on the instruction used, the IR bit may not always be set to 0 (interrupt not requested). Therefore, use the MOV instruction to set the IR bit to 0.

(c) When using the I flag to disable an interrupt, set the I flag as shown in the sample program code shown below. (Refer to (b) regarding rewriting the contents of the interrupt control registers using the sample program code.)

Examples 1 through 3 show how to prevent the I flag from being set to 1 (interrupt enabled) before the contents of the interrupt control register are rewritten, owing to the effects of the internal bus and the instruction queue buffer.

Example 1: Using the NOP instruction to pause the program until the interrupt control register is modified INT SWITCH1:

```
FCLR
                           ; Disable interrupts.
```

AND.B #00h, 0055h ; Set the TA0IC register to 00h.

NOP

NOP

FSET 1 ; Enable interrupts.

The number of the NOP instructions is as follows.

```
PM20 = 1 (1 wait): 2, PM20 = 0 (2 waits): 3, when using the \overline{HOLD} function: 4.
```

Example 2: Using a dummy read to delay the FSET instruction

INT SWITCH2:

FCLR ; Disable interrupts.

AND.B ; Set the TA0IC register to 00h. #00h, 0055h

MOV.W MEM, R0 ; Dummy read. **FSET** ; Enable interrupts.

Example 3: Using the POPC instruction to change the I flag

INT_SWITCH3:

PUSHC FLG

FCLR ; Disable interrupts.

AND.B #00h, 0055h ; Set the TA0IC register to 00h.

POPC FLG ; Enable interrupts. M16C/65 Group

14.13.6 INT Interrupt

- Either a low level of at least tw (INL) width or a high level of at least tw (INH) width is necessary for the signal input to pins $\overline{\text{INT0}}$ through $\overline{\text{INT7}}$ regardless of the CPU operation clock.
- If the POL bit in registers INT0IC to INT7IC, bits IFSR7 to IFSR0 in the IFSR register, or bits IFSR31 to IFSR30 in the IFSR3A register are changed, the IR bit may inadvertently be set to 1 (interrupt requested). Be sure to set the IR bit to 0 (interrupt not requested) after changing any of these register bits.

15. Watchdog Timer

15.1 Introduction

The watchdog timer contains a 15-bit counter, and the count source protection mode (enabled/disabled) can be set.

Table 15.1 shows Watchdog Timer Specification.

Refer to 6.4.8 "Watchdog Timer Reset" for details of watchdog timer reset.

Figure 15.1 shows Watchdog Timer Block Diagram.

Table 15.1 Watchdog Timer Specification

Item	Count Source Protection Mode Disabled				
Count source	CPU clock fOCO-S				
Count operation	Decrement				
Count start conditions	Either of the following can be selected				
	(selected by the WDTON bit in the OFS1	address).			
	 Count automatically starts after reset. 				
	 Count starts by writing to the WDTS reg 	gister.			
Count stop condition	Stop mode, wait mode, bus hold None				
Watchdog timer	• Reset (Refer to 6. "Resets")				
counter initial value	Write 00h, and then FFh to the WDTR register.				
setting conditions	Underflow				
Operation when the	Watchdog timer interrupt or watchdog	Watchdog timer reset			
timer underflows	timer reset				
Selectable functions	Prescaler divide ratio				
	Divide-by-16 or divide-by-128 (selected	by the WDC7 bit in the WDC register)			
	However, divide-by-2 is selected when the CM07 bit in the CM0 register is 1				
	(sub clock).				
	Count source protection mode				
	Enabled or disabled (selected by the CSPROINI bit in the OFS1 address and the CSPRO bit in the CSPR register)				

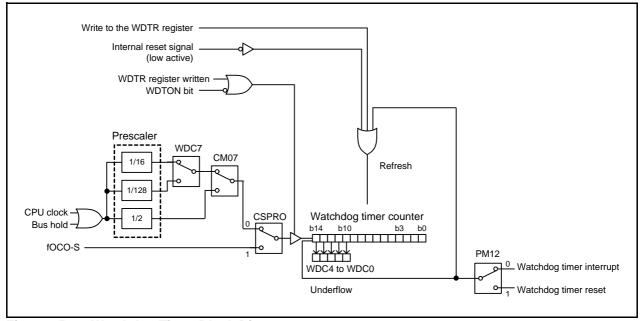


Figure 15.1 **Watchdog Timer Block Diagram**

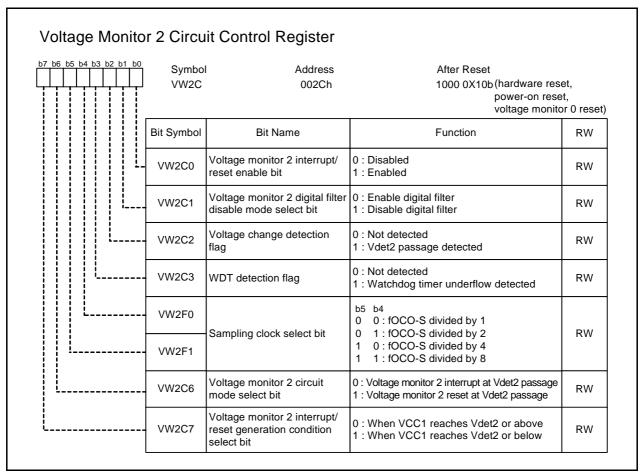

15.2 Registers

Table 15.2 Register Structure

Address	Register Name	Register Symbol	After Reset
002Ch	Voltage Monitor 2 Circuit Control Register	VW2C	1000 0X10b
037Ch	Count Source Protection Mode Register	CSPR	00h ⁽¹⁾
037Dh	Watchdog Timer Reset Register	WDTR	XXh
037Eh	Watchdog Timer Start Register	WDTS	XXh
037Fh	Watchdog Timer Control Register	WDC	00XX XXXXb

Note:

15.2.1 Voltage Monitor 2 Circuit Control Register (VW2C)

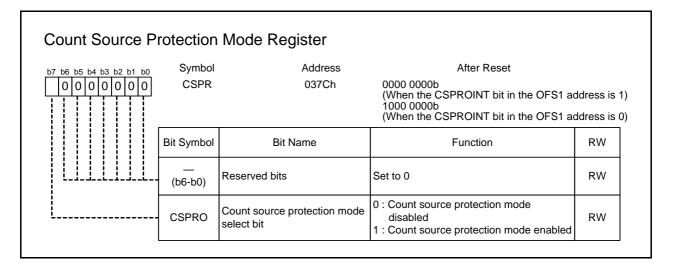
Set the PRC3 bit in the PRCR register to 1 (write enabled) before rewriting the VW2C register.

Since rewriting the VW2C register may set the VW2C2 bit to 1, set the VW2C2 bit to 0 after rewriting the VW2C register.

Bits VW2C2 and VW2C3 do not change at voltage monitor 1 reset, voltage monitor 2 reset, oscillation stop detection reset, watchdog timer reset, or software reset.

When the CSPROINI bit in the OFS1 address is 0, the value after reset becomes 1000 0000b. 1.

VW2C3 (WDT Detection Flag) (b3)


Use this bit in an interrupt routine to determine the source of the interrupts from the watchdog timer, the oscillation stop/re-oscillation detection, the voltage monitor 1, and the voltage monitor 2. Conditions to become 0:

- Hardware reset, power-on reset, or voltage monitor 0 reset
- Writing 0 by a program

Condition to become 1:

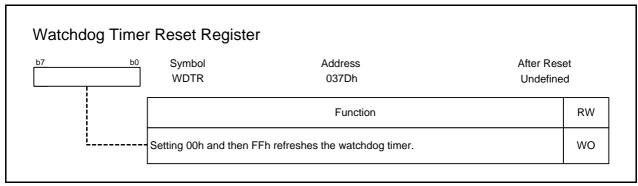
 Watchdog timer underflow detected (This flag remains unchanged even if 1 is written by a program.)

15.2.2 Count Source Protection Mode Register (CSPR)

CSPRO (Count Source Protection Mode Select Bit) (b7)

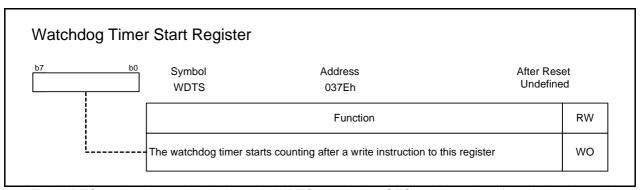
Select the CSPRO bit before the watchdog timer starts counting. Once counting starts, do not change the CSPRO bit.

Condition to become 0:

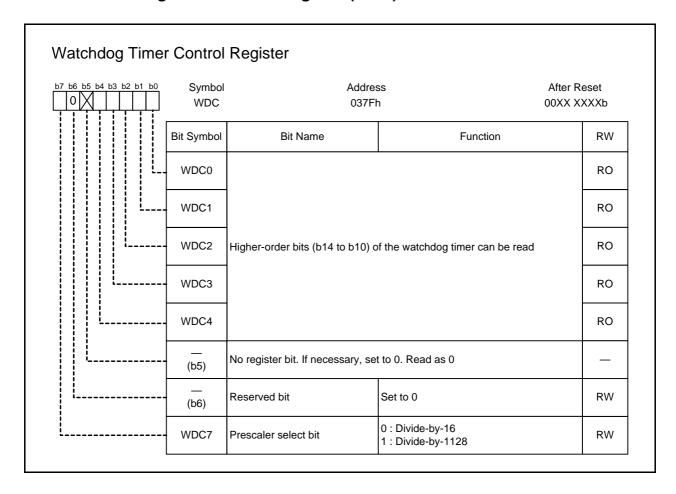

• Reset when the CSPROINI bit in the OFS1 address is 1. (This flag remains unchanged even if 0 is written by a program.)

Condition to become 1:

- When the CSPROINI bit in the OFS1 address is 0
- Write 0, and then write 1.


Make sure no interrupts or DMA transfers will occur between setting the bit to 0 and setting it to 1.

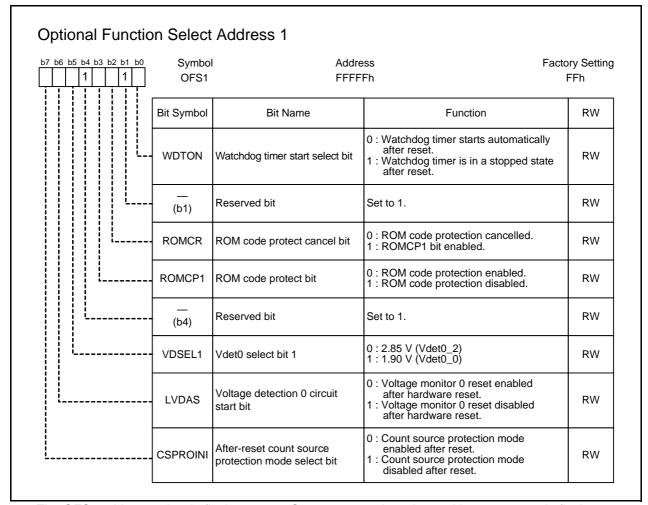
Watchdog Timer Reset Register (WDTR) 15.2.3


After the watchdog timer interrupt occurs, refresh the watchdog timer by setting the WDTR register.

15.2.4 **Watchdog Timer Start Register (WDTS)**

The WDTS register is enabled when the WDTON bit in the OFS1 address is 1 (watchdog timer is in a stopped state after reset).

15.2.5 **Watchdog Timer Control Register (WDC)**



WDC4-WDC0 (b4-b0)

When reading the watchdog timer value while the CSPRO bit in the CSPR register is 1 (count source protection mode enabled), read bits WDC4 to WDC0 more than three times to determine the values.

15.3 **Optional Function Select Area**

15.3.1 **Optional Function Select Address 1 (OFS1)**

The OFS1 address exists in flash memory. Set a proper value when writing a program in flash memory. The OFS1 address is set to FFh when the block including the OFS1 address is erased.

WDTON (Watchdog Timer Start Select Bit) (b0)

Set the WDTON bit to 0 (watchdog timer starts automatically after reset) when setting the CSPROINI bit to 0 (count source protection mode enabled after reset).

CSPROINI (After-Reset Count Source Protection Mode Select Bit) (b7)

Set the WDTON bit to 0 (watchdog timer starts automatically after reset) when setting the CSPROINI bit to 0 (count source protection mode enabled after reset).

15.4 **Operations**

15.4.1 **Count Source Protection Mode Disabled**

The CPU clock is used as the watchdog timer count source when count source protection mode is disabled.

Table 15.3 lists Watchdog Timer Specifications (Count Source Protection Mode Disabled).

Table 15.3 Watchdog Timer Specifications (Count Source Protection Mode Disabled)

Item	Specification				
Count source	CPU clock				
Count operation	Decrement				
Cycles	When the CM07 bit in the CM0 register is 0 (main clock, PLL clock, fOCO-F, fOCO-S):				
	Prescaler divide value (n) × watchdog timer count value (32768) (1) CPU clock				
	n: 16 or 128 (selected by the WDC7 bit in the WDC register) ex.) When CPU clock frequency is 16 MHz and the prescaler division rate is 16, the watchdog timer cycle is approximately 32.8 ms.				
	When the CM07 bit is 1 (sub clock):				
	Prescaler divide value (2) × watchdog timer count value (32768) (1) CPU clock				
Watchdog timer	• Reset (Refer to 6. "Resets".)				
counter initial value	Write 00h, and then FFh to the WDTR register.				
setting	• Underflow				
Count start	Set the WDTON bit in the OFS1 address to select the watchdog timer operation				
conditions	after reset.				
	 WDTON bit is 1 (watchdog timer is in stop state after reset) 				
	The watchdog timer and prescaler stop after reset and count starts by writing to the WDTS register.				
	WDTON bit is 0 (watchdog timer starts automatically after reset)				
	The watchdog timer and prescaler start counting automatically after reset.				
Count stop	• Stop mode				
conditions	Wait mode				
	• Bus hold				
	(Count resumes from the hold value after exiting.)				
Operation when	• PM12 bit in the PM1 register is 0				
timer underflows	Watchdog timer interrupt				
	PM12 bit in the PM1 register is 1				
	Watchdog timer reset (See 6.4.8 "Watchdog Timer Reset".)				

Notes:

Writing 00h and then FFh to the WDTR register initializes the watchdog timer, but not the prescaler. Thus, some errors in the watchdog timer period may be caused by the prescaler. The prescaler is initialized after reset.

15.4.2 **Count Source Protection Mode Enabled**

The fOCO-S is used as the watchdog timer count source when the count source protection mode is enabled.

Table 15.4 lists the Watchdog Timer Specifications (Count Source Protection Mode Enabled).

Table 15.4 Watchdog Timer Specifications (Count Source Protection Mode Enabled)

Item	Specification			
Count source	fOCO-S			
	(The 125 kHz on-chip oscillator clock automatically starts oscillating.)			
Count operation	Decrement			
Cycle	Watchdog timer count value (4096) fOCO-S			
	(The watchdog timer cycle is approximately 32.8 ms.)			
Watchdog timer	• Reset (Refer to 6. "Resets".)			
counter initial value	Write 00h, and then FFh to the WDTR register.			
setting • Underflow				
Count start	Set the WDTON bit in the OFS1 address to select the watchdog timer operation			
conditions after reset.				
	WDTON bit is 1 (watchdog timer is stopped after reset)			
	The watchdog timer and prescaler stop after reset and count starts by writing to the WDTS register.			
	WDTON bit is 0 (watchdog timer starts automatically after reset)			
	The watchdog timer and prescaler start counting automatically after reset.			
Count stop	None (Count does not stop in wait mode or by bus hold once count starts. The MCU			
condition	does not enter stop mode.)			
Operation when	Watchdog timer reset (See 6.4.8 "Watchdog Timer Reset").			
timer underflows				

When the CSPRO bit in the CSPR register is 1 (count source protection mode enabled), the watchdog timer counter underflows every 4096 cycles because three low-order bits are not used.

Also when the CSPRO bit is set to 1 (count source protection mode enabled), the following bits change:

- The CM14 bit in the CM1 register becomes 0 (125 kHz on-chip oscillator on). It remains unchanged even if 1 is written, and the 125 kHz on-chip oscillator does not stop.
- The PM12 bit in the PM1 register becomes 1 (watchdog timer reset when watchdog timer counter underflows).
- The CM10 bit in the CM1 register remains unchanged even if 1 is written, and the MCU does not enter stop mode.

15.5 Interrupts

Watchdog timer interrupts are non-maskable interrupts.

The watchdog timer interrupt, oscillation stop and re-oscillation detection interrupt, voltage monitor 1 interrupt, and voltage monitor 2 interrupt share an vector. When using multiple functions, read the detect flag in an interrupt process program to determine which interrupt factor sends an interrupt request.

15. Watchdog Timer

The VW2C3 bit in the VW2C register is the detect flag for the watchdog timer. After the interrupt factor is determined, set the VW2C3 bit to 0 (not detected) by a program.

Under development

Notes on Watchdog Timer 15.6

After the watchdog timer interrupt occurs, use the WDTR register to refresh the watchdog timer counter.

16. DMAC

16.1 Introduction

The direct memory access controller (DMAC) allows data to be transferred without CPU intervention. Four DMAC channels are included. Each time a DMA request occurs, the DMAC transfers one (8- or 16bit) unit of data from the source address to the destination address. The DMAC uses the same data bus used by the CPU. Because the DMAC has higher priority for bus control than the CPU, and because it makes use of a cycle steal method, it can transfer one word (16 bits) or one byte (8 bits) of data within a very short time after a DMA request is generated. Figure 16.1 shows the DMAC Block Diagram. Table 16.1 lists DMAC Specifications, and Figure 16.1 shows DMAC Block Diagram.

Table 16.1 DMAC Specifications

Item		Specification			
Number of channels		4 (cycle steal method)			
Transfer memory spaces		From a given address in the 1-Mbyte space to a fixed address			
		• From a fixed address to a given address in the 1-Mbyte space			
		From a fixed address to a fixed address			
Maximum	number of	128 Kbytes (with 16-bit transfers) or 64 Kbytes (with 8-bit transfers)			
bytes trans	sferred				
DMA reque	est factors (1)	43 factors			
•		Falling edge of INT0 to INT7 (8)			
		Both edges of INT0 to INT7 (8)			
		Timer A0 to timer A4 interrupt requests (5)			
		Timer B0 to timer B5 interrupt requests (6)			
		UART0 to 2, UART5 to 7 transmission interrupt requests (6)			
		UART0 to 2, UART5 to 7 reception/ACK interrupt requests (6)			
		SI/O3, SI/O4 interrupt requests (2)			
		A/D conversion interrupt requests (1)			
		Software triggers (1)			
Channel p	riority	DMA0 > DMA1 > DMA2 > DMA3 (DMA0 takes precedence)			
Transfers		8 bits or 16 bits			
Transfer a	ddress direction	Forward or fixed (The source and destination addresses cannot both be in the			
		forward direction.)			
Transfer	Single transfer	Transfer is completed when the DMAi transfer counter underflows.			
mode	Repeat	When the DMAi transfer counter underflows, it is reloaded with the value of the			
	transfer	DMAi transfer counter reload register and DMA transfer continues.			
DMA interr	upt request	When the DMAi transfer counter underflows			
generation	timing				
DMA trans	fer start	Data transfer is initiated each time a DMA request is generated when the			
		DMAE bit in the DMAiCON register is 1 (enabled).			
DMA	Single transfer	• When the DMAE bit is set to 0 (disabled)			
transfer		After the DMAi transfer counter underflows			
stop Repeat		When the DMAE bit is set to 0 (disabled)			
	transfer				
Reload tim	ing for forward	When a data transfer is started after setting the DMAE bit to 1 (enabled), the			
	ointer and DMAi	forward address pointer is reloaded with the value of the SARi or DARi pointer			
transfer co		whichever is specified to be in the forward direction and the DMAi transfer			
		counter is reloaded with the value of the DMAi transfer counter reload register.			
DMA trans	fer cycles	Minimum 3 cycles between SFR and internal RAM			
i = 0 to 3					

i = 0 to 3

Note:

1. The selectable sources of DMA requests differ for each channel.

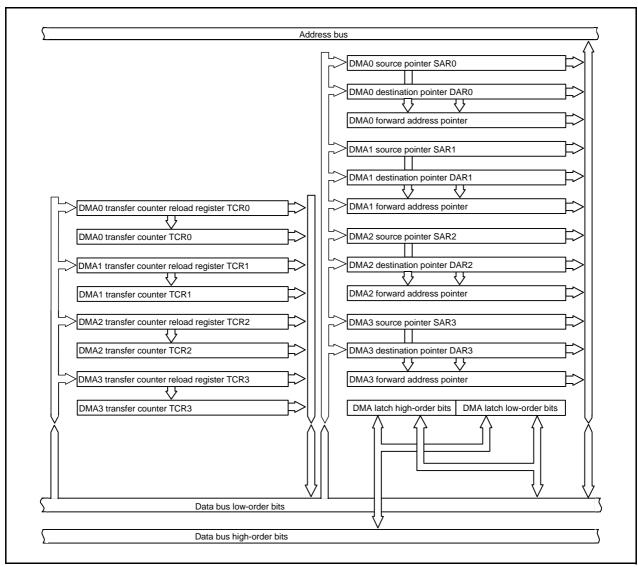


Figure 16.1 **DMAC Block Diagram**

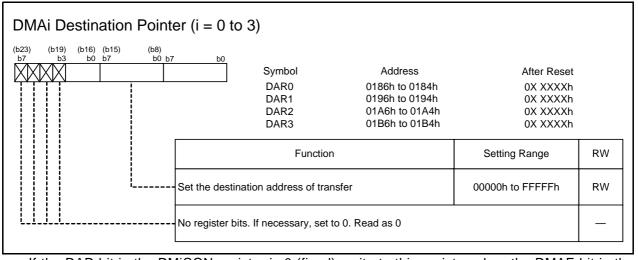
Registers 16.2

Table 16.2 lists Register Structure. Do not access these registers during DMAC operation.

Table 16.2 Register Structure

Address	Register Name	Register Symbol	After Reset
0180h	DMA0 Source Pointer	SAR0	XXh
0181h			XXh
0182h			0Xh
0184h	DMA0 Destination Pointer	DAR0	XXh
0185h			XXh
0186h			0Xh
0188h	DMA0 Transfer Counter	TCR0	XXh
0189h			XXh
018Ch	DMA0 Control Register	DM0CON	0000 0X00b
0190h	DMA1 Source Pointer	SAR1	XXh
0191h			XXh
0192h			0Xh
0194h	DMA1 Destination Pointer	DAR1	XXh
0195h			XXh
0196h			0Xh
0198h	DMA1 Transfer Counter	TCR1	XXh
0199h			XXh
019Ch	DMA1 Control Register	DM1CON	0000 0X00b
01A0h	DMA2 Source Pointer	SAR2	XXh
01A1h			XXh
01A2h			0Xh
01A4h	DMA2 Destination Pointer	DAR2	XXh
01A5h			XXh
01A6h			0Xh
01A8h	DMA2 Transfer Counter	TCR2	XXh
01A9h			XXh
01ACh	DMA2 Control Register	DM2CON	0000 0X00b
01B0h	DMA3 Source Pointer	SAR3	XXh
01B1h			XXh
01B2h			0Xh
01B4h	DMA3 Destination Pointer	DAR3	XXh
01B5h			XXh
01B6h			0Xh
01B8h	DMA3 Transfer Counter	TCR3	XXh
01B9h			XXh
01BCh	DMA3 Control Register	DM3CON	0000 0X00b
0390h	DMA2 Source Select Register	DM2SL	00h
0392h	DMA3 Source Select Register	DM3SL	00h
0398h	DMA0 Source Select Register	DM0SL	00h
039Ah	DMA1 Source Select Register	DM1SL	00h

16.2.1 DMAi Source Pointer (SARi) (i = 0 to 3)

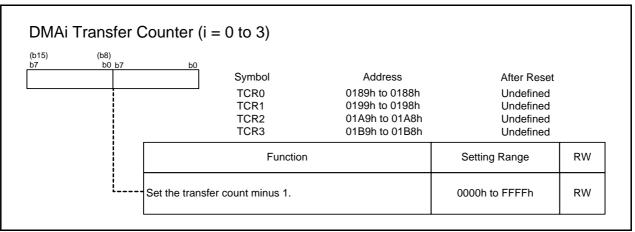

If the DSD bit in the DMiCON register is 0 (fixed), write to this register when the DMAE bit in the DMiCON register is 0 (DMA disabled).

If the DSD bit is 1 (forward direction), this register can be written to at any time.

If the DSD bit is 1 and the DMAE bit is 1 (DMA enabled), the DMAi forward address pointer can be read from this register. Otherwise, the value written to it can be read.

The forward address pointer is incremented when a DMA request is accepted.

16.2.2 DMAi Destination Pointer (DARi) (i = 0 to 3)

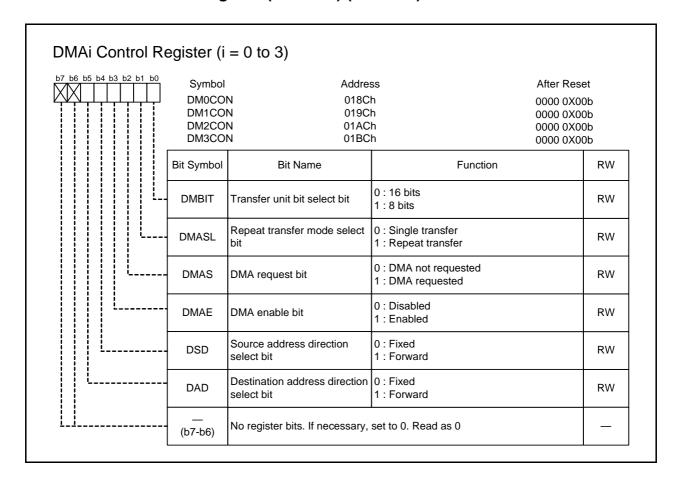

If the DAD bit in the DMiCON register is 0 (fixed), write to this register when the DMAE bit in the DMiCON register is 0 (DMA disabled).

If the DAD bit is 1 (forward direction), this register can be written to at any time.

If the DAD bit is 1 and the DMAE bit is 1 (DMA enabled), the DMAi forward address pointer can be read from this register. Otherwise, the value written to it can be read.

The forward address pointer is incremented on accepting a DMA request.

DMAi Transfer Counter (TCRi) (i = 0 to 3) 16.2.3


The written value in the TCRi register is stored in the DMAi transfer counter reload register.

The value of the DMAi transfer counter reload register is transferred to the DMAi transfer counter in either of the following cases:

- When the DMAE bit in the DMiCON register is set to 1 (DMA enabled) (single transfer mode, repeat transfer mode)
- When the DMAi transfer counter underflows (repeat transfer mode)

M16C/65 Group

16.2.4 DMAi Control Register (DMiCON) (i = 0 to 3)

DMAS (DMA Request Bit) (b2)

Conditions to become 0:

- Set the bit to 0.
- Starting data transfer

Condition to become 1:

• Set the bit to 1.

DMAE (DMA Enable Bit) (b3)

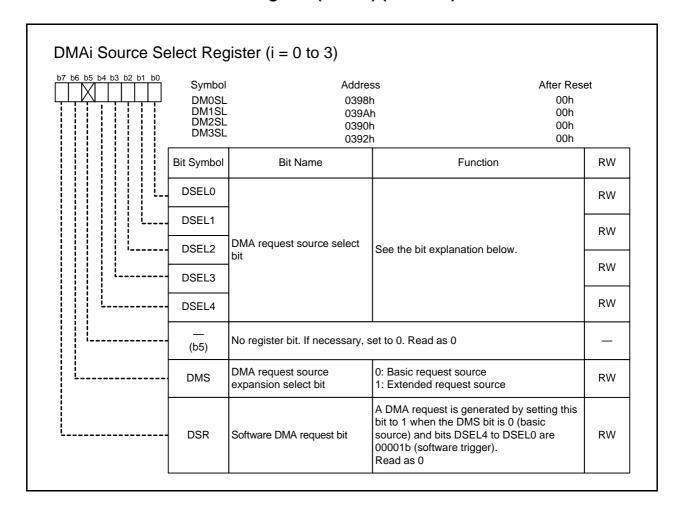
Conditions to become 0:

- Set the bit to 0.
- The DMA transfer counter underflows (single transfer mode)

Condition to become 1:

• Set the bit to 1.

DSD (Source Address Direction Select Bit) (b4)


Set at least one of the DAD bit and DSD bit to 0 (address direction fixed).

DAD (Destination Address Direction Select Bit) (b5)

Set at least one of the DAD bit and DSD bit to 0 (address direction fixed).

16.2.5 DMAi Source Select Register (DMiSL) (i = 0 to 3)

DSEL4-DSEL0 (DMA Request Source Select Bit) (b4-b0)

The sources of DMAi requests can be selected by a combination of the DMS bit and bits DSEL4 to DSEL0 in the manner shown in Table 16.3 to Table 16.6. Table 16.3 to Table 16.6 list the sources of DMAi requests.

Table 16.3 Source of DMA Request (DMA0)

DSEL4 to DSEL0	DMS = 0 (Basic Source of Request)	DMS = 1 (Extended Source of Request)
0 0000b	Falling edge of INT0 pin	_
0 0001b	Software trigger	_
0 0010b	Timer A0	_
0 0011b	Timer A1	_
0 0100b	Timer A2	_
0 0101b	Timer A3	_
0 0110b	Timer A4	Both edges of INTO pin
0 0111b	Timer B0	Timer B3
0 1000b	Timer B1	Timer B4
0 1001b	Timer B2	Timer B5
0 1010b	UART0 transmission	_
0 1011b	UART0 reception	_
0 1100b	UART2 transmission	_
0 1101b	UART2 reception	_
0 1110b	A/D conversion	_
0 1111b	UART1 transmission	_
1 0000b	UART1 reception	Falling edge of INT4 pin
1 0001b	UART5 transmission	Both edges of INT4 pin
1 0010b	UART5 reception	_
1 0 0 1 1 b	UART6 transmission	_
1 0100b	UART6 reception	_
1 0101b	UART7 transmission	_
1 0110b	UART7 reception	_
1 0111b	_	_
1 1XXXb	- Callestan and Class	_

X indicates 0 or 1. – indicates no setting.

Table 16.4 Source of DMA Request (DMA1)

DSEL4 to DSEL0		DMS = 1 (Extended Source of Request)
0 0000b	Falling edge of INT1 pin	_
0 0001b	Software trigger	_
0 0010b	Timer A0	_
0 0 0 1 1 b	Timer A1	_
0 0100b	Timer A2	_
0 0101b	Timer A3	SI/O3
0 0110b	Timer A4	SI/O4
0 0111b	Timer B0	Both edges of INT1 pin
0 1000b	Timer B1	_
0 1001b	Timer B2	_
0 1010b	UART0 transmission	_
0 1011b	UART0 reception/ACK0	_
0 1100b	UART2 transmission	_
0 1101b	UART2 reception/ACK2	_
0 1110b	A/D conversion	_
0 1111b	UART1 reception/ACK1	_
1 0000b	UART1 transmission	Falling edge of INT5 pin
1 0001b	UART5 transmission	Both edges of INT5 pin
1 0010b	UART5 reception/ACK5	_
1 0 0 1 1 b	UART6 transmission	_
1 0100b	UART6 reception/ACK6	_
1 0 1 0 1 b	UART7 transmission	_
1 0110b	UART7 reception/ACK7	_
1 0111b	_	_
1 1 X X X b	_	_

X indicates 0 or 1. – indicates no setting.

Table 16.5 Source of DMA Request (DMA2)

	• •	<u> </u>
DSEL4 to DSEL0	DMS = 0 (Basic Source of Request)	DMS = 1 (Extended Source of Request)
0 0000b	Falling edge of INT2 pin	_
0 0001b	Software trigger	_
0 0010b	Timer A0	_
0 0011b	Timer A1	_
0 0100b	Timer A2	_
0 0101b	Timer A3	_
0 0110b	Timer A4	Both edges of INT2 pin
0 0111b	Timer B0	Timer B3
0 1000b	Timer B1	Timer B4
0 1001b	Timer B2	Timer B5
0 1010b	UART0 transmission	_
0 1011b	UART0 reception	_
0 1100b	UART2 transmission	_
0 1 1 0 1b	UART2 reception	_
0 1110b	A/D conversion	_
0 1111b	UART1 transmission	_
1 0000b	UART1 reception	Falling edge of INT6 pin
1 0001b	UART5 transmission	Both edges of INT6 pin
1 0010b	UART5 reception	_
1 0 0 1 1 b	UART6 transmission	_
1 0100b	UART6 reception	_
1 0101b	UART7 transmission	_
1 0110b	UART7 reception	_
1 0111b	_	_
1 1 X X X b	_	_
V indicatos 0 or 1	indicates as setting	

X indicates 0 or 1. – indicates no setting.

Table 16.6 Source of DMA Request (DMA3)

DSEL4 to DSEL0	DMS = 0 (Basic Source of Request)	DMS = 1 (Extended Source of Request)
0 0000b	Falling edge of INT3 pin	_
0 0001b	Software trigger	_
0 0010b	Timer A0	_
0 0011b	Timer A1	_
0 0100b	Timer A2	_
0 0101b	Timer A3	SI/O3
0 0110b	Timer A4	SI/O4
0 0111b	Timer B0	Both edges of INT3 pin
0 1000b	Timer B1	_
0 1001b	Timer B2	_
0 1010b	UART0 transmission	_
0 1011b	UART0 reception/ACK0	_
0 1100b	UART2 transmission	_
0 1 1 0 1b	UART2 reception/ACK2	_
0 1110b	A/D conversion	_
0 1111b	UART1 reception/ACK1	_
1 0000b	UART1 transmission	Falling edge of INT7 pin
1 0001b	UART5 transmission	Both edges of INT7 pin
1 0010b	UART5 reception/ACK5	_
1 0 0 1 1 b	UART6 transmission	_
1 0100b	UART6 reception/ACK6	_
1 0101b	UART7 transmission	_
1 0110b	UART7 reception/ACK7	_
1 0111b	_	_
1 1 X X X b	_	_

X indicates 0 or 1. – indicates no setting.

16.3 **Operations**

16.3.1 DMA Enabled

When data transfer starts after setting the DMAE bit in the DMiCON register (i = 0 to 3) to 1 (enabled), the DMAC operates as listed below. If 1 is written to the DMAE bit when it is already set to 1, the DMAC also performs the following operation.

- The forward address pointer is reloaded with the SARi register value when the DSD bit in the DMiCON register is 1 (forward), or the DARi register value when the DAD bit in the DMiCON register is 1 (forward).
- The DMAi transfer counter is reloaded with the DMAi transfer counter reload register value.

16.3.2 DMA Request

The DMAC can generate a DMA request as triggered by the request source that is selected with the DMS bit and bits DSEL4 to DSEL0 in the DMiSL register (i = 0 to 3) on either channel. Table 16.7 lists the Timing at Which the DMAS Bit Changes State.

Whenever a DMA request is generated, the DMAS bit is set to 1 (DMA requested) regardless of whether or not the DMAE bit is set. If the DMAE bit is set to 1 (enabled) when this occurs, the DMAS bit is set to 0 (DMA not requested) immediately before a data transfer starts. This bit cannot be set to 1 by a program (writing a 1 has no effect).

If the DMAE bit is 1, the DMAS bit in almost all cases is 0 when read in a program, because a data transfer starts immediately after a DMA request is generated. Read the DMAE bit to determine whether the DMAC is enabled. When a DMA request transfer cycle is shorter than a DMA transfer cycle, the number of transfer requests and the number of transfers do not agree.

When the peripheral function is selected as a DMA source, relations with interrupts are as follows:

- DMA transfers are not affected by the I flag or interrupt control registers. DMA requests are always accepted even when interrupt requests are not accepted.
- The IR bit in the interrupt control register retains its value when a DMA transfer is accepted.

Table 16.7 Timing at Which the DMAS Bit Changes State

DMA Source	DMAS Bit in the DMiCON Register			
	Timing at Which the Bit is Set to 1	Timing at Which the Bit is Set to 0		
Software trigger	When the DSR bit in the DMiSL register	Immediately before a data transfer		
	is set to 1	starts		
External factor	When an input edge of pins INT0 to	When set by writing a 0 by a program		
	INT7 agrees with what is selected by			
	bits DSEL4 to DSEL0 in the DMiSL			
	register.			
Peripheral function	When an interrupt request of the			
	peripheral function selected by bits			
	DSEL4 to DSEL0 and DMS in the			
	DMiSL register is generated. (If the IR			
	bit in an interrupt control register is 0,			
	the timing is when 0 is changed to 1.)			

i = 0 to 3

16.3.3 **Transfer Cycles**

A transfer cycle is composed of a bus cycle to read data from a source address (source read), and a bus cycle to write data to a destination address (destination write). The number of read and write bus cycles depends on the source and destination addresses.

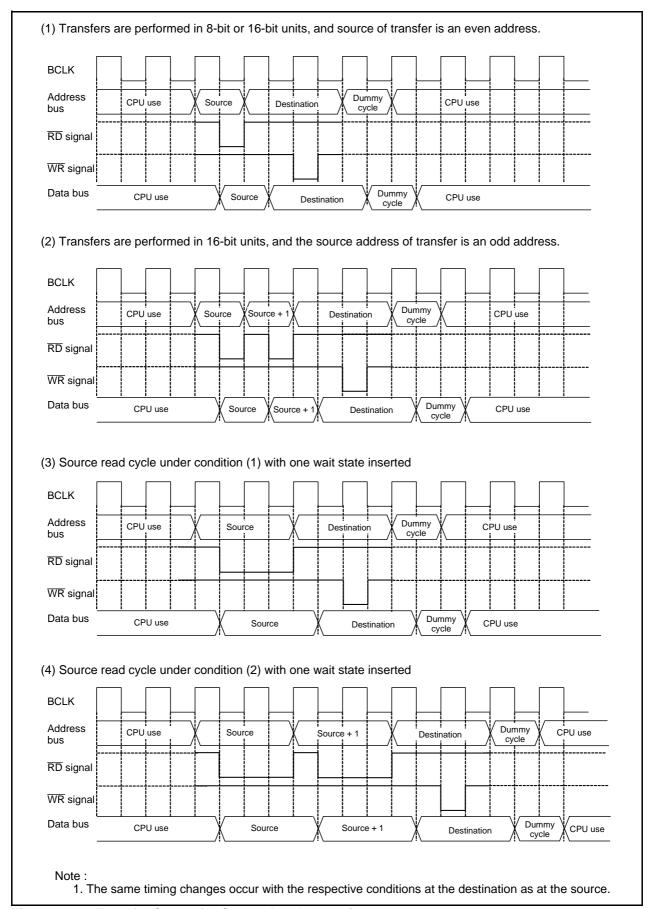
Figure 16.2 shows Transfer Cycles for Source Read Operations. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating transfer cycles, take into consideration each condition for the source read and the destination write cycle. For example, when data is transferred in 16-bit units using an 8-bit bus ((2) in Figure 16.2), two source read bus cycles and two destination write bus cycles are required.

16.3.3.1 Effect of Source and Destination Addresses

When a 16-bit unit of data is transferred with a 16-bit data bus and the source address starts with an odd address, the source-read cycle is incremented by one bus cycle, compared to a source address starting with an even address.

When a 16-bit unit of data is transferred with a 16-bit data bus and the destination address starts with an odd address, the destination-write cycle is incremented by one bus cycle, compared to a destination address starting with an even address.

16.3.3.2 **Effect of Software Wait**


For memory or SFR accesses in which one or more software wait states are inserted, the number of bus cycles required increases by an amount equal to the number of software wait states.

16.3.3.3 **Memory Expansion Mode and Microprocessor Mode**

In memory expansion or microprocessor mode, the transfer cycle is also affected by the BYTE pin level. Furthermore, the bus cycle itself is extended by a software wait or RDY signal.

If 16 bits of data are transferred on an 8-bit data bus (input to the BYTE pin is high), the operation is accomplished by transferring 8 bits of data twice. Therefore, this operation requires two bus cycles to read data and two bus cycles to write data. Furthermore, if the DMAC accesses an internal area (internal ROM, internal RAM, or SFR), unlike in the case of the CPU, the DMAC uses the data bus width selected by the BYTE pin.

DMA transfers to and from an external area are affected by the RDY signal. Refer to 11.3.5.6 "RDY Signal" for more information.

Transfer Cycles for Source Read Operations

16.3.4 **DMAC Transfer Cycles**

The number of DMA transfer cycles can be calculated as shown below.

Table 16.8 lists the DMAC Transfer Cycles, and Table 16.9 and Table 16.10 list coefficients j and k.

Number of transfer cycles per transfer unit = Number of read cycles \times j + Number of write cycles \times k

Table 16.8 DMAC Transfer Cycles

Transfer Unit	Bus Width	Access Address	Single-Chip Mode		Memory Expansion Mode Microprocessor Mode	
Transier Offic			No. of Read	No. of Write	No. of Read	No. of Write
			Cycles	Cycles	Cycles	Cycles
8-bit transfers (DMBIT = 1)	16-bit (BYTE = low)	Even	1	1	1	1
		Odd	1	1	1	1
	8-bit	Even	N/A	N/A	1	1
	(BYTE = high)	Odd	N/A	N/A	1	1
16-bit transfers (DMBIT = 0)	16-bit	Even	1	1	1	1
	(BYTE = low)	Odd	2	2	2	2
	8-bit	Even	N/A	N/A	2	2
	(BYTE = high)	Odd	N/A	N/A	2	2

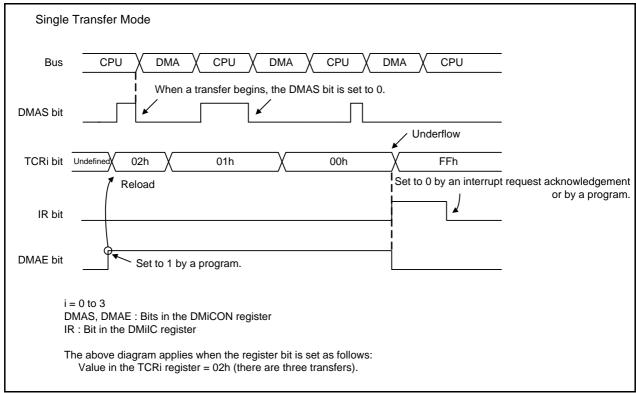
Table 16.9 Coefficients j and k (1/2)

		Interna	al Area	External Area			
	Internal ROM, RAM		SFR		Multiplex bus		
	No wait Wait states		1 wait state 2 wait states		Wait states (1)		
	states	vvaii states	(2)	(2)	1 wait state	2 wait states	3 wait states
j	1	2	2	3	3	3	4
k	1	2	2	3	3	3	4

Notes:

- Depends on the set value of the CSE register. 1.
- Depends on the set value of the PM20 bit in the PM2 register.

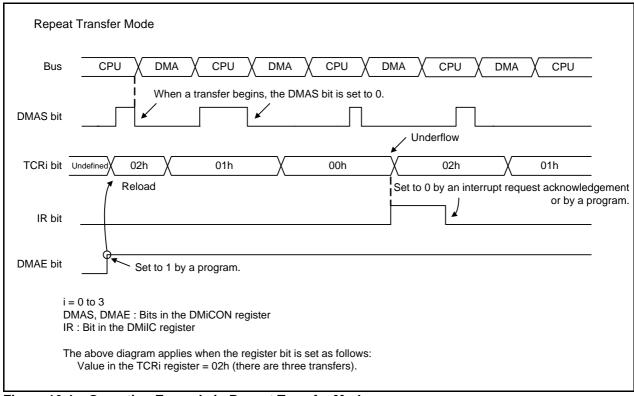
Table 16.10 Coefficients j and k (2/2)


	External Area							
	Separate bus ⁽¹⁾							
	No wait Wait states (2)							
	states	1wait state	2 wait states	3 wait states	2φ + 3φ	2φ + 4φ	3φ + 4φ	4¢ + 5¢
		$(1\phi + 1\phi)$	$(1\phi + 2\phi)$	$(1\phi + 3\phi)$	Σ ψ 1 3 ψ	Ζ Ψ ι τ Ψ	Эф т тф	τ φ ι 5φ
j	1	2	3	4	5	6	7	9
k	2	2	3	4	5	6	7	9

Notes:

- When recovery cycle inserted is selected at bits EWR1 and EWR0 in the EWR register, add the recovery cycle.
- 2. Depends on the set values of registers CSE and EWC.

16.3.5 **Single Transfer Mode**


In single transfer mode, the transfer stops when the DMAi transfer counter underflows. Figure 16.3 shows Operation Example in Single Transfer Mode.

Operation Example in Single Transfer Mode Figure 16.3

16.3.6 **Repeat Transfer Mode**

In repeat transfer mode, when the DMAi transfer counter underflows, it is reloaded with the value of the DMAi transfer counter reload register and DMA transfer continues. Figure 16.4 shows Operation Example in Repeat Transfer Mode.

Operation Example in Repeat Transfer Mode

16.3.7 Channel Priority and DMA Transfer Timing

If multiple channels among DMA0 to DMA3 are enabled and DMA transfer request signals are detected active in the same sampling period (one period from a falling edge to the next falling edge of BCLK), the DMAS bit on each channel is set to 1 (DMA requested) at the same time. In this case, the DMA requests are arbitrated according to the following channel priority: DMA0 > DMA1 > DMA2 > DMA3. The DMAC operation when DMA0 and DMA1 requests are detected active in the same sampling period is described below. Figure 16.5 shows an example of DMA Transfer by External Sources.

In Figure 16.5, DMA0, which has a high channel priority, is received first to start a transfer when DMA0 and DMA1 requests are generated simultaneously. After one DMA0 transfer is completed, the bus access privilege is returned to the CPU. When the CPU has completed one bus access, a DMA1 transfer starts. After one DMA1 transfer is completed, the bus access privilege is again returned to the

In addition, DMA requests cannot be incremented since each channel has one DMAS bit. Therefore, when DMA requests, such as DMA1 in Figure 16.5, occur more than once, the DMAS bit is set to 0 after receiving the bus access privilege. The bus access privilege is returned to the CPU when one transfer is completed.

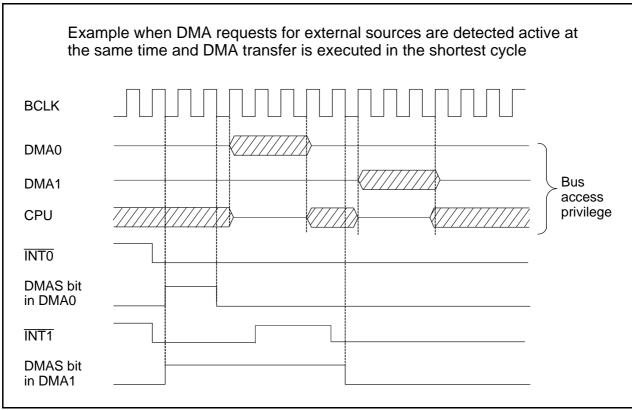


Figure 16.5 DMA Transfer by External Sources

16.4 Interrupts

Refer to operation examples for interrupt request generation timing.

For the details of interrupt control, refer to 14.7 "Interrupt Control". Table 16.11 lists DMAC Interrupt Related Registers.

Table 16.11 DMAC Interrupt Related Registers

Address	Register Name	Register Symbol	After Reset
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXX X000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXX X000b
0069h	DMA2 Interrupt Control Register	DM2IC	XXXX X000b
006Ah	DMA3 Interrupt Control Register	DM3IC	XXXX X000b

When the DMS bit or bits DSEL4 to DSEL0 in the DMiSL register are changed, the DMAS bit in the DMiCON sometimes becomes 1 (DMA requested). Therefore, set the DMAS bit to 0 (DMA not requested) after the DMS bit or bits DSEL4 to DSEL0 in the DMiSL register are changed. Refer to 14.13 "Notes on Interrupts".

Notes on DMAC 16.5

16.5.1 Write to the DMAE Bit in the DMiCON Register (i = 0 to 3)

When both of following conditions are met, follow steps (1) and (2) below.

- Write a 1 (DMAi is in active state) to the DMAE bit when it is 1.
- A DMA request may occur simultaneously when the DMAE bit is being written.

Steps

- (1) Write a 1 to the DMAE bit and DMAS bit in the DMiCON register simultaneously (1).
- (2) Make sure that the DMAi is in an initialized state (2) in a program. If the DMAi is not in an initialized state, repeat these two steps.

Notes:

- 1. The DMAS bit remains unchanged even if a 1 is written. However, if a 0 is written to this bit, it is set to 0 (DMA not requested). In order to prevent the DMAS bit from being modified to 0, 1 should be written to the DMAS bit when 1 is written to the DMAE bit. In this way, the state of the DMAS bit immediately before being written can be maintained. Similarly, when writing to the DMAE bit with a read-modify-write instruction, write a 1 to the DMAS bit to maintain a DMA request which is generated during execution.
- 2. Read the TCRi register to verify whether the DMAi is in an initialized state. If the read value is equal to a value that was written to the TCRi register before DMA transfer start, the DMAi is in an initialized state. (When a DMA request occurs after writing to the DMAE bit, the read value is a value written to the TCRi register minus one.) If the read value is a value in the middle of a transfer, the DMAi is not in an initialized state.

16.5.2 **Changing DMA Request Source**

When the DMS bit or bits DSEL4 to DSEL0 in the DMiSL register are changed, the DMAS bit in the DMiCON sometimes becomes 1 (DMA requested). Set the DMAS bit to 0 (DMA not requested) after the DMS bit or bits DSEL4 to DSEL0 in the DMiSL register are changed.

M16C/65 Group 17. Timer A

17. Timer A

Note •

The 80-pin package does not have pins TA1IN, TA1OUT, TA2IN and TA2OUT. Do not use functions associated with these pins.

17.1 Introduction

Timers A0 to A4 are provided for timer A. Each timer operates independently of the others. Table 17.1 lists Specifications of Timer A, Table 17.2 lists Differences in Timer A Mode, Figure 17.1 shows Timer A and B Count Sources, Figure 17.2 shows Timer A Configuration, Figure 17.3 shows Timer A Block Diagram, and Table 17.3 lists I/O Ports.

Table 17.1 Specifications of Timer A

Item	Specification
Configuration	16-bit timer × 5
Operating mode	 Timer mode The timer counts an internal count source. Event counter mode The timer counts pulses from an external device or overflows and underflows of other timers. One-shot timer mode The timer outputs a pulse only once before it reaches the minimum count 0000h. Pulse width modulation (PWM) mode The timer outputs pulses of given width and cycle successively. Programmable output mode The timer outputs a given pulse width of a high-/low- level signal (timers A1, A2, and A4).
Interrupt source	Overflow/underflow x 5

Table 17.2 Differences in Timer A Mode

Item	Timer					
item	A0	A1	A2	А3	A4	
Event counter mode (two-phase pulse signal processing)	No	No	Yes	Yes	Yes	
Programmable output mode	No	Yes	Yes	No	Yes	

M16C/65 Group

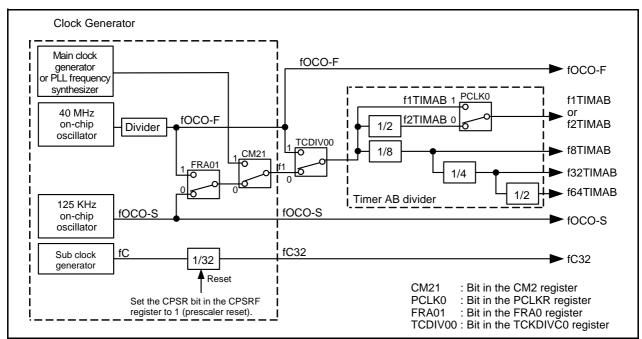


Figure 17.1 **Timer A and B Count Sources**

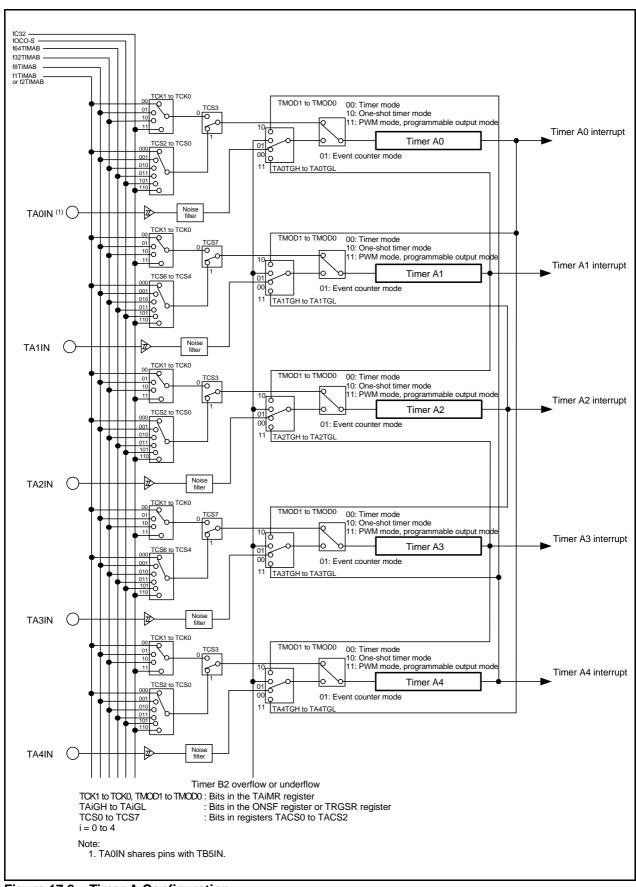


Figure 17.2 Timer A Configuration

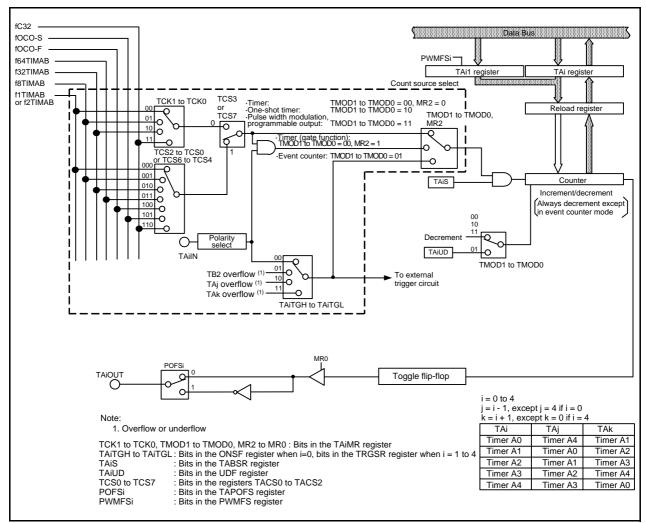


Figure 17.3 **Timer A Block Diagram**

Table 17.3 I/O Ports

Pin Name	I/O Type	Function
TAilN	Input (1)	Gate input (timer mode)
		Count source input (event counter mode)
		Two-phase signal input (event counter mode (two-phase pulse
		signal processing))
		Trigger input (one-shot timer mode, PWM mode)
mode, PWM mode, and programmable output		Pulse output (timer mode, event counter mode, one-shot timer
		mode, PWM mode, and programmable output mode)
		Increment/decrement select input (event counter mode)
		Two-phase pulse input (event counter mode (two-phase pulse
		signal processing))
ZP	Input (1)	Z-phase (counter initialization) input (event counter mode (two-
phase pulse signal processing))		phase pulse signal processing))

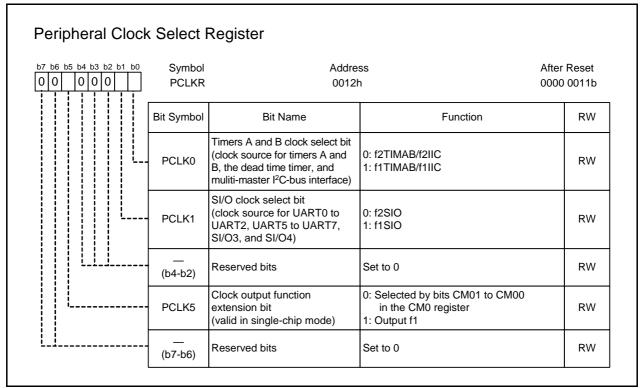
i = 0 to 4; however, i = 2, 3, 4 for two-phase pulse input, and i = 1, 2, 4 in programmable output mode Notes:

- When using pins TAiIN, TAiOUT, and ZP for input, set the port direction bits corresponding to the pins to 0 (input mode).
- The TA0OUT pin is an N-channel open-drain output. 2.

M16C/65 Group 17. Timer A

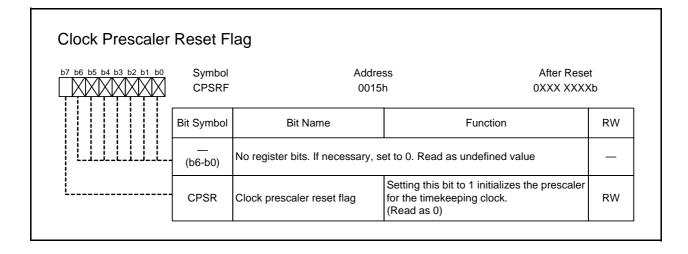
17.2 Registers

Table 17.4 lists registers associated with timer A.

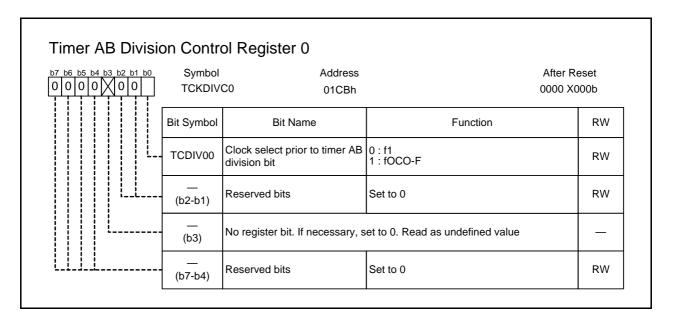

Set the TCDIV00 bit in the TCKDIVC0 register before setting other registers associated with timer A. After changing the TCDIV00 bit, set other registers associated with timer A again.

Refer to "registers and the setting" in each mode for registers and bit settings.

Table 17.4 Register Structure


Address	Register Name	Register Symbol	After Reset
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
0015h	Clock Prescaler Reset Flag	CPSRF	0XXX XXXXb
01CBh	Timer AB Division Control Register 0	TCKDIVC0	0000 X000b
01D0h	Timer A Count Source Select Register 0	TACS0	00h
01D1h	Timer A Count Source Select Register 1	TACS1	00h
01D2h	Timer A Count Source Select Register 2	TACS2	X0h
01D4h	16-Bit Pulse Width Modulation Mode Function	PWMFS	0XX0 X00Xb
	Select Register		
01D5h	Timer A Waveform Output Function Select Register	TAPOFS	XXX0 0000b
01D8h	Timer A Output Waveform Change Enable Register	TAOW	XXX0 X00Xb
0302h	Timer A1-1 Register	TA11	XXh
0303h			XXh
0304h	Timer A2-1 Register	TA21	XXh
0305h	-		XXh
0306h	Timer A4-1 Register	TA41	XXh
0307h	-		XXh
0320h	Count Start Flag	TABSR	00h
0322h	One-Shot Start Flag	ONSF	00h
0323h	Trigger Select Register	TRGSR	00h
0324h	Up/Down Flag	UDF	00h
0326h	Timer A0 Register	TA0	XXh
0327h			XXh
0328h	Timer A1 Register	TA1	XXh
0329h			XXh
032Ah	Timer A2 Register	TA2	XXh
032Bh			XXh
032Ch	Timer A3 Register	TA3	XXh
032Dh			XXh
032Eh	Timer A4 Register	TA4	XXh
032Fh			XXh
0336h	Timer A0 Mode Register	TA0MR	00h
0337h	Timer A1 Mode Register	TA1MR	00h
0338h	Timer A2 Mode Register	TA2MR	00h
0339h	Timer A3 Mode Register	TA3MR	00h
033Ah	Timer A4 Mode Register	TA4MR	00h

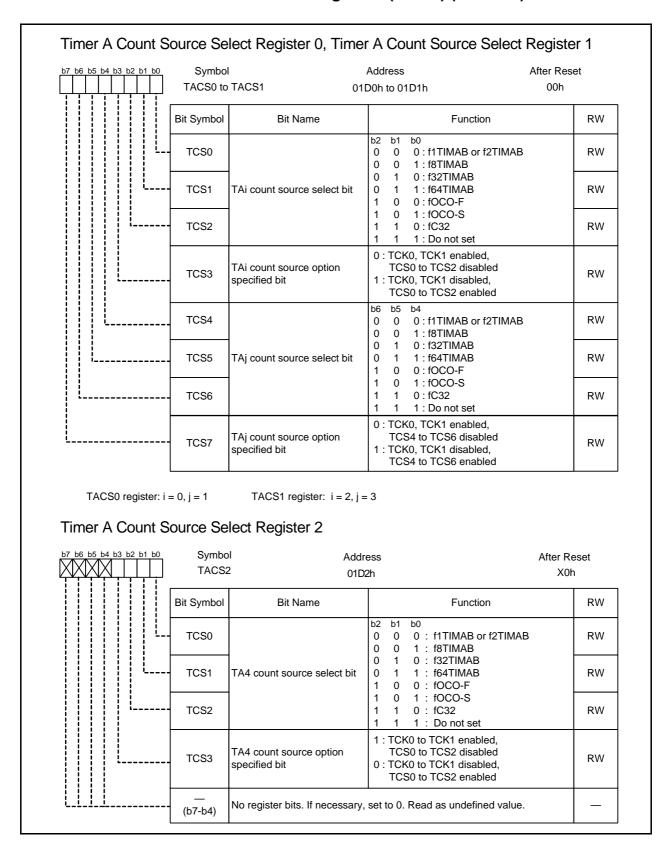
17.2.1 Peripheral Clock Select Register (PCLKR)



Set the PCLKR register after the PRC0 bit in the PRCR register is set to 1 (write enabled).

17.2.2 **Clock Prescaler Reset Flag (CPSRF)**

17.2.3 Timer AB Division Control Register 0 (TCKDIVC0)


TCDIV00 (Clock Select Prior to Timer AB Division Bit) (b1)

Set the TCDIV00 bit while timer A and B stops.

Set the TCDIV00 bit before setting other registers associated with timer A.

After changing the TCDIV00 bit, set other registers associated with timer A again.

17.2.4 Timer A Count Source Select Register i (TACSi) (i = 0 to 2)

TCS2-TCS0 (TAi Count Source Select Bit) (b2-b0) (i = 0, 2, 4) TCS6-TCS4 (TAj Count Source Select Bit) (b6-b4) (i = 1, 3)

Select f1TIMAB or f2TIMAB by the PCLK0 bit in the PCLKR register.

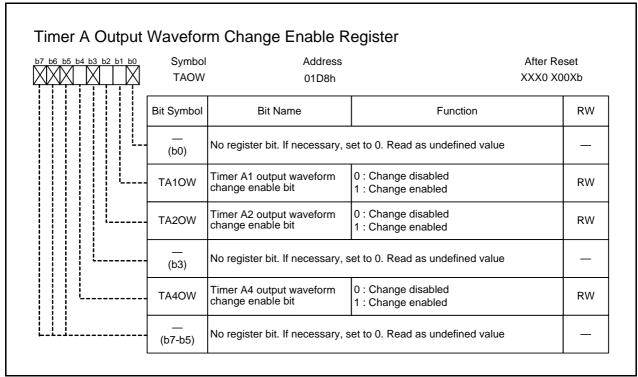
Under development

16-Bit Pulse Width Modulation Mode Function Select Register (PWMFS) 17.2.5

07 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Symbo PWMFS			After Reset 0XX0 X00Xb
	Bit Symbol	Bit Name	Function	RW
<u> </u>	(b0)	No register bit. If necessary,	set to 0. Read as undefined value	_
	PWMFS1	Timer A1 programmable output mode select bit	0 : PWM mode 16-bit PWM 1 : Programmable output mode	RW
	PWMFS2	Timer A2 programmable output mode select bit	0 : PWM mode 16-bit PWM 1 : Programmable output mode	RW
	(b3)	No register bit. If necessary,	set to 0. Read as undefined value	_
	PWMFS4	Timer A4 programmable output mode select bit	0 : PWM mode 16-bit PWM 1 : Programmable output mode	RW
	— (b6-b5)	No register bits. If necessary,	set to 0. Read as undefined value	
	(b7)	Reserved bit	Set to 0	RW

PWMFS1 (Timer A1 Programmable Output Mode Select Bit) (b1)

PWMFS2 (Timer A2 Programmable Output Mode Select Bit) (b2)


PWMFS4 (Timer A4 Programmable Output Mode Select Bit) (b4)

The bits are enabled when bits TMOD1 to TMOD0 in the TAiMR register are 11b (PWM mode or programmable output mode), and the MR3 bit in the TAiMR register is 0 (16-bit PWM mode).

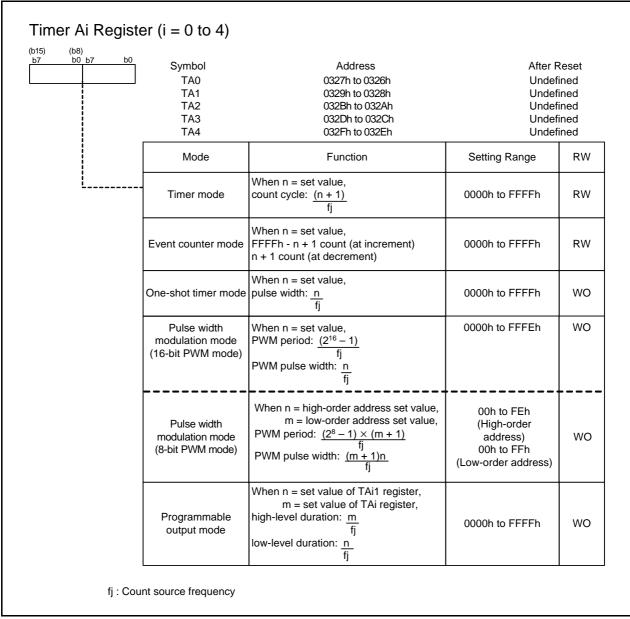
Timer A Waveform Output Function Select Register (TAPOFS) 17.2.6

07 b6 b5 b4 b3 b2 b1 b0	Symbol TAPOFS	Address 01D5h	·	fter Reset XX0 0000b
	Bit Symbol	Bit Name	Function	RW
	POFS0	TA0OUT output polar control bit	0 : Output waveform high-level active 1 : Output waveform high-level active	RW
L	POFS1	TA1OUT output polar control bit	(output reversed)	RW
	POFS2	TA2OUT output polar control bit		RW
	POFS3	TA3OUT output polar control bit		RW
	POFS4	TA4OUT output polar control bit		RW

17.2.7 Timer A Output Waveform Change Enable Register (TAOW)

The TAOW register is enabled in programmable output mode.

To change cycles or width of the output waveform, follow the instructions below.


- (1) Set the TAiOW bit to 0 (output waveform change disabled). (i = 1, 2, 4)
- (2) Write to the TAi register and/or the TAi1 register.
- (3)Set the TAiOW bit to 1 (output waveform change enabled).

The updated value is reloaded when the TAiOW bit is 1 (output waveform change enabled) at one cycle before the rising edge of the TAiOUT output (the falling edge when the TOFSi bit is 1). The value before the update is reloaded when the TAiOW bit is 0 (output waveform change disabled).

M16C/65 Group 17. Timer A

17.2.8 Timer Ai Register (TAi) (i = 0 to 4)

Under development

Access the register in 16-bit units. Use the MOV instruction to write to the TAi register.

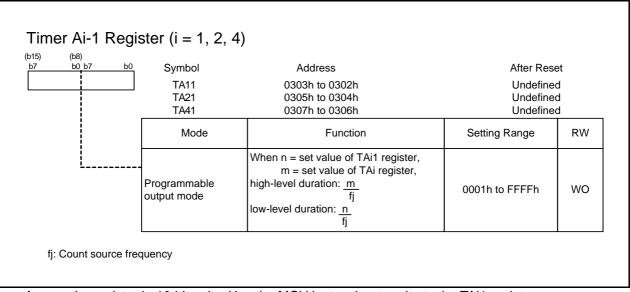
Event Counter Mode

The timer counts pulses from an external device, or the overflows/underflows of other timers.

One-Shot Timer Mode

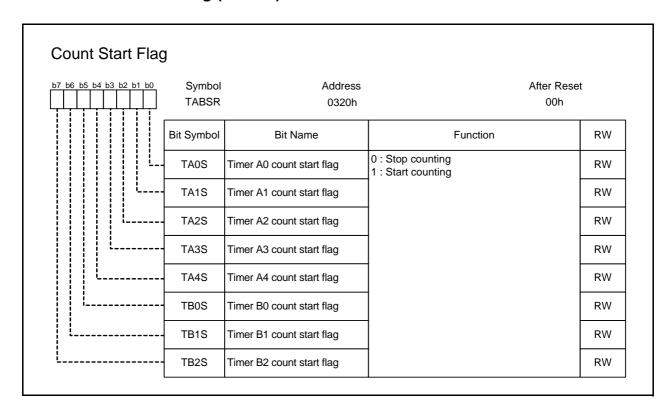
If the TAi register is set to 0000h, the counter does not work and timer Ai interrupt requests are not generated. Furthermore, if pulse output is selected, no pulses are output from the TAiOUT pin.

17. Timer A M16C/65 Group

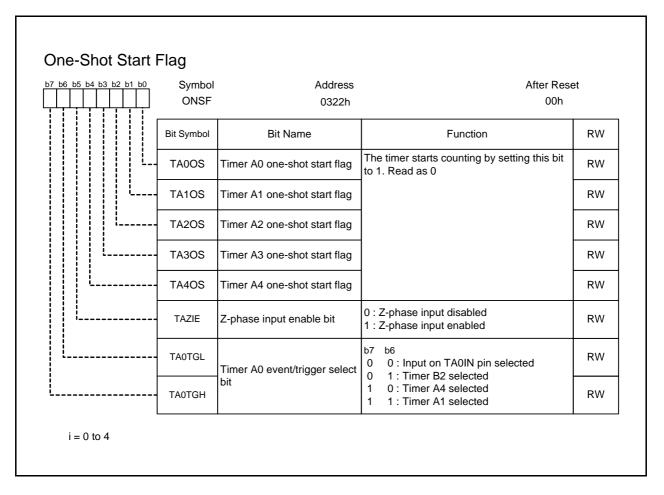

Pulse Width Modulation Mode (16-Bit PWM Mode)

If the TAi register is set to 0000h, the counter does not work, the output level on the TAiOUT pin remains low, and timer Ai interrupt requests are not generated.

Pulse Width Modulation Mode (8-Bit PWM Mode)


This mode operates as 8-bit prescaler (eight low-order bits) and 8-bit pulse width modulator (eight highorder bits). When the eight high-order bits of the TAi register are set to 00h, the counter does not work, the output level on the TAiOUT pin remains low, and timer Ai interrupt requests are not generated.

17.2.9 Timer Ai-1 Register (TAi1) (i = 1, 2, 4)



Access the register in 16-bit units. Use the MOV instruction to write to the TAi1 register.

17.2.10 Count Start Flag (TABSR)

17.2.11 One-Shot Start Flag (ONSF)

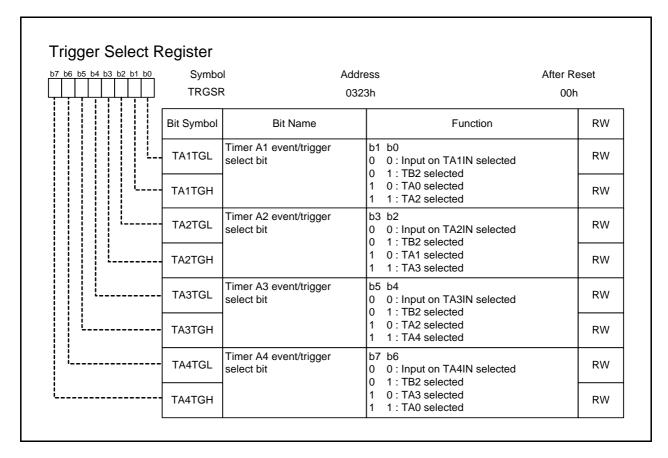
TAiOS (Timer Ai One-Shot Start Flag) (b4-b0) (i = 0 to 4)

This bit is enabled in one-shot timer mode. When the MR2 bit in the TAi register is 0 (TAiOS bit enabled), the timer Ai count starts by setting the TAiOS bit to 1 after setting the TAiS bit in the TABSR register to 1 (start counting).

TAZIE (Z-Phase Input Enable Bit) (b5)

This bit is used in event counter mode (two-phase pulse signal processing) of timer A3. Refer to 17.3.4.3 "Counter Initialization by Two-Phase Pulse Signal Processing" for details.

TAOTGH-TAOTGL (Timer A0 Event/Trigger Select Bit) (b7-b6)


This bit is used to select an event or a trigger of the following modes:

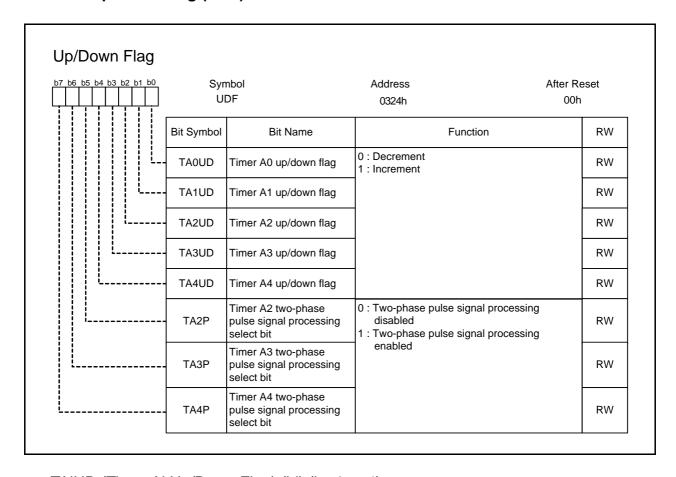
- An event in event counter mode (not using two-phase pulse signal processing)
- A trigger in one-shot timer mode or PWM mode The above applies when the MR2 bit in the TA0MR register is 1 (trigger selected by bits TA0TGH to TA0TGL).

The active edge of input signals can be selected by the MR1 bit in the TA0MR register when bits TA0TGH to TA0TGL are 00b.

When bits TA0TGH to TA0TGL are set to 01b, 10b, or 11b, an event or a trigger occurs when an interrupt request of the selected timer is generated. (An event or a trigger occurs while an interrupt is disabled because bits TA0TGH to TA0TGL are not influenced by I flag, IPL, or the interrupt control registers.)

17.2.12 Trigger Select Register (TRGSR)

TA1TGH-TA1TGL (Timer A1 Event/Trigger Select Bit) (b1-b0) TA2TGH-TA2TGL (Timer A2 Event/Trigger Select Bit) (b3-b2) TA3TGH-TA3TGL (Timer A3 Event/Trigger Select Bit) (b5-b4) TA4TGH-TA4TGL (Timer A4 Event/Trigger Select Bit) (b7-b6)


These bits are used to select an event or a trigger of the following modes:

- Event in event counter mode (not using two-phase pulse signal processing)
- Trigger in one-shot timer mode, PWM mode, or programmable output mode The above applies when the MR2 bit in the TAiMR register is 1 (trigger selected by bits TAiTGH to TAITGL).

The active edge of input signals can be selected by the MR1 bit in the TAiMR register when bits TAITGH to TAITGL are 00b.

When bits TAiTGH to TAiTGL are set to 01b, 10b, or 11b, an event or a trigger occurs when an interrupt request of the selected timer is generated. (An event or a trigger occurs while an interrupt is disabled because bits TAiTGH to TAiTGL are not influenced by I flag, IPL, or the interrupt control registers.)

17.2.13 Up/Down Flag (UDF)

TAiUD (Timer Ai Up/Down Flag) (bi) (i = 0 to 4)

Enabled in event counter mode (when not using two-phase pulse signal processing).

TA2P (Timer A2 Two-Phase Pulse Signal Processing Select Bit) (b5)

TA3P (Timer A3 Two-Phase Pulse Signal Processing Select Bit) (b6)

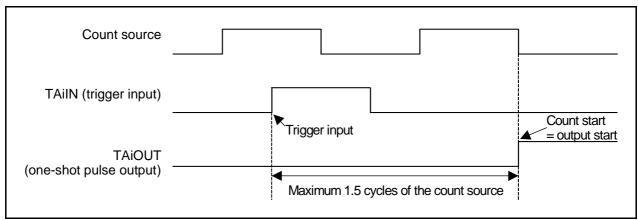
TA4P (Timer A4 Two-Phase Pulse Signal Processing Select Bit) (b7)

Set these bits to 0 when not using two-phase pulse signal processing.

17.2.14 Timer Ai Mode Register (TAiMR) (i = 0 to 4)

b7 b6 b5 b4 b3 b2 b1 b0	Symbo TA0MR to T		ddress After I to 033Ah 00	
	Bit Symbol	Bit Name	Function	RW
<u> </u>	- TMOD0	Operation mode select bit	b1 b0 0 0: Timer mode 0 1: Event counter mode	RW
	TMOD1		1 0 : One-shot timer mode 1 1 : Pulse width modulation (PWM) mode or programmable output mode	RW
	- MR0			RW
	MR1	Function varies with the operation mode		RW
	MR2			RW
	- MR3			RW
	TCK0			RW
Ĺ	TCK1	Count source select bit		RW

M16C/65 Group 17. Timer A


17.3 **Operations**

17.3.1 **Common Operations**

17.3.1.1 Operating Clock

The count source for each timer acts as a clock, controlling such timer operations as counting and reloading.

If the conditions to start counting are met, the counter not operating starts counting at the count timing of the first count source. For this reason, a delay exists between when the count start conditions are met and the counter starts counting. Figure 17.4 shows Output Example of One-Shot Timer Mode.

Output Example of One-Shot Timer Mode Figure 17.4

17.3.1.2 **Counter Reload Timing**

Timer Ai starts counting from the value (n) set in the TAi register. The TAi register consists of a counter and a reload register. The counter starts decrementing the count source from n, reloads a value in the reload register at the next count source after the value becomes 0000h, and continues decrementing. (When incrementing, the counter reloads a value in the reload register at the next count source after the value becomes FFFFh.)

The value written in the TAi register is reflected in the counter and the reload register at the timings below.

- When the count is stopped
- Between when the count starts and the first count source is input A value written to the TAi register is immediately written to the counter and the reload register.
- After the count starts and the first count source is input A value written to the TAi register is immediately written to the reload register. The counter continues counting and reloads the value in the reload register at the next count source after the value becomes 0000h (or FFFFh).

17.3.1.3 **Count Source**

Internal clocks are counted in timer mode, one-shot timer mode, PWM mode, and programmable output mode. (Refer to Figure 17.1 "Timer A and B Count Sources".) Table 17.5 lists Timer A Count Source.

Timer A, B, and multi-master I²C-bus interface share the divider. f1 or fOCO-F can be selected before the timer AB divider.

f1 is any of the following. Select f1 by the CM21 bit in the CM2 register and the FRA01 bit in the FRA0 register. (Refer to 8. "Clock Generator".)

- Main clock divided by 1 (no division)
- PLL clock divided by 1 (no division)
- fOCO-S divided by 1 (no division)
- fOCO-F divided by 1 (no division)

Table 17.5 Timer A Count Source

	Bit Set Value				
Count Source	PCLK0	TCS3	TCS2 to TCS0	TCK1 to TCK0	Remarks
		TCS7	TCS4 to TCS6		
f1TIMAB	1	0	-	00b	f1 or fOCO-F (1)
		1	000b	-	
f2TIMAB	0	0	-	00b	f1 divided by 2 or
		1	000b	-	fOCO-F divided by 2 (1)
f8TIMAB	-	0	-	01b	f1 divided by 8 or
		1	001b	-	fOCO-F divided by 8 (1)
f32TIMAB	-	0	-	10b	f1 divided by 32 or
		1	010b	-	fOCO-F divided by 32 ⁽¹⁾
f64TIMAB	-	1	011b	-	f1 divided by 64 or
					fOCO-F divided by 64 ⁽¹⁾
fOCO-F	-	1	100b	-	fOCO-F
fOCO-S	-	1	101b	-	fOCO-S
fC32	-	0	-	11b	fC32
		1	110b	-	

PCLK0: Bit in the PCLKR register

TCS7 to TCS0: Bits in registers TACS0 to TACS2 TCK1 to TCK0: Bits in the TAiMR register (i = 0 to 4)

Note:

Select f1 or fOCO-F by the TCDIV00 bit in the TCKDIVC0 register. 1.

M16C/65 Group 17. Timer A

17.3.2 **Timer Mode**

In timer mode, the timer counts a count source generated internally. Table 17.6 lists Specifications of Timer Mode, Table 17.7 lists Registers and the Setting in Timer Mode, and Figure 17.5 shows Operation Example in Timer Mode.

Table 17.6 Specifications of Timer Mode

Item	Specification		
Count source	f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32		
Count operation	Decrement		
	• When the timer underflows, it reloads the reload register contents and		
	continues counting.		
Counter cycles	<u>(n+1)</u>		
	fj		
	n: set value of TAi register 0000h to FFFFh		
	fj: frequency of count source		
Count start condition	Set the TAiS bit in the TABSR register to 1 (start counting).		
Count stop condition	Set the TAiS bit to 0 (stop counting).		
Interrupt request generation timing	Timer underflow		
TAilN pin function	I/O port or gate input		
TAiOUT pin function	I/O port or pulse output		
Read from timer	Count value can be read by reading the TAi register.		
Write to timer	When not counting		
	Value written to the TAi register is written to both reload register and counter.		
	When counting		
	Value written to the TAi register is written to only reload register		
	(transferred to counter when reloaded next).		
Selectable functions	Gate function		
	Counting can be started and stopped by an input signal to the TAilN pin.		
	Pulse output function		
	Whenever the timer underflows, the output polarity of the TAiOUT pin is inverted. When the TAiS bit is set to 0 (stop counting), the pin outputs a low-level signal.		
	Output polarity control		
	While the output polarity of the TAiOUT pin is inverted (the TAiS bit is set to 0 (stop counting)), the pin outputs a high-level signal.		

i = 0 to 4

Registers and the Setting in Timer Mode (1) **Table 17.7**

Register	Bit	Setting
PCLKR	PCLK0	Select the count source.
CPSRF	CPSR	Write a 1 to reset the clock prescaler.
TCKDIVC0	TCDIV00	Select a clock used prior to timer AB frequency dividing.
PWMFS	PWMFSi	Set to 0.
TACS0 to TACS2	7 to 0	Select the count source.
TAPOFS	POFSi	Select the output polarity when the MR0 bit in the TAiMR register
		is 1 (pulse output).
TAi1	7 to 0	- (does not need to be set)
TABSR	TAiS	Set to 1 when starting counting.
		Set to 0 when stopping counting.
ONSF	TAiOS	Set to 0.
	TAZIE	Set to 0.
	TAITGH to TAITGL	Set to 00b.
TRGSR	TAITGH to TAITGL	Set to 00b.
UDF	TAiUD	Set to 0.
	TAiP	Set to 0.
TAi	7 to 0	Set the counter value.
TAIMR	7 to 0	Refer to the following TAiMR register.

i = 0 to 4

Note:

1. This table does not describe a procedure.

TCK1-TCK0 (Count Source Select Bit) (b7-b6)

Valid when the TCS3 bit or TCS7 bit in registers TACS0 to TACS2 is set to 0 (TCK0 to TCK1 enabled). Select f1TIMAB or f2TIMAB by the PCLK0 bit in the PCLKR register.

17. Timer A M16C/65 Group

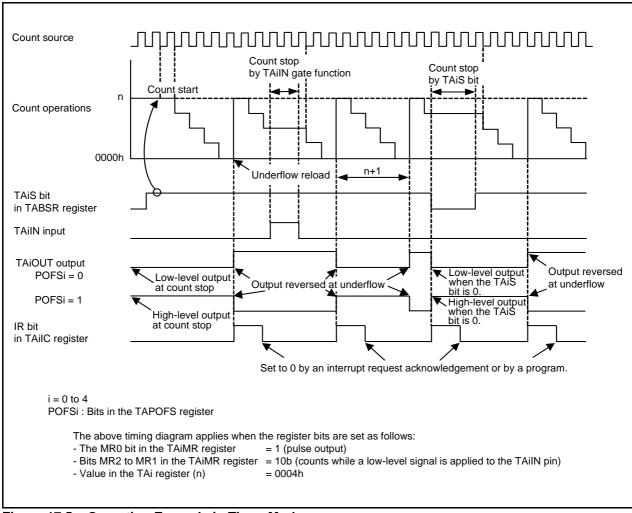


Figure 17.5 Operation Example in Timer Mode

Under development

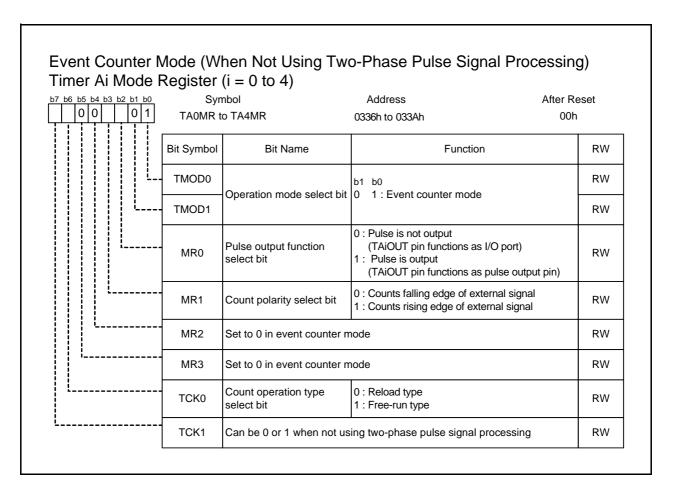
17.3.3 **Event Counter Mode (When Not Processing Two-Phase Pulse Signal)**

In event counter mode, the timer counts pulses from an external device, or overflows/underflows of other timers. Timers A2, A3, and A4 can count two-phase external signals (refer to 17.3.4 "Event Counter Mode (When Processing Two-Phase Pulse Signal)"). Table 17.8 lists Specifications in Event Counter Mode (When Not Processing Two-Phase Pulse Signal). Table 17.9 lists Registers and the Setting in Event Counter Mode (When Not Processing Two-Phase Pulse Signal). Figure 17.6 shows Operation Example in Event Counter Mode.

Table 17.8 Specifications in Event Counter Mode (When Not Processing Two-Phase Pulse Signal)

Item	Specification	
Count source	• External signals input to the TAilN pin (active edge can be selected by a	
	program)	
	• Timer B2 overflows or underflows	
	• Timer Aj overflows or underflows (j = i - 1, except j = 4 if i = 0)	
	• Timer Ak overflows or underflows (k = i + 1, except k=0 if i = 4)	
Count operations	• Increment or decrement can be selected by a program.	
	• When the timer overflows or underflows, it reloads the reload register	
	contents and continues counting. When operating in free-running mode, the	
	timer continues counting without reloading.	
Number of counts	•FFFFh - n + 1 for increment	
	•n + 1 for decrement	
	n: set value of the TAi register 0000h to FFFFh	
Count start condition	Set the TAiS bit in the TABSR register to 1 (start counting).	
Count stop condition	Set the TAiS bit to 0 (stop counting).	
Interrupt request	Timer overflow or underflow	
generation timing		
TAilN pin function	I/O port or count source input	
TAiOUT pin function	I/O port or pulse output	
Read from timer	Count value can be read by reading the TAi register.	
Write to timer	When not counting	
	Value written to the TAi register is written to both reload register and counter.	
	When counting	
	Value written to the TAi register is written to only reload register	
	(transferred to counter when reloaded next).	
Selectable functions	• Free-run count function	
	Even when the timer overflows or underflows, the reload register content is	
	not reloaded.	
	Pulse output function	
	Whenever the timer underflows or underflows, the output polarity of the	
	TAiOUT pin is inverted. When the TAiS bit is set to 0 (stop counting), the pin outputs a low-level signal.	
	Output polarity control	
	While the output polarity of the TAiOUT pin is inverted (the TAiS bit is set to	
	0 (stop counting)), the pin outputs a high-level signal.	

i = 0 to 4


Registers and the Setting in Event Counter Mode (When Not Processing Two-Phase **Table 17.9** Pulse Signal) (1)

Register	Bit	Setting
PCLKR	PCLK0	Set to 1.
CPSRF	CPSR	Write a 1 to reset the clock prescaler.
TCKDIVC0	TCDIV00	Set to 0.
PWMFS	PWMFSi	Set to 0.
TACS0 to TACS2	7 to 0	Set to 00b.
TAPOFS	POFSi	Select the output polarity when the MR0 bit in the TAiMR register
		is 1 (pulse output).
TAi1	7 to 0	- (setting unnecessary)
TABSR	TAiS	Set to 1 when starting counting.
		Set to 0 when stopping counting.
ONSF	TAiOS	Set to 0.
	TAZIE	Set to 0.
	TAITGH to TAITGL	Select a count source.
TRGSR	TAiTGH to TAiTGL	Select a count source.
UDF	TAiUD	Select a count operation.
	TAiP	Set to 0.
TAi	7 to 0	Set the counter value.
TAiMR	7 to 0	Refer to the following TAiMR register.

i = 0 to 4

Note:

This table does not describe a procedure. 1.

MR1 (Count Polarity Select Bit) (b3)

Valid when bits TAiTGH to TAiTGL in the ONSF or TRGSR register are 00b (TAiIN pin input).

17. Timer A M16C/65 Group

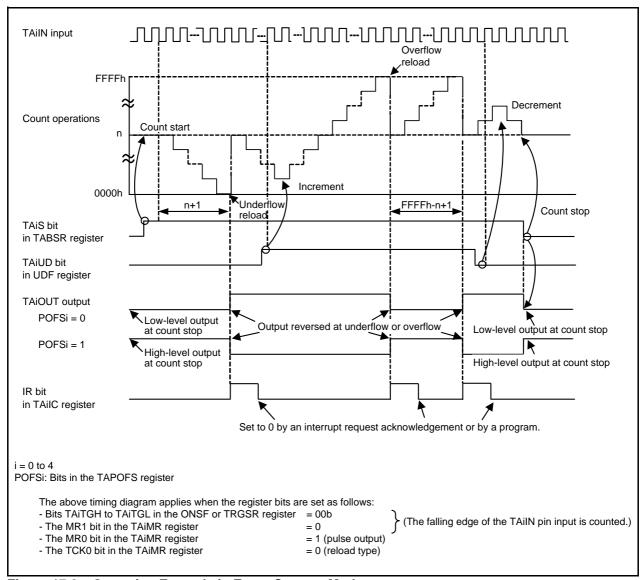


Figure 17.6 Operation Example in Event Counter Mode

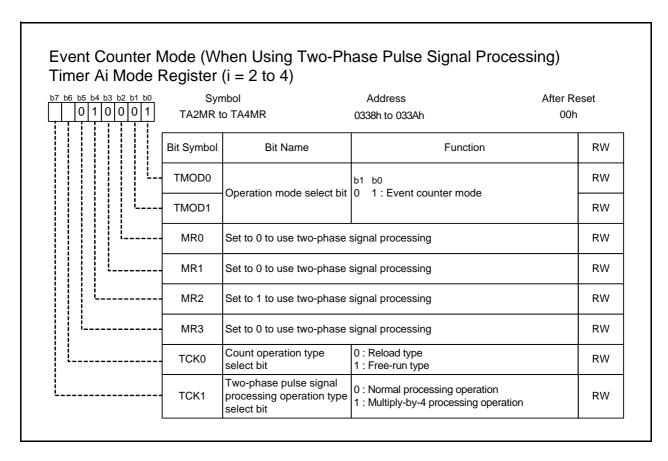
Event Counter Mode (When Processing Two-Phase Pulse Signal) 17.3.4

Timers A2, A3, and A4 can be used to count two-phase pulse signals. Table 17.10 lists Specifications of Event Counter Mode (When Processing Two-Phase Pulse Signal with Timers A2, A3, and A4). Table 17.11 lists Registers and the Setting in Event Counter Mode (When Processing Two-Phase Pulse Signal).

Table 17.10 Specifications of Event Counter Mode (When Processing Two-Phase Pulse Signal with Timers A2, A3, and A4)

Item	Specification		
Count source	Two-phase pulse signals input to the TAilN or TAiOUT pin		
Count operations	 Increment or decrement can be selected by a two-phase pulse signal. When the timer overflows or underflows, it reloads the reload register contents and continues counting. When operating in free-running mode, the timer continues counting without reloading. 		
Number of counts	 FFFFh - n + 1 for increment n + 1 for decrement n: set value of the TAi register 0000h to FFFFh 		
Count start condition	Set the TAiS bit in the TABSR register to 1 (start counting).		
Count stop condition	Set the TAiS bit to 0 (stop counting).		
Interrupt request generation timing	Timer overflow or underflow		
TAilN pin function	Two-phase pulse input		
TAiOUT pin function	Two-phase pulse input		
Read from timer	Count value can be read by reading timer A2, A3, or A4 register.		
Write to timer	 When not counting Value written to the TAi register is written to both reload register and counter. When counting Value written to the TAi register is written to only reload register (transferred to counter when reloaded next). 		
Selectable functions	 Select normal or multiply-by-4 processing operation (timer A3). Counter initialization by Z-phase input (timer A3) The timer count value is initialized to 0 by Z-phase input. 		

i = 2 to 4


Registers and the Setting in Event Counter Mode (When Processing Two-Phase Pulse **Table 17.11** Signal) (1)

Register	Bit	Setting
PCLKR	PCLK0	Set to 1.
CPSRF	CPSR	Write a 1 to reset the clock prescaler.
TCKDIVC0	TCDIV00	Set to 0.
PWMFS	PWMFSi	Set to 0.
TACS0 to TACS2	7 to 0	Set to 00b.
TAPOFS	POFSi	Set to 0.
TAi1	7 to 0	- (setting unnecessary)
TABSR	TAiS	Set to 1 when starting counting.
		Set to 0 when stopping counting.
ONSF	TAiOS	Set to 0.
	TAZIE	Set to 1 when using Z-phase input at timer A3.
	TAITGH to TAITGL	Set to 00b.
TRGSR	TAITGH to TAITGL	Set to 00b.
UDF	TAiUD	Set to 0.
	TAiP	Set to 1.
TAi	7 to 0	Set the counter value.
TAiMR	7 to 0	Refer to the following TAiMR register.

i = 2 to 4

Note:

1. This table does not describe a procedure.

TCK1 (Two-Phase Pulse Signal Processing Operation Type Select Bit) (b7)

The TCK1 bit can be set only for timer A3 mode register. No matter how this bit is set, timers A2 and A4 always operate in normal processing mode and multiply-by-4 processing mode, respectively.

17. Timer A M16C/65 Group

17.3.4.1 **Normal Processing**

The timer increments rising edges or decrements falling edges on the TAjIN pin when input signals on the TAjOUT (j = 2, 3) pin is high level. Figure 17.7 shows Normal Processing.

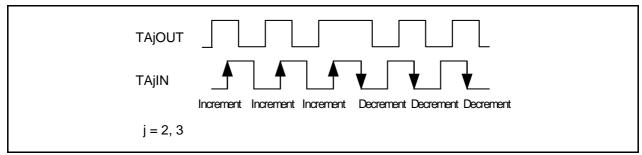
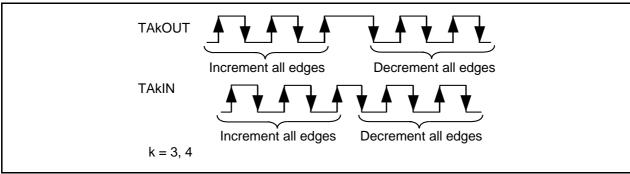



Figure 17.7 **Normal Processing**

17.3.4.2 **Multiply-by-4 Processing**

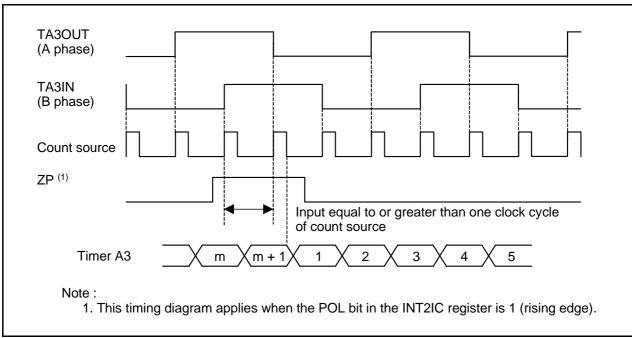
If the phase relationship is such that TAkIN pin goes high when the input signal on the TAkOUT pin (k = 3, 4) is high, the timer increments rising and falling edges on pins TAkOUT and TAkIN. If the phase relationship is such that the TAkIN pin goes low when the input signal on the TAkOUT pin is high, the timer decrements rising and falling edges on pins TAkOUT and TAkIN. Figure 17.8 shows Multiply-by-4 Processing.

Multiply-by-4 Processing Figure 17.8

M16C/65 Group 17. Timer A

Counter Initialization by Two-Phase Pulse Signal Processing 17.3.4.3

This function initializes the timer count value to 0000h by Z-phase (counter initialization) input during two-phase pulse signal processing.


This function can only be used in timer A3 event counter mode during two-phase pulse signal processing, free-running type, multiply-by-4 processing, with Z-phase entered from the ZP pin.

Counter initialization by Z-phase input is enabled by writing 0000h to the TA3 register and setting the TAZIE bit in the ONSF register to 1 (Z-phase input enabled).

Counter initialization is accomplished by Z-phase input edge detection. The rising or falling edge can be selected as the active edge by using the POL bit in the INT2IC register. The Z-phase pulse width applied to the $\overline{\text{ZP}}$ pin must be equal to or greater than one clock cycle of timer A3 count source.

The counter is initialized at the next count timing after recognizing Z-phase input. Figure 17.9 shows the Relationship between the Two-Phase Pulse (A-Phase and B-Phase) and the Z-Phase.

If timer A3 overflow or underflow coincides with counter initialization by Z-phase input, a timer A3 interrupt request is generated twice in succession. Do not use the timer A3 interrupt when using this function.

Relationship between the Two-Phase Pulse (A-Phase and B-Phase) and the Z-Phase

M16C/65 Group 17. Timer A

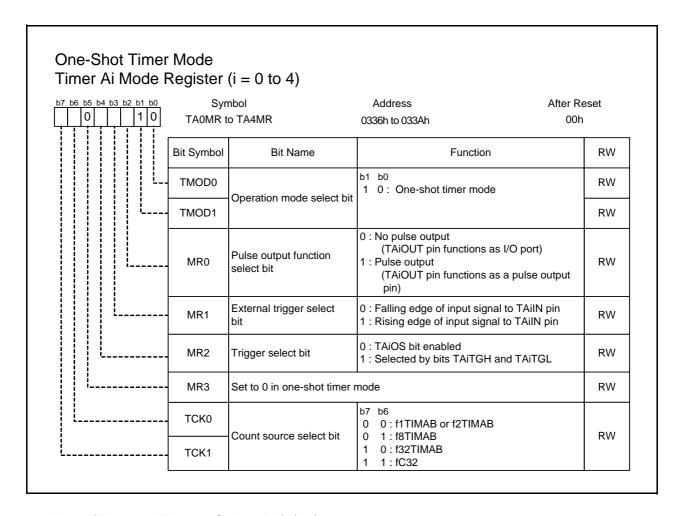
One-Shot Timer Mode 17.3.5

In one-shot timer mode, the timer is activated only once by one trigger. When the trigger occurs, the timer starts and continues operating for a given period. Table 17.12 lists Specifications of One-Shot Timer Mode. Table 17.13 lists Registers and the Setting in One-Shot Timer Mode. Figure 17.10 shows Operation Example in One-Shot Timer Mode.

Table 17.12 Specifications of One-Shot Timer Mode

Item	Specification		
Count source	f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32		
Count operations	 Decrement When the counter reaches 0000h, it stops counting after reloading a new value. When a trigger occurs while counting, the timer reloads a new value and 		
	restarts counting.		
Pulse width	n: set value of the TAi register 0000h to FFFFh However, the counter does not work if 0000h is set. fj: count source frequency		
Count start condition	The TAiS bit in the TABSR register is 1 (start counting) and one of the following triggers occurs: • External trigger input from the TAilN pin • Timer B2 overflow or underflow • Timer Aj overflow or underflow (j = i - 1, except j = 4 if i = 0) • Timer Ak overflow or underflow (k = i + 1, except k = 0 if i = 4)		
On the Control of the Control	• The TAiOS bit in the ONSF register is set to 1 (timer starts).		
Count stop condition	 When the counter is reloaded after reaching 0000h The TAiS bit is set to 0 (stop counting) 		
Interrupt request generation timing	When the counter reaches 0000h		
TAilN pin function	I/O port or trigger input		
TAiOUT pin function	I/O port or pulse output		
Read from timer	An undefined value is read by reading the TAi register.		
Write to timer	 When not counting and until the first count source is input after counting starts, the value written to the TAi register is written to both reload register and counter. When counting (after first count source input), the value written to the TAi register is written to only the reload register (transferred to the counter when reloaded next). 		
Selectable functions	 Pulse output function The timer outputs a low-level signal when not counting and a high-level signal when counting. Output polarity control The output polarity of TAiOUT pin is inverted. (While the TAiS bit is set to 0 (stop counting), the pin outputs a high-level signal.) 		

i = 0 to 4


Table 17.13 Registers and the Setting in One-Shot Timer Mode (1)

Register	Bit	Setting	
PCLKR	PCLK0	Select the count source.	
CPSRF	CPSR	Write a 1 to reset the clock prescaler.	
TCKDIVC0	TCDIV00	Select a clock used prior to timer AB frequency dividing.	
PWMFS	PWMFSi	Set to 0.	
TACS0 to TACS2	7 to 0	Select the count source.	
TAPOFS	POFSi	Select the output polarity when the MR0 bit in the TAiMR register is 1 (pulse output).	
TAi1	7 to 0	- (setting unnecessary)	
TABSR	TAiS	Set to 1 when starting counting.	
		Set to 0 when stopping counting.	
ONSF	TAiOS	Set to 1 when starting counting while the MR2 bit is 0.	
	TAZIE	Set to 0.	
	TAITGH to TAITGL	Select a count trigger.	
TRGSR	TAITGH to TAITGL	Select a count trigger.	
UDF	TAiUD	Set to 0.	
	TAiP	Set to 0.	
TAi	7 to 0	Set a high-level pulse width. (2)	
TAiMR	7 to 0	Refer to the following TAiMR register.	

i = 0 to 4

Notes:

- 1. This table does not describe a procedure.
- 2. This applies when the POFSi bit in the TAPOFS register is 0.

MR1 (External Trigger Select Bit) (b3)

Valid when the MR2 bit is set to 1 and bits TAiTGH to TAiTGL in the ONSF register or TRGSR register are set to 00b (TAiIN pin input).

TCK1-TCK0 (Count Source Select Bit) (b7-b6)

Valid when the TCS3 bit or TCS7 bit in registers TACS0 to TACS2 is set to 0 (TCK0 to TCK1 enabled). Select f1TIMAB or f2TIMAB by the PCLK0 bit in the PCLKR register.

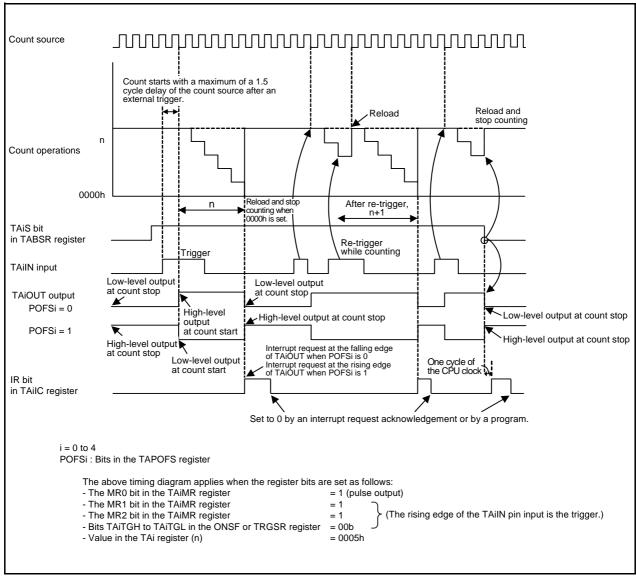


Figure 17.10 Operation Example in One-Shot Timer Mode

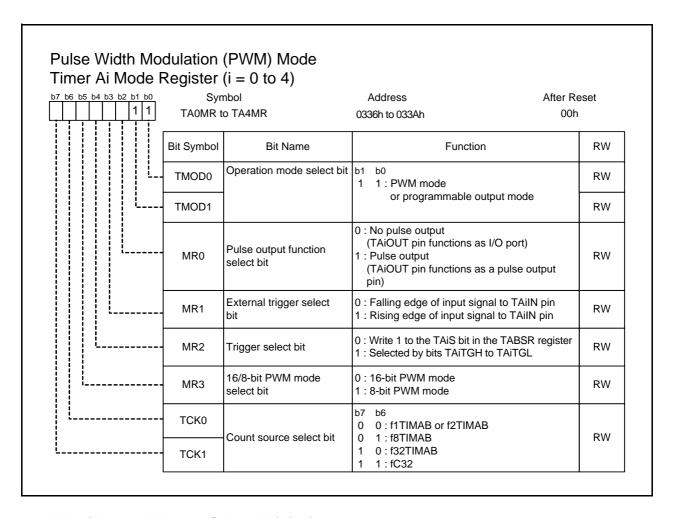
17.3.6 **Pulse Width Modulation (PWM) Mode**

In PWM mode, the timer outputs pulses of a given width in succession. The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Table 17.14 lists Specifications of PWM Mode. Table 17.15 lists Registers and the Setting in PWM Mode. Figure 17.11 and Figure 17.12 show Operation Example in 16-Bit Pulse Width Modulation Mode and Operation Example in 8-Bit Pulse Width Modulation Mode, respectively.

Table 17.14 Specifications of PWM Mode

Item	Specification		
Count source	f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, f0CO-F, f0CO-S, fC32		
Count operations	 Decrement (operating as an 8-bit or a 16-bit pulse width modulator) The timer reloads a new value at a rising edge of PWM pulse and continues counting. The timer is not affected by a trigger that occurs during counting. 		
16-bit PWM	• Pulse width $\frac{n}{fj}$ $\underbrace{\overset{n}{\underset{2^{16}-1}{}}}_{}$		
	• Cycle time $\frac{(2^{16}-1)}{f_j}$ n: set value of the TAi register		
	fj: count source frequency		
8-bit PWM	• Pulse width $\frac{n \times (m+1)}{fj}$ $\underset{(2^8-1) \times (m+1)}{\overset{n \times (m+1)}{\longleftrightarrow}}$		
	Cycle time		
Count start condition	 The TAiS bit of the TABSR register is set to 1 (start counting). The TAiS bit is 1 and external trigger input from the TAiIN pin The TAiS bit is 1 and one of the following external triggers occurs Timer B2 overflow or underflow Timer Aj overflow or underflow (j = i - 1, except j = 4 if i = 0) Timer Ak overflow or underflow (k = i + 1, except k = 0 if i = 4) 		
Count stop condition	The TAiS bit is set to 0 (stop counting).		
Interrupt request generation timing	On the falling edge of the PWM pulse		
TAilN pin function	I/O port or trigger input		
TAiOUT pin function	Pulse output		
Read from timer	An indeterminate value is read by reading the TAi register.		
Write to timer	 When not counting Value written to the TAi register is written to both reload register and counter. When counting Value written to the TAi register is written to only reload register (transferred to counter when reloaded next). 		
Selectable functions	Output polarity control The output polarity of TAiOUT pin is inverted. (While the TAiS bit is set to 0 (stop counting), the pin outputs a high-level signal.)		

i = 0 to 4


Table 17.15 Registers and the Setting in PWM Mode (1)

Register	Bit	Setting
PCLKR	PCLK0	Select the count source.
CPSRF	CPSR	Write a 1 to reset the clock prescaler.
TCKDIVC0	TCDIV00	Select a clock used prior to timer AB frequency dividing.
PWMFS	PWMFSi	Set to 0.
TACS0 to TACS2	7 to 0	Select the count source.
TAPOFS	POFSi	Select the output polarity.
TAi1	7 to 0	- (setting unnecessary)
TABSR	TAiS	Set to 1 when starting counting.
		Set to 0 when stopping counting.
ONSF	TAiOS	Set to 0.
	TAZIE	Set to 0.
	TAITGH to TAITGL	Select a count trigger.
TRGSR	TAITGH to TAITGL	Select a count trigger.
UDF	TAiUD	Set to 0.
	TAiP	Set to 0.
TAi	7 to 0	Select the pulse width and cycles.
TAiMR	7 to 0	Refer to the following TAiMR register.

i = 0 to 4

Note:

1. This table does not describe a procedure.

MR1 (External Trigger Select Bit) (b3)

Valid when the MR2 bit is set to 1 and bits TAiTGH to TAiTGL in the ONSF register or TRGSR register are set to 00b (TAilN pin input).

TCK1-TCK0 (Count Source Select Bit) (b7-b6)

Valid when the TCS3 bit or TCS7 bit in registers TACS0 to TACS2 is set to 0 (TCK0 to TCK1 enabled). Select f1TIMAB or f2TIMAB by the PCLK0 bit in the PCLKR register.

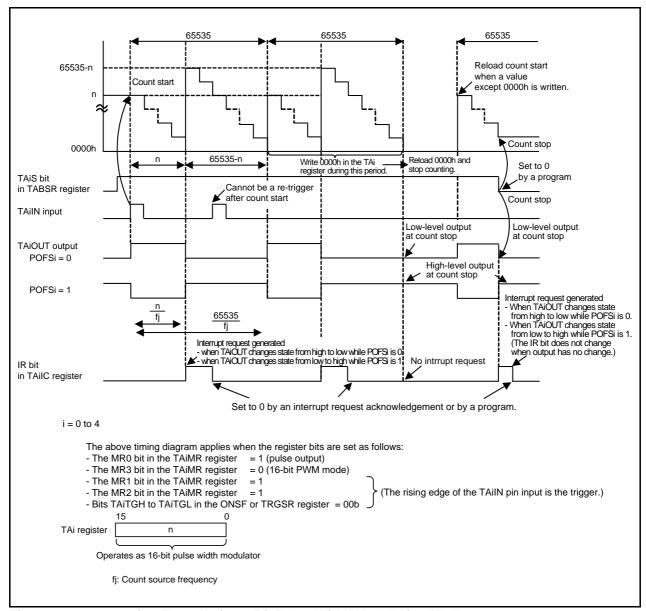


Figure 17.11 Operation Example in 16-Bit Pulse Width Modulation Mode

M16C/65 Group 17. Timer A

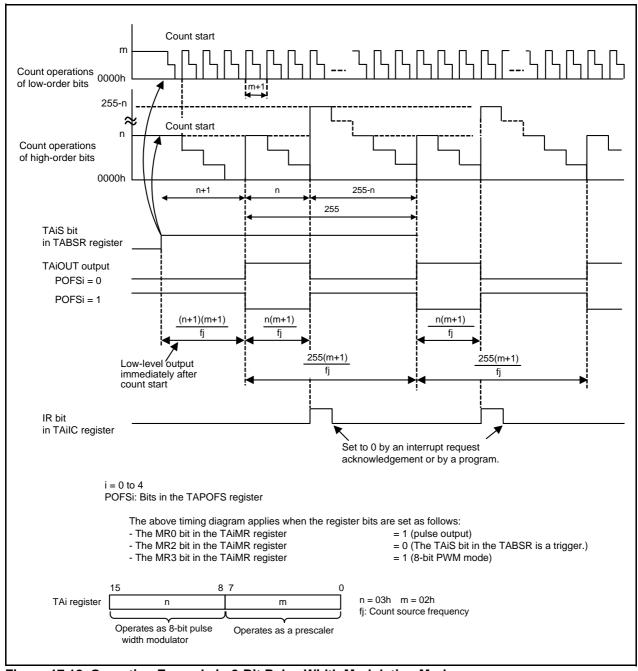


Figure 17.12 Operation Example in 8-Bit Pulse Width Modulation Mode

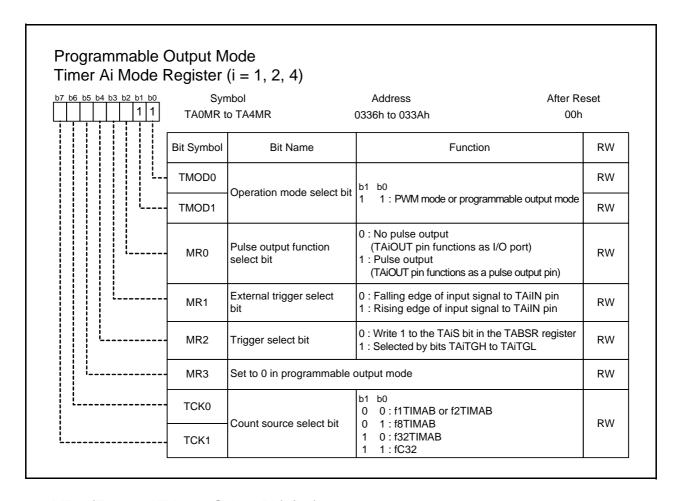
Programmable Output Mode (Timers A1, A2, and A4) 17.3.7

In programmable output mode, the timer outputs low- and high-levels of pulse width successively. Table 17.16 lists Specifications of Programmable Output Mode. Table 17.17 lists Registers and the Setting in Programmable Output Mode. Figure 17.13 shows Operation Example in Programmable Output Mode.

Table 17.16 Specifications of Programmable Output Mode

Item	Specification	
Count source	f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32	
Count operations	 Decrement Reloads on the rising edge of pulse and continues counting When a trigger occurs while counting, the timer reloads a new value and restarts counting. 	
Pulse width	• High-level pulse width $\frac{m}{fj}$ \xrightarrow{m} n	
	• Low-level pulse width $\frac{n}{fj}$	
	m: set value of the TAi register	
	n: set value of the TAi1 register	
	fj: count source frequency	
Count start condition	• The TAIS bit of the TABSR register is set to 1 (start counting).	
	• The TAiS bit is 1 and external trigger input from the TAilN pin	
	• The TAIS bit is 1 and one of the following external triggers occurs	
	Timer B2 overflow or underflow Timer Aj overflow or underflow (j = i - 1)	
	Timer Ak overflow or underflow $(k = i + 1)$ except $k = 0$ if $i = 4$	
Count stop condition	The TAiS bit is set to 0 (stop counting).	
Interrupt request	At the rising edge of pulse	
generation timing		
TAilN pin function	I/O port or trigger input	
TAiOUT pin function	Pulse output	
Read from timer	An undefined value is read by reading registers TAi and TAi1.	
Write to timer	When writing to registers TAi and TAi1 while not counting, the value is written to both reload register and counter.	
	When writing to registers TAi and TAi1 while counting, the value is written to the reload register. (transferred to the counter when reloaded next).	
Selectable functions	Output polarity control	
	The output polarity of TAiOUT pin is inverted. (While the TAiS bit is set to 0 (stop	
: 4.0 and 4	counting), the pin outputs a high-level signal.)	

i = 1, 2, and 4


Table 17.17 Registers and the Setting in Programmable Output Mode (1)

Register	Bit	Setting
PCLKR	PCLK0	Select the count source.
CPSRF	CPSR	Write a 1 to reset the clock prescaler.
TCKDIVC0	TCDIV00	Select a clock used prior to timer AB frequency dividing.
PWMFS	PWMFSi	Set to 1.
TACS0 to TACS2	7 to 0	Select the count source.
TAPOFS	POFSi	Select the output polarity.
TAi1	7 to 0	Set a low-level pulse width. (2)
TABSR	TAiS	Set to 1 when starting counting.
		Set to 0 when stopping counting.
ONSF	TAiOS	Set to 0.
	TAZIE	Set to 0.
	TAITGH to TAITGL	Select a count trigger.
TRGSR	TAITGH to TAITGL	Select a count trigger.
UDF	TAiUD	Set to 0.
	TAiP	Set to 0.
TAi	7 to 0	Set a high-level pulse width. (2)
TAiMR	7 to 0	Refer to the following TAiMR register.

i = 1, 2, and 4

Notes:

- 1. This table does not describe a procedure.
- This applies when the POFSi bit in the TAPOFS register is 0.

MR1 (External Trigger Select Bit) (b3)

Valid when bits TAiTGH to TAiTGL in the ONSF register or TRGSR register are set to 00b (TAiIN pin input).

TCK1-TCK0 (Count Source Select Bit) (b7-b6)

Valid when the TCS3 bit or TCS7 bit in registers TACS0 to TACS2 is set to 0 (TCK0 to TCK1 enabled). Select f1TIMAB or f2TIMAB by the PCLK0 bit in the PCLKR register.

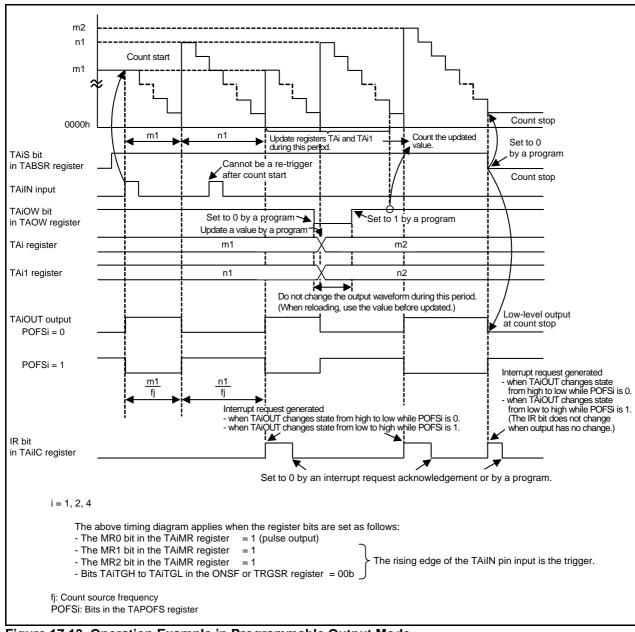


Figure 17.13 Operation Example in Programmable Output Mode

M16C/65 Group 17. Timer A

17.4 Interrupts

Refer to individual operation examples for interrupt request generating timing.

Refer to 14.7 "Interrupt Control" for details of interrupt control. Table 17.18 lists Timer A Interrupt Related Registers.

Table 17.18 Timer A Interrupt Related Registers

Address	Register Name	Register Symbol	After Reset
0055h	Timer A0 Interrupt Control Register	TA0IC	XXXX X000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXX X000b
0058h	Timer A3 Interrupt Control Register	TA3IC	XXXX X000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXX X000b

The IR bit in the TAiIC register may become 1 (interrupt requested) when the TMOD1 bit in the TAiMR register is changed from 0 to 1 (change from timer mode or event counter mode to one-shot timer mode, PWM mode, or programmable output mode). Make sure to follow the procedure below when setting the TMOD1 bit to 1. Refer to 14.13 "Notes on Interrupts" as well.

- (1) Set bits ILVL2 to ILVL0 in the TAilC register to 000b (interrupt disabled).
- (2)Set the TAiMR register.
- (3) Set the IR bit in the TAilC register to 0 (interrupt not requested).

17.5 **Notes on Timer A**

17.5.1 **Timer A (Timer Mode)**

17.5.1.1 Register Setting

The timer stops after reset. Set the mode, count source, counter value, etc., using registers TAiMR, TAi, TACS0 to TACS2, TAPOFS, TCKDIVC0, and PCLKR before setting the TAiS bit in the TABSR register to 1 (count starts) (i = 0 to 4).

Always make sure registers TAiMR, TACS0 to TACS2, TAPOFS, TCKDIVC0, and PCLKR are modified while the TAiS bit is 0 (count stops), regardless of whether after reset or not.

17.5.1.2 **Read from Timer**

While counting is in progress, the counter value can be read at any time by reading the TAi register. However, if the counter is read at the same time as it is reloaded, the value FFFFh is read. Also, if the counter is read before it starts counting and after a value is set in the TAi register while not counting, the set value is read.

17.5.1.3 Influence of SD

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on the SD pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to the high-impedance state.

17.5.2 **Timer A (Event Counter Mode)**

17.5.2.1 Register Setting

The timer is stopped after reset. Set the mode, count source, counter value, etc., using the TAiMR register, the TAi register, the UDF register, bits TAZIE, TA0TGL, and TA0TGH in the ONSF register, the TRGSR register, and the TAPOFS register before setting the TAiS bit in the TABSR register to 1 (count starts) (i = 0 to 4).

Always make sure the TAiMR register, the UDF register, bits TAZIE, TA0TGL, and TA0TGH in the ONSF register, the TRGSR register, and the TAPOFS register are modified while the TAIS bit is 0 (count stops), regardless of whether after reset or not.

Read from Timer 17.5.2.2

While counting is in progress, the counter value can be read at any time by reading the TAi register. However, while reloading, FFFFh can be read in underflow, and 0000h in overflow. When the counter is read before it starts counting and after a value is set in the TAi register while not counting, the set value is read.

17.5.2.3 Influence of SD

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on SD pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to the high-impedance state.

Timer A (One-Shot Timer Mode) 17.5.3

17.5.3.1 Register Setting

The timer is stopped after reset. Set the mode, count source, counter value, etc., using the TAiMR register, the TAi register, bits TA0TGL and TA0TGH in the ONSF register, the TRGSR register, registers TACS0 to TACS2, the TAPOFS register, the TCKDIVC0 register, and the PCLKR register before setting the TAiS bit in the TABSR register to 1 (count starts) (i = 0 to 4).

Always make sure the TAiMR register, bits TA0TGL and TA0TGH in the ONSF register, the TRGSR register, registers TACS0 to TACS2, the TAPOFS register, the TCKDIVC0 register, and the PCLKR register are modified while the TAiS bit is 0 (count stops), regardless of whether after reset or not.

17.5.3.2 **Stop While Counting**

When setting the TAiS bit to 0 (count stops), the following occurs:

- The counter stops counting and the contents of the reload register are reloaded.
- The TAiOUT pin outputs a low-level signal when the POFSi bit in the TAPOFS register is 0 and outputs a high-level signal when it is 1.
- After one cycle of the CPU clock, the IR bit in the TAilC register is set to 1 (interrupt requested).

17.5.3.3 **Delay between the Trigger Input and Timer Output**

One-shot timer output synchronizes with a count source generated internally. When an external trigger is selected, a maximum 1.5 cycle delay of the count source occurs between the trigger input to the TAilN pin and timer output.

17.5.3.4 **Operating Mode Change**

The IR bit is set to 1 when timer operating mode is set with any of the following procedures:

- Selecting one-shot timer mode after reset
- Changing the operating mode from timer mode to one-shot timer mode
- Changing the operating mode from event counter mode to one-shot timer mode To use the timer Ai interrupt (IR bit), set the IR bit to 0 after the changes listed above are made.

17.5.3.5 Re-Trigger

When a trigger occurs while counting, the counter reloads the reload register to continue counting after generating a re-trigger and counting down once. To generate a trigger while counting, generate a re-trigger after more than one cycle of the timer count source has elapsed following the previous trigger.

When an external trigger occurs, do not generate a re-trigger for 300 ns before the count value becomes 0000h.

The one-shot timer may stop counting.

Influence of SD 17.5.3.6

If a low-level signal is applied to the \overline{SD} pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on the SD pin enabled), pins TA1OUT, TA2OUT, and TA4OUT enter a high-impedance state.

Timer A (Pulse Width Modulation Mode) 17.5.4

17.5.4.1 Register Setting

The timer is stopped after reset. Set the mode, count source, counter value, etc., using the TAiMR register, the TAi register, bits TA0TGL and TA0TGH in the ONSF register, the TRGSR register, registers TACS0 to TACS2, the TAPOFS register, TCKDIVC0 register, the PWMFS register, and the PCLKR register before setting the TAIS bit in the TABSR register to 1 (count starts) (i = 0 to 4). Always make sure the TAiMR register, bits TA0TGL and TA0TGH in the ONSF register, the TRGSR register, registers TACS0 to TACS2, the TAPOFS register, TCKDIVC0 register, the PWMFS register, and the PCLKR register are modified while the TAiS bit is 0 (count stops), regardless of whether after reset or not.

17.5.4.2 Operating Mode Change

The IR bit is set to 1 when setting a timer operating mode with any of the following procedures:

- Selecting PWM mode or programmable output mode after reset
- Changing the operating mode from timer mode to PWM mode or programmable output mode
- Changing the operating mode from event counter mode to PWM mode or programmable output mode

To use the timer Ai interrupt (IR bit), set the IR bit to 0 by a program after the changes listed above are made.

17.5.4.3 **Stop While Counting**

When setting the TAiS bit to 0 (count stops) during PWM pulse output, the following actions occur. When the POFSi bit in the TAPOFS register is 0:

- · Counting stops.
- When the TAiOUT pin is high, the output level goes low and the IR bit is set to 1.
- When the TAiOUT pin is low, both the output level and the IR bit remain unchanged.

When the POFSi bit in the TAPOFS register is 1:

- Stop counting.
- If the TAiOUT pin output is low, the output level goes high and the IR bit is set to 1.
- If the TAiOUT pin output is high, both the output level and the IR bit remain unchanged.

17.5.4.4 Influence of SD

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on the SD pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to the high-impedance state.

17.5.5 **Timer A (Programmable Output Mode)**

17.5.5.1 Register Setting

The timer is stopped after reset. Set the mode, count source, counter value, etc., using the TAiMR register, the TAi register, the TRGSR register, registers TACS0 to TACS2, the TAPOF register, TCKDIVC0 register, the PWMFS register, the PCLKR register, and the TAi1 register before setting the TAiS bit in the TABSR register to 1 (count starts) (i = 1, 2, 4).

Always make sure the TAiMR register, the TRGSR register, registers TACS0 to TACS2, the TAPOFS register, TCKDIVC0 register, the PWMFS register, and the PCLKR register are modified while the TAiS bit is 0 (count stops), regardless of whether after reset or not.

17.5.5.2 **Operating Mode Change**

The IR bit is set to 1 when setting a timer operating mode with any of the following procedures:

- Selecting PWM mode or programmable output mode after reset
- Changing the operating mode from timer mode to PWM mode or programmable output mode
- Changing the operating mode from event counter mode to PWM mode or programmable output

To use the timer Ai interrupt (IR bit), set the IR bit to 0 by a program after the changes listed above are made.

17.5.5.3 Stop While Counting

When setting the TAiS bit to 0 (count stops) during pulse output, the following actions occur. When the POFSi bit in the TAPOFS register is 0:

- Counting stops.
- When the TAiOUT pin is high, the output level goes low and the IR bit is set to 1.
- When the TAiOUT pin is low, both the output level and the IR bit remain unchanged.

When the POFSi bit in the TAPOFS register is 1:

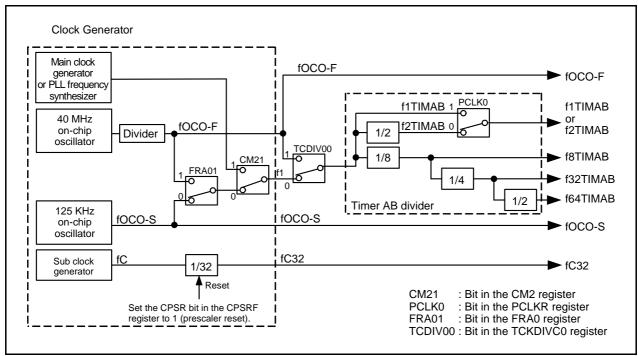
- Stop counting.
- If the TAiOUT pin output is low, the output level goes high and the IR bit is set to 1.
- If the TAiOUT pin output is high, both the output level and the IR bit remain unchanged.

Influence of SD 17.5.5.4

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on the SD pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to the high-impedance state.

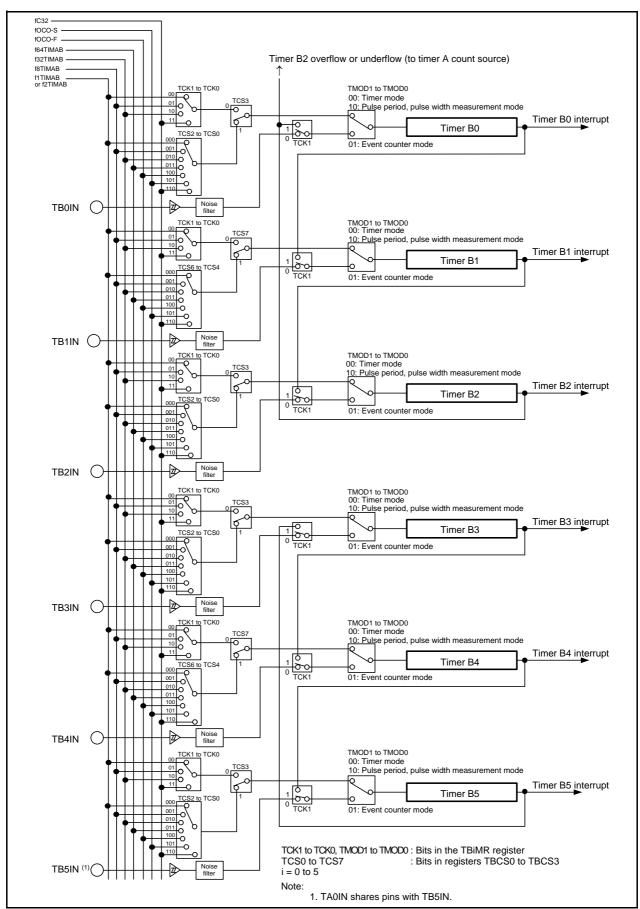
18. Timer B

Note


The 80-pin package does not have the TB1IN pin. Do not use functions associated with this pin.

18.1 Introduction

Timers B0 to B5 are provided for timer B. Each timer operates independently of the others. Table 18.1 lists Specifications of Timer B, Figure 18.1 shows Timer A and B Count Sources, Figure 18.2 shows Timer B Configuration, Figure 18.3 shows Timer B Block Diagram, and Table 18.2 lists I/O Ports.


Table 18.1 Specifications of Timer B

Item	Specification
Configuration	16-bit timer × 6
Operating mode	 Timer mode The timer counts an internal count source. Event counter mode The timer counts pulses from an external device, or overflows and underflows of other timers. Pulse period/pulse width measurement modes The timer measures pulse period or pulse width of an external signal.
Interrupt source	Overflow/underflow/active edge of measurement pulse × 6

Timer A and B Count Sources Figure 18.1

18. Timer B M16C/65 Group

Timer B Configuration Figure 18.2

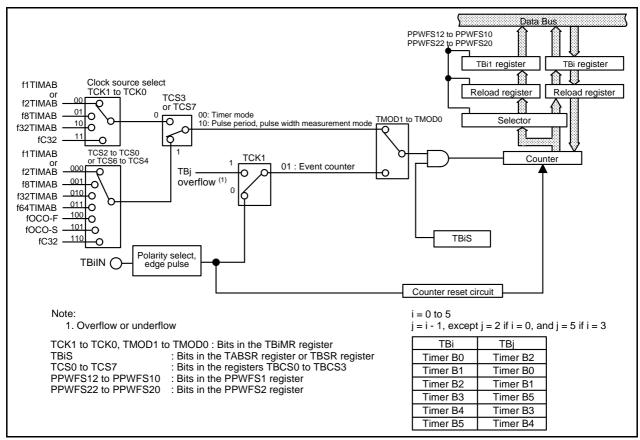


Figure 18.3 **Timer B Block Diagram**

Table 18.2 I/O Ports

Pin Name	I/O Type	Function
TBilN	Input (1)	Count source input (event counter mode)
		Measurement pulse input (pulse period measurement mode, pulse
		width measurement mode)

i = 0 to 5

Note:

When using the TBiIN pin for input, set the port direction bit corresponding to the pin to 0 (input mode).

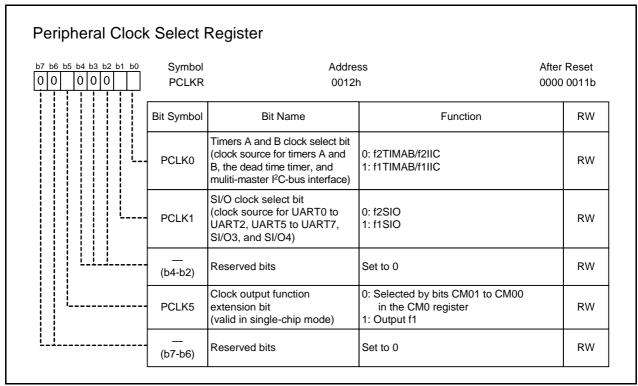
M16C/65 Group 18. Timer B

18.2 Registers

Table 18.3 lists registers associated with timer B.

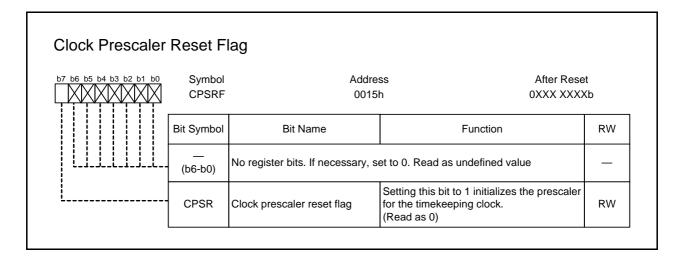
Set the TCDIV00 bit in the TCKDIVC0 register before setting other registers associated with timer B. After changing the TCDIV00 bit, set other registers associated with timer B again.

Refer to "registers and the setting" in each mode for registers and bit settings.

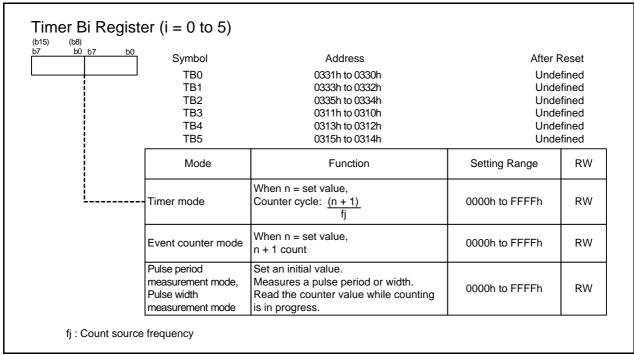

Table 18.3 Register Structure

Address	Register Name	Register Symbol	After Reset
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
0015h	Clock Prescaler Reset Flag	CPSRF	0XXX XXXXb
01C0h	Timer B0-1 Register	TB01	XXh
01C1h			XXh
01C2h	Timer B1-1 Register	TB11	XXh
01C3h			XXh
01C4h	Timer B2-1 Register	TB21	XXh
01C5h			XXh
01C6h	Pulse Period/Pulse Width Measurement	PPWFS1	XXXX X000b
	Mode Function Select Register 1		
01C8h	Timer B Count Source Select Register 0	TBCS0	00h
01C9h	Timer B Count Source Select Register 1	TBCS1	X0h
01CBh	Timer AB Division Control Register 0	TCKDIVC0	0000 X000b
01E0h	Timer B3-1 Register	TB31	XXh
01E1h			XXh
01E2h	Timer B4-1 Register	TB41	XXh
01E3h			XXh
01E4h	Timer B5-1 Register	TB51	XXh
01E5h			XXh
01E6h	Pulse Period/Pulse Width Measurement	PPWFS2	XXXX X000b
	Mode Function Select Register 2		
01E8h	Timer B Count Source Select Register 2	TBCS2	00h
01E9h	Timer B Count Source Select Register 3	TBCS3	X0h
0300h	Timer B3/B4/B5 Count Start Flag	TBSR	000X XXXXb
0310h	Timer B3 Register	TB3	XXh
0311h			XXh
0312h	Timer B4 Register	TB4	XXh
0313h			XXh
0314h	Timer B5 Register	TB5	XXh
0315h			XXh
031Bh	Timer B3 Mode Register	TB3MR	00XX 0000b
031Ch	Timer B4 Mode Register	TB4MR	00XX 0000b
031Dh	Timer B5 Mode Register	TB5MR	00XX 0000b
0320h	Count Start Flag	TABSR	00h
0330h	Timer B0 Register	TB0	XXh
0331h			XXh
0332h	Timer B1 Register	TB1	XXh
0333h			XXh
0334h	Timer B2 Register	TB2	XXh
0335h			XXh
033Bh	Timer B0 Mode Register	TB0MR	00XX 0000b
033Ch	Timer B1 Mode Register	TB1MR	00XX 0000b
033Dh	Timer B2 Mode Register	TB2MR	00XX 0000b

18. Timer B M16C/65 Group


18.2.1 Peripheral Clock Select Register (PCLKR)

Under development



Write to the PCLKR register after setting the PRC0 bit in the PRCR register to 1 (write enabled).

18.2.2 Clock Prescaler Reset Flag (CPSRF)

18.2.3 Timer Bi Register (TBi) (i = 0 to 5)

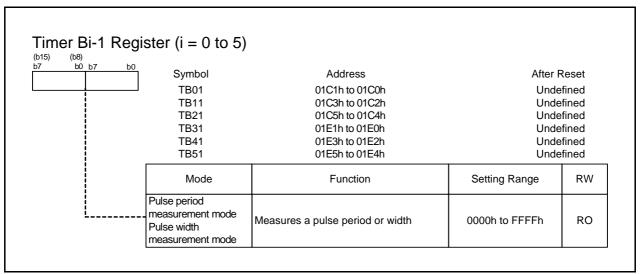
Access this register in 16-bit units.

Event Counter Mode

The timer counts pulses from an external device or overflows or underflows of other timers.

Pulse Period Measurement Mode, Pulse Width Measurement Mode

Set these modes when the TBiS bit in the TABSR or TBSR register is set to 0 (count stops).


Read only (RO) when the TBiS bit in the TABSR or TBSR register is set to 1 (count starts).

The counter starts counting the count source at an active edge of the measurement pulse, transfers the count value to a register at the next active edge, and continues counting.

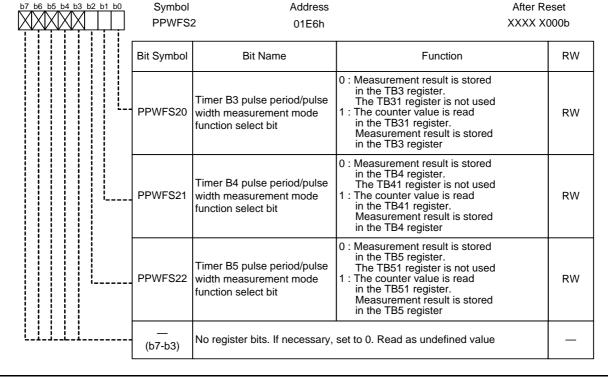
The measurement result can be read by reading the TBi register when bits PPWFS12 to PPWFS10 in the PPWFS1 register and bits PPWFS22 to PPWFS20 in the PPWFS2 register are 0.

While counting is in progress, the counter value can be read by reading the TBi register when bits PPWFS12 to PPWFS10 and bits PPWFS22 to PPWFS20 are 1.

Timer Bi-1 Register (TBi1) (i = 0 to 5) 18.2.4

Access the register in 16-bit units.

The measurement result can be read by reading the TBi-1 register when bits PPWFS12 to PPWFS10 in the PPWFS1 register and bits PPWFS22 to PPWFS20 in the PPWFS2 register are 1.

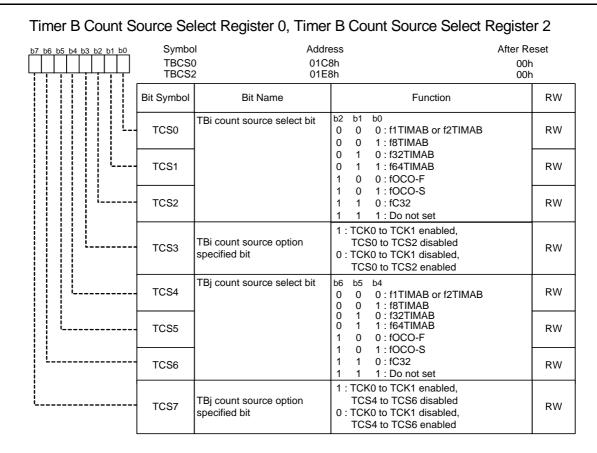

The value in the TBi1 register is undefined when bits PPWFS12 to PPWFS10 and bits PPWFS22 to PPWFS20 are 0.

Under development

Pulse Period/Pulse Width Measurement Mode Function Select Register i 18.2.5 (PPWFSi) (i = 1, 2)

b6 b5 b4 b3 b2 b1 b0	Symbol PPWFS	Address 01C6h		After Reset XXXX X000b
	Bit Symbol	Bit Name	Function	RW
	PPWFS10	Timer B0 pulse period/pulse width measurement mode function select bit	O: Measurement result is stored in the TB0 register. The TB01 register is not used : The counter value is read in the TB01 register. Measurement result is stored in the TB0 register	RW
	PPWFS11	Timer B1 pulse period/pulse width measurement mode function select bit	Measurement result is stored in the TB1 register. The TB11 register is not used The counter value is read in the TB11 register. Measurement result is stored in the TB1 register.	RW
	PPWFS12	Timer B2 pulse period/pulse width measurement mode function select bit	Measurement result is stored in the TB2 register. The TB21 register is not used The counter value is read in the TB21 register. Measurement result is stored in the TB2 register	RW

Pulse Period/Pulse Width Measurement Mode Function Select Register 2



Enabled in pulse period measurement mode or pulse width measurement mode.

Under development

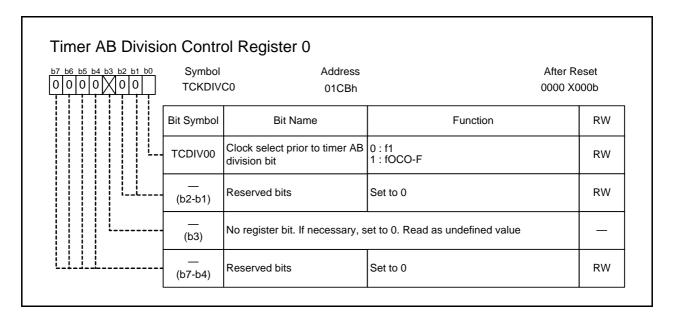
M16C/65 Group 18. Timer B


18.2.6 Timer B Count Source Select Register i (TBCSi) (i = 0 to 3)

TBCS0 register: i = 0, j = 1

TBCS2 register: i = 3, j = 4

Timer B Count Source Select Register 1, Timer B Count Source Select Register 3

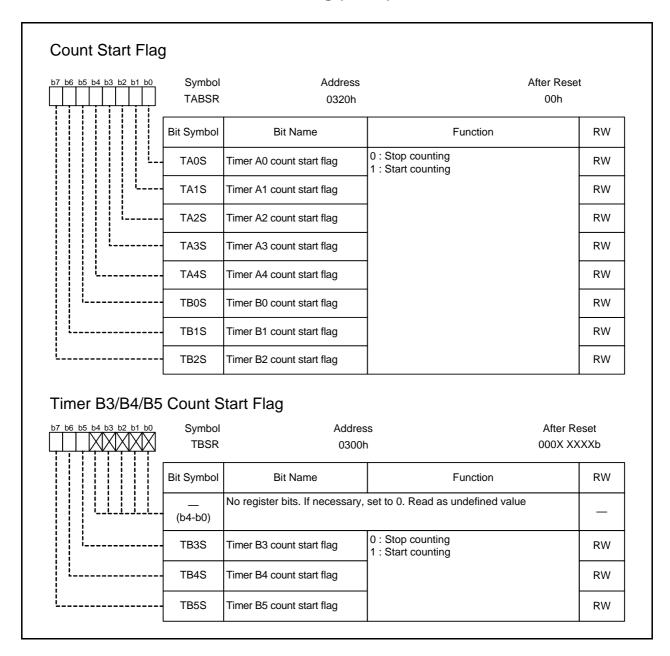


TBCS1 register: i = 2 TBCS3 register: i = 5

TCS2-TCS0 (TBi Count Source Select Bit) (b2-b0) TCS6-TCS4 (TBj Count Source Select Bit) (b6-b4)

Select f1TIMAB or f2TIMAB by the PCLK0 bit in the PCLKR register.

Timer AB Division Control Register 0 (TCKDIVC0) 18.2.7


TCDIV00 (Clock Select Prior to Timer AB Division Bit) (b1)

Set the TCDIV00 bit while timer A and B stops.

Set the TCDIV00 bit before setting other registers associated with timer B.

After changing the TCDIV00 bit, set other registers associated with timer B again.

18.2.8 **Count Start Flag (TABSR)** Timer B3/B4/B5 Count Start Flag (TBSR)

Under development

Timer Bi Mode Register (TBiMR) (i = 0 to 5) 18.2.9

b7 b6 b5 b4 b3 b2 b1 b0	Symbo TB0MR to TB3MR to	TB2MR 033Bh to	033DI		0000b
	Bit Symbol	Bit Name		Function	RW
<u> </u>	TMOD0	Operation mode select bit	1 -	0 : Timer mode : Event counter mode	RW
	TMOD1			Pulse period measurement mode Pulse width measurement mode Do not set	RW
	MR0	Function varies with the operation mode			RW
	MR1	Function varies with the opera	ation m	lode	RW
	(b4)	No register bit. If necessary,	et to 0	. Read as undefined value	_
<u> </u>	MR3	Function varies with the opera	ation m	node	RO
	TCK0	Count source select bit			RW
TCK		(Function varies with the operation mode)		RW	

18.3 **Operations**

18.3.1 **Common Operations**

18.3.1.1 **Operating Clock**

The count source for each timer acts as a clock, controlling such timer operations as counting and reloading.

18.3.1.2 **Counter Reload Timing**

Timer Bi starts counting from the value (n) set in the TBi register. The TBi register consists of a counter and a reload register. The counter starts decrementing the count source from n, reloads a value in the reload register at the next count source after the value becomes 0000h, and continues decrementing. The value written in the TBi register takes effect in the counter and the reload register at the timings below.

- When the count is stopped
- Between the count starts and the first count source is input A value written to the TBi register is immediately written to the counter and the reload register.
- After the count starts and the first count source is input A value written to the TBi register is immediately written to the reload register. The counter continues counting and reloads the value in the reload register at the next count source after the value becomes 0000h.

18. Timer B M16C/65 Group

18.3.1.3 **Count Source**

Internal clocks are counted in timer mode, pulse period measurement mode, and pulse width measurement mode. (Refer to Figure 18.1 "Timer A and B Count Sources".) Table 18.4 lists Timer B Count Source.

Timer A, B, and multi-master I²C-bus interface share the divider. f1 or fOCO-F can be selected before the timer AB divider.

f1 is any of the clocks listed below. Select f1 by the CM21 bit in the CM2 register and the FRA01 bit in the FRA0 register. (Refer to 8. "Clock Generator".)

- Main clock divided by 1 (no division)
- PLL clock divided by 1 (no division)
- fOCO-S divided by 1 (no division)
- fOCO-F divided by 1 (no division)

Table 18.4 Timer B Count Source

			Bit Set Value		
Count Source	PCLK0	TCS3	TCS2 to TCS0	TCK1 to TCK0	Remarks
		TCS7	TCS4 to TCS6	TORTIO TORO	
f1TIMAB	1	0	-	00b	f1 or fOCO-F (1)
		1	000b	-	
f2TIMAB	0	0	-	00b	f1 divided by 2 or
		1	000b	-	fOCO-F divided by 2 ⁽¹⁾
f8TIMAB	-	0	-	01b	f1 divided by 8 or
		1	001b	-	fOCO-F divided by 8 (1)
f32TIMAB	-	0	-	10b	f1 divided by 32 or
		1	010b	-	fOCO-F divided by 32 ⁽¹⁾
f64TIMAB	-	1	011b	-	f1 divided by 64 or
					fOCO-F divided by 64 ⁽¹⁾
fOCO-F	-	1	100b	-	fOCO-F
fOCO-S	-	1	101b	-	fOCO-S
fC32	-	0	-	11b	fC32
		1	110b	-	

PCLK0: Bit in the PCLKR register

TCS7 to TCS0: Bits in registers TBCS0 toTBCS3 TCK1 to TCK0: Bits in the TBiMR register (i = 0 to 5)

Note:

Select f1 or fOCO-F by the TCDIV00 bit in the TCKDIVC0 register. 1.

18.3.2 **Timer Mode**

In timer mode, the timer counts a count source generated internally. Table 18.5 lists Specifications of Timer Mode, Table 18.6 lists Registers and the Setting in Timer Mode, and Figure 18.4 shows Operation Example in Timer Mode.

Table 18.5 Specifications of Timer Mode

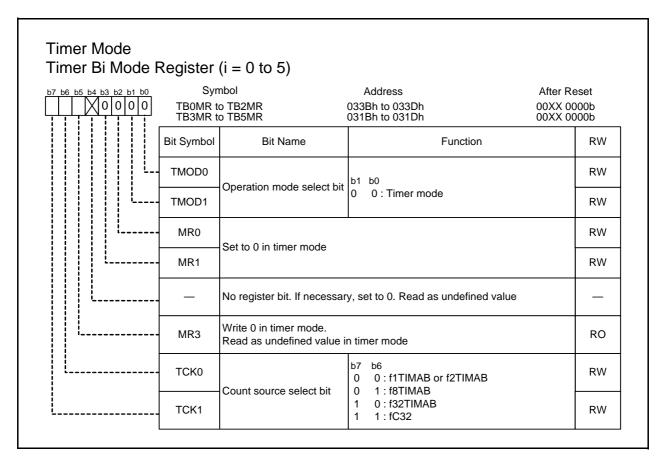
Item	Specification		
Count source	f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32		
Count operations	Decrement		
	• When the timer underflows, it reloads the reload register contents and continues counting.		
Counter cycles	1		
	(n+1)		
	n: set value of the TBi register 0000h to FFFFh		
Count start condition	Set the TBiS bit (1) to 1 (start counting).		
Count stop condition	Set the TBiS bit to 0 (stop counting).		
Interrupt request	Timer underflow		
generation timing			
TBiIN pin function	I/O port		
Read from timer	Count value can be read by reading the TBi register.		
Write to timer	• When not counting		
	The value written to the TBi register is written to both the reload register and the		
	counter.		
	• When counting		
	The value written to the TBi register is only written to the reload register		
	(transferred to the counter when reloaded next).		

i = 0 to 5

Note:

Bits TB0S to TB2S are assigned to bits 5 to 7 in the TABSR register, and bits TB3S to TB5S are assigned to bits 5 to 7 in the TBSR register.

Table 18.6 Registers and the Setting in Timer Mode (1)


Register	Bit	Setting
PCLKR	PCLK0	Select the count source.
CPSRF	CPSR	Write a 1 to reset the clock prescaler.
TBi1	7 to 0	- (setting unnecessary)
PPWFS1 to PPWFS2	PPWFS12 to PPWFS10 PPWFS22 to PPWFS20	Set to 0.
TCKDIVC0	TCDIV00	Select a clock used prior to timer AB frequency dividing.
TBCS0 to TBCS3	7 to 0	Select the count source.
TABSR TBSR	TAiS	Set to 1 when starting counting. Set to 0 when stopping counting.
TBi	7 to 0	Set the count value.
TBiMR	7 to 0	Refer to the TBiMR register below.

i = 0 to 5

Note:

1. This table does not describe a procedure.

TCK1-TCK0 (Count Source Select Bit) (b7-b6)

Enabled when the TCS3 or TCS7 bit in registers TBCS0 to TBCS3 is set to 0 (TCK0 to TCK1 enabled). Select f1TIMAB or f2TIMAB by the PCLK0 bit in the PCLKR register.

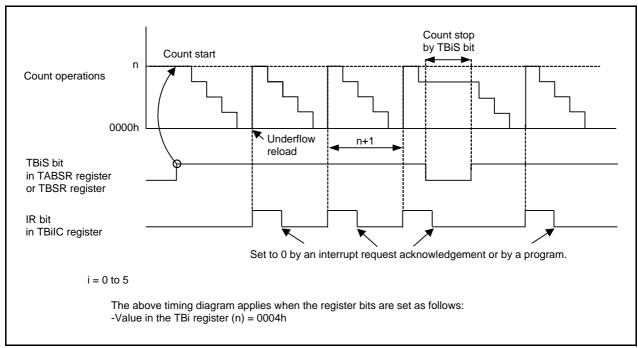


Figure 18.4 **Operation Example in Timer Mode**

18.3.3 **Event Counter Mode**

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Table 18.7 lists Specifications of Event Counter Mode, Table 18.8 lists Registers and the Setting in Event Counter Mode, and Figure 18.5 shows Operation Example in Event Counter Mode.

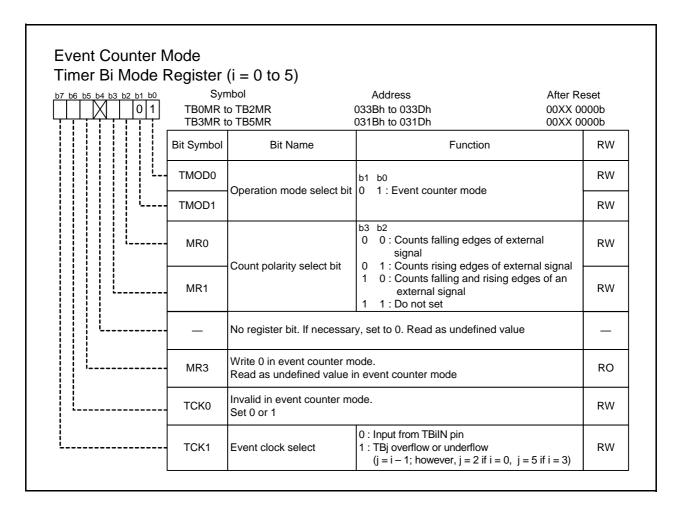
Table 18.7 Specifications of Event Counter Mode

Item	Specification
Count source	 External signals input to TBiIN pin (active edge can be selected by a program: rising edge, falling edge, or both rising and falling edges) Timer Bj overflow or underflow
Count operations	 Decrement When the timer underflows, it reloads the reload register contents and continues counting.
Number of counts	$\frac{1}{(n+1)}$ n: set value of the TBi register 0000h to FFFFh
Count start condition	Set the TBiS bit ⁽¹⁾ to 1 (start counting).
Count stop condition	Set the TBiS bit to 0 (stop counting).
Interrupt request generation timing	Timer underflow
TBiIN pin function	Count source input
Read from timer	Count value can be read by reading the TBi register.
Write to timer	 When not counting Value written to the TBi register is written to both reload register and counter. When counting Value written to the TBi register is written to only reload register (transferred to counter when reloaded next).

i = 0 to 5j = i - 1, except j = 2 if i = 0, j = 5 if i = 3

Note:

Bits TB0S to TB2S are assigned to bits 5 to 7 in the TABSR register, and bits TB3S to TB5S are assigned to bits 5 to 7 in the TBSR register.


Table 18.8 Registers and the Setting in Event Counter Mode (1)

Register	Bit	Setting
PCLKR	PCLK0	Set to 1.
CPSRF	CPSR	Write a 1 to reset the clock prescaler.
TBi1	7 to 0	- (setting unnecessary)
PPWFS1 to	PPWFS12 to	Set to 0.
PPWFS2	PPWFS10	
	PPWFS22 to	
	PPWFS20	
TCKDIVC0	TCDIV00	Set to 0.
TBCS0 to TBCS3	7 to 0	Set to 00b.
TABSR	TBiS	Set to 1 when starting counting.
TBSR		Set to 0 when stopping counting.
TBi	7 to 0	Set the count value.
TBiMR	7 to 0	Refer to the TBiMR register below.

i = 0 to 5

Note:

1. This table does not describe a procedure.

MR1-MR0 (Count Polarity Select Bit) (b3-b2)

Valid when the TCK1 bit is 0 (input from TBiIN pin). If the TCK1 bit is 1 (TBj overflow or underflow), these bits can be set to 0 or 1.

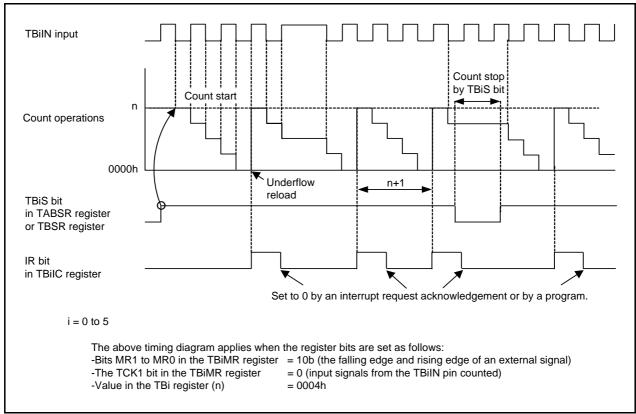


Figure 18.5 **Operation Example in Event Counter Mode**

18.3.4 **Pulse Period/Pulse Width Measurement Modes**

In pulse period and pulse width measurement modes, the timer measures pulse period or pulse width of an external signal. Table 18.9 lists Specifications of Pulse Period/Pulse Width Measurement Modes, Table 18.10 lists Registers and the Setting in Pulse Period/Pulse Width Measurement Modes, Figure 18.6 shows Operation Example in Pulse Period Measurement Mode, and Figure 18.7 shows Operation Example in Pulse Width Measurement Mode.

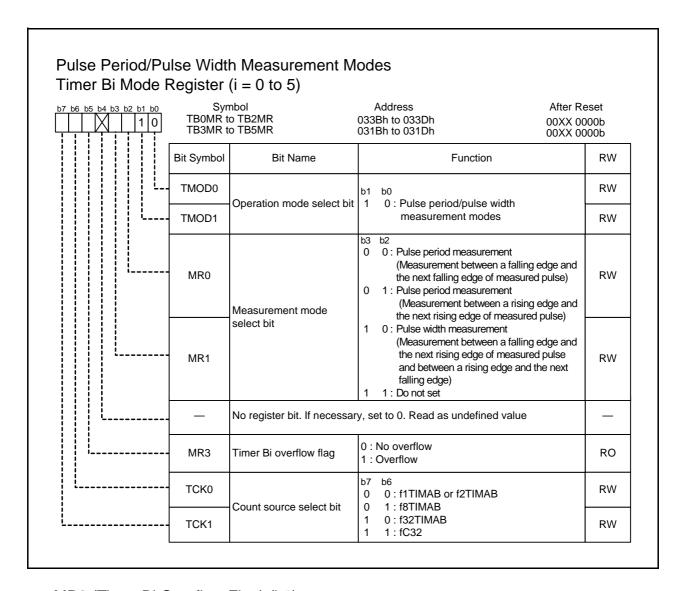
Table 18.9 Specifications of Pulse Period/Pulse Width Measurement Modes

Item	Specification				
Count source	f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32				
Count operations	• Increment				
	Counter value is transferred to reload register at an active edge of the				
	measurement pulse. The counter value is set to 0000h to continue counting.				
Count start condition	Set the TBiS bit (3) to 1 (start counting).				
Count stop condition	Set the TBiS bit to 0 (stop counting).				
Interrupt request	When an active edge of measurement pulse is input (1)				
generation timing	• Timer overflow. When an overflow occurs, the MR3 bit in the TBiMR register is				
	set to 1 (overflowed) simultaneously.				
TBiIN pin function	Measurement pulse input				
Read from timer	When bits PPWFS12 to PPWFS10 and PPWFS22 to PPWFS20 in registers				
	PPWFS1 and PPWFS2 are 0				
	Contents of the reload register (measurement result) can be read by reading				
	the TBi register ⁽²⁾				
	When bits PPWFS12 to PPWFS10 and PPWFS22 to PPWFS20 in registers PPWFS1 and PPWFS2 are 1				
	• Contents of the counter (counter value) can be read by reading the TBi register				
	Contents of the reload register (measurement result) can be read by reading				
	the TBi1 register				
Write to timer	When not counting				
	Value written to the TBi register is written to both reload register and counter.				
	When counting				
	Value written to the TBi register is written to only reload register				
	(transferred to counter when reloaded next).				

i = 0 to 5

Notes:

- No Interrupt request is generated when the first active edge is input after the timer starts counting.
- 2. Value read from the TBi register is undefined until the second active edge is input after the timer starts counting.
- 3. Bits TB0S to TB2S are assigned to bits 5 to 7 in the TABSR register, and bits TB3S to TB5S are assigned to bits 5 to 7 in the TBSR register.


Table 18.10 Registers and the Setting in Pulse Period/Pulse Width Measurement Modes (1)

Register	Bit	Setting		
PCLKR	PCLK0	Select the count source.		
CPSRF	CPSR	Write a 1 to reset the clock prescaler.		
TBi1	7 to 0	Measurement result can be read when the bits in the PPWFS1 or		
		PPWFS2 register corresponding to timer Bi are 1.		
PPWFS1 to	PPWFS12 to	Set to 1 to read the counter value while counting.		
PPWFS2	PPWFS10			
	PPWFS22 to			
	PPWFS20			
TCKDIVC0	TCDIV00	Select a clock used prior to timer AB frequency dividing.		
TBCS0 to TBCS3	7 to 0	Select the count source.		
TABSR	TBiS	Set to 1 when starting counting.		
TBSR		Set to 0 when stopping counting.		
TBi	7 to 0	Set the initial value.		
		The measurement result can be read when the bits in the		
		PPWFS1 or PPWFS register corresponding to timer Bi are 0.		
		The counter value can be read when the bits in the PPWFS1 or		
		PPWFS2 register corresponding to timer Bi are 1.		
TBiMR	7 to 0	Refer to the following TBiMR register.		

i = 0 to 5

Note:

1. This table does not describe a procedure.

MR3 (Timer Bi Overflow Flag) (b5)

This flag is undefined after reset. The MR3 bit is cleared to 0 (no overflow) by writing to the TBiMR register. The MR3 bit cannot be set to 1 by a program.

TCK1-TCK0 (Count Source Select Bit) (b7-b6)

Enabled when the TCS3 bit or TCS7 bit in registers TBCS0 to TBCS3 is set to 0 (TCK0, TCK1 enabled).

Select f1TIMAB or f2TIMAB by the PCLK0 bit in the PCLKR register.

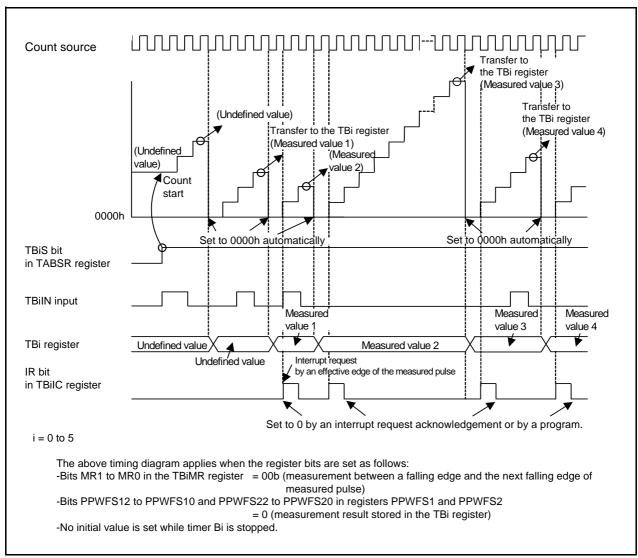
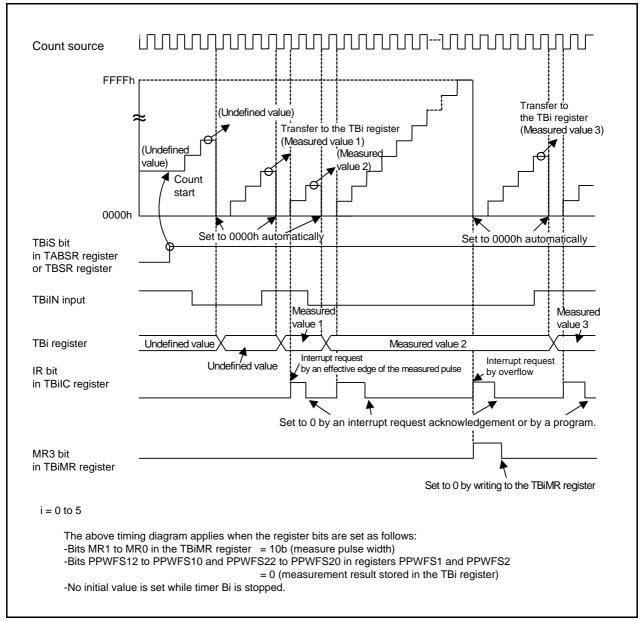



Figure 18.6 **Operation Example in Pulse Period Measurement Mode**

18. Timer B M16C/65 Group

Operation Example in Pulse Width Measurement Mode

M16C/65 Group 18. Timer B

18.4 Interrupts

Refer to individual operation examples for interrupt request generating timing. Refer to 14.7 "Interrupt Control" for details of interrupt control. Table 18.11 lists Timer B Interrupt Related Registers.

Table 18.11 Timer B Interrupt Related Registers

Address	Register Name	Register Symbol	After Reset
0045h	Timer B5 Interrupt Control Register	TB5IC	XXXX X000b
0046h	Timer B4 Interrupt Control Register	TB4IC	XXXX X000b
0047h	Timer B3 Interrupt Control Register	TB3IC	XXXX X000b
005Ah	Timer B0 Interrupt Control Register	TB0IC	XXXX X000b
005Bh	Timer B1 Interrupt Control Register	TB1IC	XXXX X000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b
0206h	Interrupt Source Select Register 2	IFSR2A	00h

Timers B3 and B4 share interrupt vectors and interrupt control registers with other peripheral functions. When using the timer B3 interrupt, set the IFSR26 bit in the IFSR2A register to 0 (timer B3). When using the timer B4 interrupt, set the IFSR27 bit in the IFSR2A register to 0 (timer B4).

18. Timer B M16C/65 Group

18.5 **Notes on Timer B**

18.5.1 **Timer B (Timer Mode)**

18.5.1.1 **Register Setting**

The timer is stopped after reset. Set the mode, count source, counter value, etc., using registers TBiMR, TBi, TBCS0 to TBCS3, TCKDIVC0, and PCLKR before setting the TBiS bit in the TABSR or the TBSR register to 1 (count starts) (i = 0 to 5).

Always make sure registers TBiMR, TBCS0 to TBCS3, TCKDIVC0, and PCLKR are modified while the TBiS bit is 0 (count stops), regardless of whether after reset or not.

18.5.1.2 **Read from Timer**

The value of the counter while counting can be read from the TBi register at any time. FFFFh is read while reloading. If the counter is read before it starts counting and after a value is set in the TBi register while not counting, the set value is read.

M16C/65 Group 18. Timer B

18.5.2 **Timer B (Event Counter Mode)**

18.5.2.1 **Register Setting**

The timer is stopped after reset. Set the mode, count source, counter value, etc., using the TBiMR register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to 1 (count starts) (i = 0 to 5).

Always make sure the TBiMR register is modified while the TBiS bit is 0 (count stops), regardless of whether after reset or not.

18.5.2.2 **Read from Timer**

While counting is in progress, the counter value can be read out at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always FFFFh. If the TBi register is read after setting a value in it while not counting but before the counter starts counting, the read value is the value set in the register.

Timer B (Pulse Period/Pulse Width Measurement Modes) 18.5.3

18.5.3.1 Register Setting

The timer is stopped after reset. Set the mode, count source, etc., using registers TBiMR, TBCS0 to TBCS3, TBi, TCKDIVC0, PCLKR, PPWFS1, and PPWFS2 before setting the TBiS bit in the TABSR or TBSR register to 1 (count starts) (i = 0 to 5).

Always make sure registers TBiMR, TBCS0 to TBCS3, TCKDIVC0, PCLKR, PPWFS1, and PPWFS2 are modified while the TBiS bit is 0 (count stops), regardless of whether after reset or not. To clear the MR3 bit to 0 by writing to the TBiMR register while the TBiS bit is 1 (count starts), be sure to write the same value as previously written to bits TMOD0, TMOD1, MR0, MR1, TCK0, and TCK1 and a 0 to bit 4.

18.5.3.2 Interrupts

The IR bit in the TBiIC register is set to 1 (interrupt requested) when an active edge of a measurement pulse is input or timer Bi overflows (i = 0 to 5). The source of an interrupt request can be determined by using the MR3 bit in the TBiMR register within the interrupt routine.

Use the IR bit in the TBilC register to detect overflows only. Use the MR3 bit only to determine the interrupt source.

18.5.3.3 Operations between Count Start and the First Measurement

When a count is started and the first active edge is input, an undefined value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.

The value of the counter is undefined after reset. If count is started in this state, the MR3 bit may be set to 1 and timer Bi interrupt request may be generated after count start before an effective edge is input. When a value is set in the TBi register while the TBiS bit is 0 (count stops), the same value is written to the counter.

18.5.3.4 **Pulse Period Measurement Mode**

When an overflow occurs at an active edge, an input is not recognized at the effective edge because an interrupt request is generated only once. Use this mode where an overflow does not occur, or use pulse width measurement.

18.5.3.5 Pulse Width Measurement Mode

In pulse width measurement, pulse widths are measured successively. Use a program to check whether the measurement result is a high-level width or a low-level width.

When an interrupt request is generated, read the TBiIN pin level inside the interrupt routine, and check whether it is the edge of an input pulse or an overflow. The TBiIN level can be read from bits in the P9 register of corresponding ports.

19. Three-Phase Motor Control Timer Function

Note •

Do not use this function for the 80-pin package.

19.1 Introduction

Timers A1, A2, A4, and B2 can be used to output three-phase motor drive waveforms. Table 19.1 lists Three-Phase Motor Control Timer Functions Specifications. Three-Phase Motor Control Timer Function Block Diagrams are shown in Figure 19.1 and Figure 19.2. Table 19.2 lists I/O Ports.

Table 19.1 Three-Phase Motor Control Timer Functions Specifications

Item	Specification
Operation modes	 Triangular wave modulation three-phase mode 0 Three-phase PWM waveform of triangular wave modulation is output. Output data is updated every half cycle of the carrier wave, and output waveform is generated. Triangular wave modulation three-phase mode 1
	Three-phase PWM waveform of triangular wave modulation is output. Output data is updated every cycle of the carrier wave, and output waveform is generated. • Sawtooth wave modulation mode
	Three-phase PWM waveform of sawtooth wave modulation is output.
Three-phase waveform output pin	Six pins $(U, \overline{U}, V, \overline{V}, W, \overline{W})$
Forced cutoff input	Input a low-level signal to the SD pin
Used timers	Timers A4, A1, A2 (used in one-shot timer mode) Timer A4: U-/Ū-phase waveform control Timer A1: V-/V-phase waveform control Timer A2: W-/W-phase waveform control Timer B2 (used in timer mode) Carrier wave cycle control
	Dead time timer (three eight-bit timers and shared reload register) Dead time control
Output waveform	Triangular wave modulation, sawtooth wave modulation • All high or low outputs for one cycle supported • Output logic of high- and low-side turn-on signals can be set separately.
Carrier wave cycle	Triangular wave modulation : $\frac{(m+1)\times 2}{fi}$
	Sawtooth wave modulation : $\frac{m+1}{fi}$
	m: Setting value of the TB2 register, 0000h to FFFFh fi: Count source frequency (f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32)
Three-phase PWM output width	Triangular wave modulation : $\frac{n \times 2}{fi}$
	Sawtooth wave modulation : n/fi
	n: Setting value of registers TA4, TA1, and TA2 (of registers TA4, TA41, TA1, TA11, TA2, and TA21 when setting the INV11 bit to 1), 0001h to FFFFh fi: Count source frequency (f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32)
Dead time (width)	p/fi or no dead time
	p: Setting value of the DTT register, 01h to FFh fi: Count source frequency (f1TIMAB, f2TIMAB, f1TIMAB divided by 2, f2TIMAB divided by 2)
Active level	Selectable either active high or active low
Simultaneous conduction prevention function	Simultaneous conduction prevention Simultaneous conduction detection
Interrupt frequency	Timer B2 interrupt is generated every carrier wave cycle to every 15 carrier wave cycles.

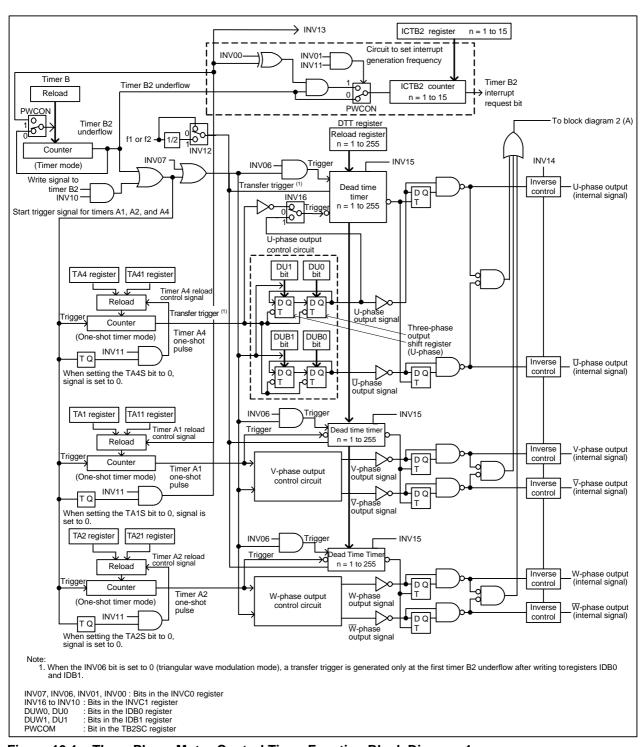


Figure 19.1 Three-Phase Motor Control Timer Function Block Diagram 1

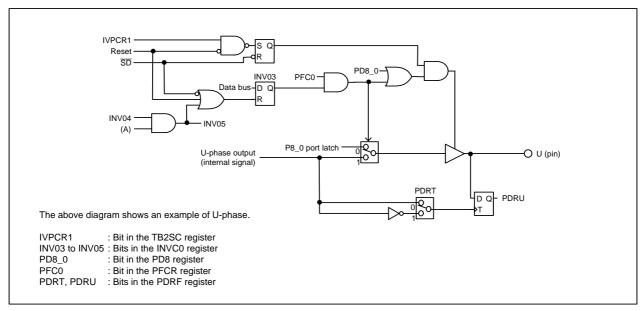


Figure 19.2 Three-Phase Motor Control Timer Function Block Diagram 2

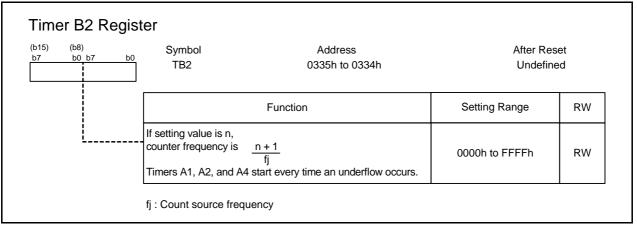
Table 19.2 I/O Ports

Pin Name	I/O Type	Function
\overline{U} , \overline{V} , \overline{V} , \overline{W} Output		Three-phase PWM waveform output
SD Input (1) Forced cutoff input		Forced cutoff input
IDU, IDV, IDW	Input (2)	Position-data-retain function input

Notes:

- Set the port direction bits which share pins to 0 (input mode). When not using the three-phase 1. output forced cutoff function, input a high-level signal to the SD pin.
- Set the port direction bits which share pins to 0 (input mode). 2.

19.2 Registers

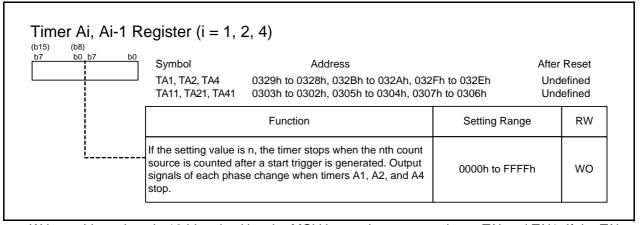

Refer to "registers used and settings" in each mode for register and bit settings.

Three-phase motor control timer function uses timers A1, A2, A4, and B2. For other registers related to A1, A2, A4, and B2, refer to 17. "Timer A" and 18. "Timer B".

Table 19.3 Register Structure

Address	Register Name	Register Symbol	After Reset
01DAh	Three-Phase Protect Control Register	TPRC	00h
0302h	Timer A1-1 Register	TA11	XXh
0303h			XXh
0304h	Timer A2-1 Register	TA21	XXh
0305h			XXh
0306h	Timer A4-1 Register	TA41	XXh
0307h			XXh
0308h	Three-Phase PWM Control Register 0	INVC0	00h
0309h	Three-Phase PWM Control Register 1	INVC1	00h
030Ah	Three-Phase Output Buffer Register 0	IDB0	XX11 1111b
030Bh	Three-Phase Output Buffer Register 1	IDB1	XX11 1111b
030Ch	Dead Time Timer	DTT	XXh
030Dh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XXh
030Eh	Position-Data-Retain Function Control Register	PDRF	XXXX 0000b
0318h	Port Function Control Register	PFCR	0011 1111b
0328h	Timer A1 Register	TA1	XXh
0329h			XXh
032Ah	Timer A2 Register	TA2	XXh
032Bh			XXh
032Eh	Timer A4 Register	TA4	XXh
032Fh			XXh
0334h	Timer B2 Register	TB2	XXh
0335h			XXh
033Eh	Timer B2 Special Mode Register	TB2SC	XXXX XX00b

19.2.1 Timer B2 Register (TB2)



Read and write in 16-bit units.

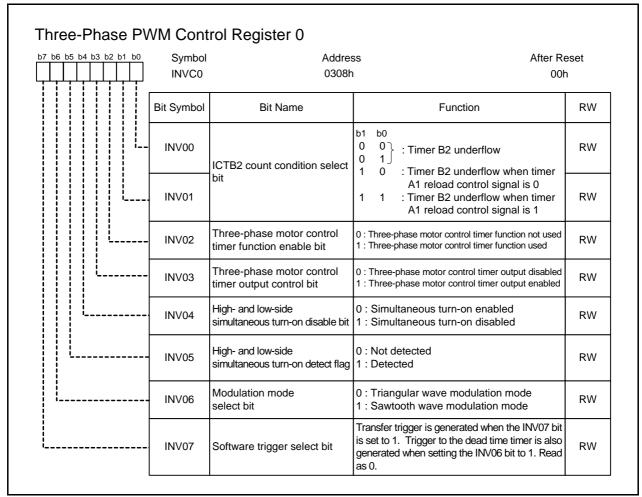
Carrier wave cycle is determined by this counter. Timer B underflow is a one-shot trigger of timers A1,

In three-phase mode 1, the reload timing of the TB2 register can be selected by the PWCON bit in the TB2SC register.

19.2.2 Timer Ai, Ai-1 Register (TAi, TAi1) (i = 1, 2, 4)

Write to this register in 16-bit units. Use the MOV instruction to set registers TAi and TAi1. If the TAi or TAi1 register is set to 0000h, no counters start and no timer Ai interrupt is generated.

The TAi or TAi1 register is used to determine waveforms of U-, V-, and W-phases. It is triggered by timer B underflow, and operates in one-shot timer mode.


Registers TA1, TA2, and TA4 are used in sawtooth wave modulation mode and three-phase mode 0 of triangular wave modulation mode.

Registers TA1, TA2, TA4, TA11, TA21, and TA41 are used in three-phase mode 1 of triangular wave modulation mode.

When the INV15 bit in the INVC1 register is set to 0 (dead time enabled), some high- and low-side turnon signals, whose output level changes from inactive to active, switch the output level when the dead

In three-phase mode 1, the value of the TAi1 register is first counted. Then the values of registers TAi and TAi1 are counted alternately.

19.2.3 Three-Phase PWM Control Register 0 (INVC0)

Set the INVC0 register after the PRC1 bit in the PRCR register is set to 1 (write enabled). Rewrite bits INV00 to INV02, INV04, and INV06 when timers A1, A2, A4, and B2 are stopped.

INV01-INV00 (ICTB Count Condition Select Bit) (b1-b0)

Bits INV00 and INV01 are enabled only when the INV11 bit is set to 1 (three-phase mode 1). To set the INV01 bit to 1, set the value of the ICTB2 register first, and then set the INV01 bit to 1. Set the TAIS bit in the TABSR register (timer A1 count start flag) to 1 prior to the first timer B2 underflow. When the INV11 bit is 0 (three-phase mode 0), the timer B2 underflow is counted regardless of the values of bits INV01 and INV00.

INV02 (Three-Phase Motor Control Timer Function Enable Bit) (b2)

Set the INV02 bit to 1 to operate the dead time timer, U-, V- and, W-phase output control circuits and ICTB2 counter.

INV03 (Three-Phase Motor Control Timer Output Control Bit) (b3)

Conditions to become 0:

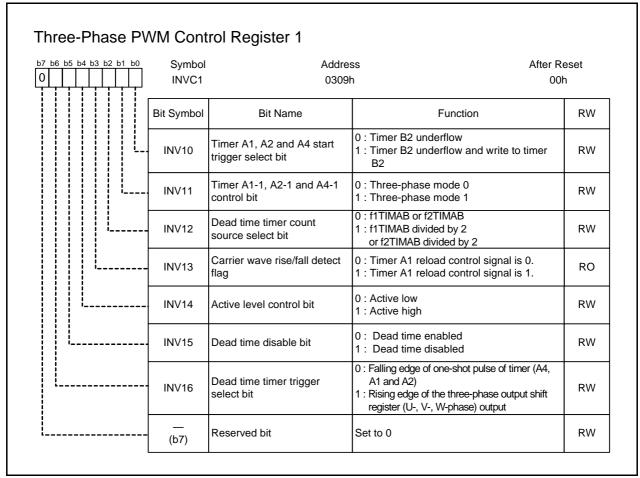
- Reset
- The INV04 bit is 1 (simultaneous turn-on disabled) and the INV05 bit is 1 (simultaneous turn-on
- The INV03 bit is set to 0 by a program.
- A signal applied to the SD pin is low.

INV05 (High- and Low-Side Simultaneous Turn-On Detect Flag) (b5)

The INV05 bit cannot be set to 1 by a program. Set the INV04 bit to 0 as well when setting the INV05 bit to 0.

INV06 (Modulation Mode Select Bit) (b6)

The following table describes the influence the INV06 bit.


Table 19.4 INV06 Bit

Item	INV06 = 0	INV06 = 1
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode
Transfer timing from registers IDB0 and IDB1 to three-phase output shift register	Transferred once by generating a transfer trigger after setting registers IDB0 and IDB1	Transferred every time a transfer trigger is generated
Trigger timing of the dead time timer when the INV16 bit is 0	Falling edge of a one-shot pulse of the timers A1, A2, or A4	 Falling edge of a one-shot pulse of the timer A1, A2, or A4 Transfer trigger
INV13 bit	Enabled when the INV11 bit is 1 and the INV06 bit is 0	Disabled

One of the following conditions must be met to trigger a transfer:

- Timer B2 underflows and a value is written to the INV07 bit
- A value is written to the TB2 register when the INV10 bit is 1

19.2.4 Three-Phase PWM Control Register 1 (INVC1)

Rewrite the INVC1 register after the PRC1 bit in the PRCR register is set to 1 (write enabled). Rewrite the INVC1 register while timers A1, A2, A4, and B2 are stopped.

INV11 (Timer A1, A2 and A4 Start Trigger Select Bit) (b1)

The following table lists items influenced by the INV11 bit.

Table 19.5 INV11 Bit

Item	INV11 = 0	INV11 = 1
Mode	Three-phase mode 0	Three-phase mode 1
Registers TA11, TA21 and TA41	Not used	Used
Bits INV00 and INV01 in the INVC0 register	Disabled The ICTB2 counter is decremented whenever timer B2 underflows	Enabled
INV13 bit	Disabled	Enabled when INV11 is 1 and INV06 is 0

When the INV06 bit is set to 1 (sawtooth wave modulation mode), set the INV11 bit to 0 (three-phase mode 0). Also, when the INV11 bit is set to 0, set the PWCON bit in the TB2SC register to 0 (timer B2 is reloaded when timer B2 underflows).

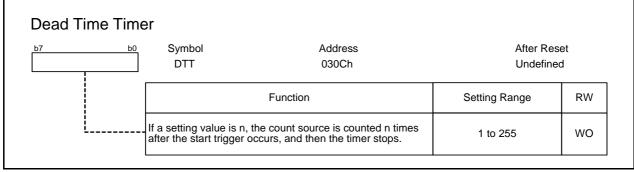
INV13 (Carrier Wave Rise/Fall Detect Flag) (b3)

The INV13 bit is enabled only when the INV06 bit is set to 0 (triangular wave modulation mode) and the INV11 bit to 1 (three-phase mode 1).

INV16 (Dead Time Timer Trigger Select Bit) (b6)

If both of the following conditions are met, set the INV16 bit to 1 (rising edge of the three-phase output shift register output).

- The INV15 bit is set to 0 (dead time timer enabled)
- The Dij bit and DiBj bit always have different values when the INV03 bit is set to 1 (three-phase control timer output enabled). (The high- and low-side signals always output opposite level signals at any time except dead time.) (i = U, V or W; j = 0, 1).

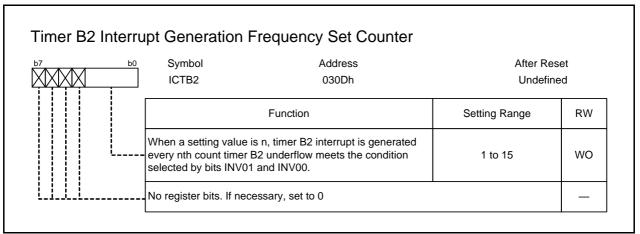

If either of the above conditions is not met, set the INV16 bit to 0 (dead time timer is triggered on the falling edge of a one-shot pulse of timers).

19.2.5 Three-Phase Output Buffer Register i (IDBi) (i = 0, 1)

7 b6 b5 b4 b3 b2 b1 b0	Symbol IDB0 IDB1	Addre 030A 030E	h XX11 111	1b
	Bit Symbol	Bit Name	Function	RW
<u> </u>	DUi	U-phase output buffer i	Set the output logical value of the three- phase output shift registers. The set value is reflected in each turn-on signal as	RW
	DUBi	U-phase output buffer i	follows:	RW
	DVi	V-phase output buffer i	0 : Active (on) 1 : Inactive (off)	RW
	DVBi	∇-phase output buffer i	When read, the contents of the three- phase output shift registers are read.	RW
	DWi	W-phase output buffer i		RW
	DWBi	W-phase output buffer i		RW
	— (b7-b6)	No register bits. If necessary,	set to 0. Read as undefined value	_

Values of registers IDB0 and IDB1 are transferred to the three-phase output shift register in response to a transfer trigger. After the transfer trigger occurs, the values written in the IDB0 register determine each phase output signal (internal signal) first. Then, the value written in the IDB1 register on the falling edge of timers A1, A2, and A4 one-shot pulse determines each phase output signal (internal signal). Reading registers IDB0 and IDB1 returns each phase output signal (internal signal). Therefore, the same value is returned regardless of which register is read.

19.2.6 Dead Time Timer (DTT)

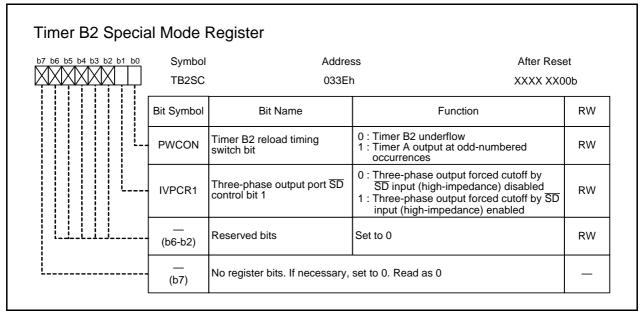


Use the MOV instruction to set the DTT register.

The DTT register acts as a one-shot timer which delays the timing for a turn-on signal to be switched to its active level in order to prevent the upper and lower transistors from being turned on simultaneously. The DTT register is enabled when the INV15 bit in the INVC1 register is set to 0 (dead time enabled). No dead time can be set when the INV15 bit is set to 1 (dead time disabled).

Select a trigger by the INV16 bit in the INVC1 register, and a count source by the INV12 bit in the INVC1 register.

19.2.7 **Timer B2 Interrupt Generation Frequency Set Counter (ICTB2)**



Use the MOV instruction to set the ICTB2 register.

If the INV01 bit in the INVC0 register is set to 1, set the ICTB2 register when the TB2S bit in the TABSR register is set to 0 (timer B2 counter stopped). If the INV01 bit is set to 0 and the TB2S bit to 1 (timer B2 counter start), do not set the ICTB2 register when timer B2 underflows.

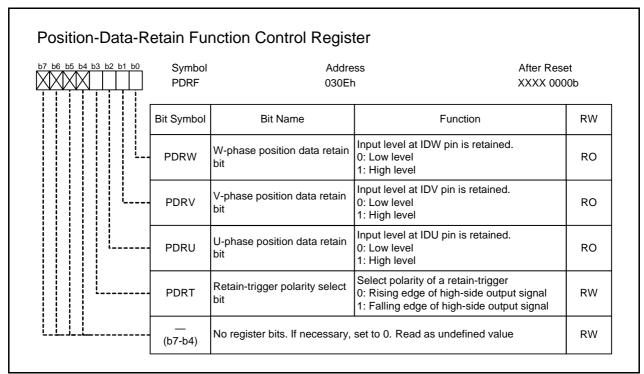
When bits INV01 and INV00 are 11b, the first interrupt is generated when timer B2 underflows n-1 times if a setting value in the ICTB2 counter is n. Subsequent interrupts are generated every n times timer B2 underflows.

19.2.8 Timer B2 Special Mode Register (TB2SC)

Write to this register after the PRC1 bit in the PRCR register is set to 1 (write enabled).

PWCON (Timer B2 Reload Timing Switch Bit) (b0)

If the INV11 bit is 0 (three-phase mode 0) or the INV06 bit is 1 (sawtooth wave modulation mode), set the PWCON bit to 0 (timer B2 underflow).

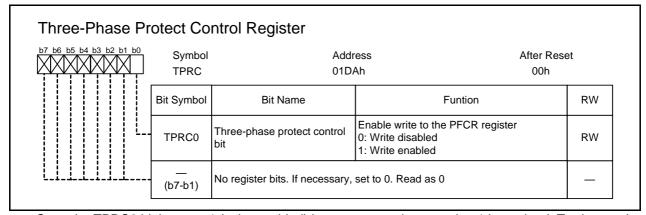

IVPCR1 (Three-Phase Output Port SD Control Bit 1) (b1)

Related pins are U, \overline{U} , V, \overline{V} , W, and \overline{W} .

If a low-level signal is applied to the SD pin when the IVPCR1 bit is 1, three-phase motor control timer output is disabled (INV03 = 0). Then, the target pins go to a high-impedance state regardless of which functions of those pins are being used.

After forced cutoff, input a high-level signal to the SD pin and set the IVPCR1 bit to 0 to cancel forced cutoff.

19.2.9 Position-Data-Retain Function Control Register (PDRF)


This register is valid in three-phase mode only.

19.2.10 Port Function Control Register (PFCR)

7 b6 b5 b4 b3 b2 b1 b0	Symbol PFCR	Addr 0318		
	Bit Symbol	Bit Name	Function	RW
<u> </u>	- PFC0	Port P8_0 output function select bit	0: Input/output port P8_0 1: Three-phase PWM output (U-phase output)	RW
	- PFC1	Port P8_1 output function select bit	0: Input/output port P8_1 1: Three-phase PWM output (U-phase output)	RW
	- PFC2	Port P7_2 output function select bit	0: Input/output port P7_2 1: Three-phase PWM output (V-phase output)	RW
	- PFC3	Port P7_3 output function select bit	0: Input/output port P7_3 1: Three-phase PWM output (∇-phase output)	RW
	- PFC4	Port P7_4 output function select bit	0: Input/output port P7_4 1: Three-phase PWM output (W-phase output)	RW
	- PFC5	Port P7_5 output function select bit	0: Input/output port P7_5 1: Three-phase PWM output (W-phase output)	RW
	— PFC5 — (b7-b6)		output)	

This register is valid only when the INV03 bit in the INVC0 register is set to 1 (three-phase motor control timer output enabled). Write to this register after the TPRC0 bit in the TPRC register is set to 1 (write enabled).

19.2.11 Three-Phase Protect Control Register (TPRC)

Once the TPRC0 bit is set to 1 (write enabled) by a program, the set value 1 is retained. To change the registers protected by this bit, follow the steps below.

- (1) Set the TPRC0 bit to 1.
- (2) Set values in the PFCR register.
- (3) Set the TPRC0 bit to 0 (write disabled).

19.3 **Operations**

19.3.1 **Common Operations in Multiple Modes**

19.3.1.1 **Carrier Wave Cycle Control**

Timer B2 controls the cycle of the carrier wave. In triangular wave modulation mode, the cycle of the carrier wave is double the cycle of timer B2 underflow. In sawtooth wave modulation mode, the cycle of carrier wave equals to the cycle of timer B2 underflow. Figure 19.3 shows Relationship between Carrier Wave Cycle and Timer B2.

Timer B2 underflow is a start trigger for timers A1, A2, and A4, which control the three-phase PWM waveform. However, when the INV10 bit in the INVC1 register is 1, writing to the TB2 register also generates a trigger for timers A1, A2, and A4.

The frequency of timer B2 interrupt requests can be selected for three-phase motor control timers. In triangular wave modulation three-phase mode 0 and sawtooth wave modulation mode, when a setting value in the ICTB2 register is n, the timer B2 interrupt request is generated every nth count of timer B2 underflow.

In triangular wave modulation three-phase mode 1, when a setting value in the ICTB2 register is n, a timer B2 interrupt request is generated every nth time of the timing selected by bits INV01 and INV00 in the INVC1 register. However, when bits INV01 and INV00 are 11b, the first interrupt is generated at the n-1th time of timer B2 underflow.

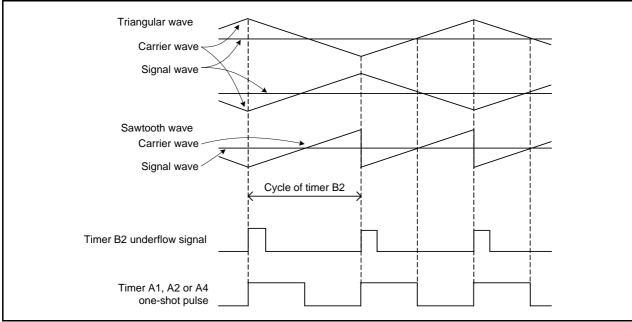


Figure 19.3 Relationship between Carrier Wave Cycle and Timer B2

Three-Phase PWM Wave Control 19.3.1.2

Timer A4 controls U- and \overline{U} -phase waveforms, timer A1 controls V- and \overline{V} -phase waveforms, and timer A2 controls W- and \overline{W} -phase waveforms. Timer Ai (i = 1, 2, 4) starts counting by a trigger selected by the INV10 bit in the INVC1 register, and generates a one-shot pulse (internal signal). The output signal of each phase changes at the falling edge of the one-shot pulse.

Triangular wave modulation three-phase mode 1 counts values in the TAi1 register and TAi register alternately, and generates a one-shot pulse.

19.3.1.3 **Dead Time Control**

Due to delays in the transistors turning off, the upper and lower transistors are turned on simultaneously. To prevent this, there are three 8-bit dead time timers, one in each phase. The reload resistor is shared. When the INV15 bit in the INVC1 register is 0 (dead time enabled), the dead time set in the DTT register is valid. When the INV15 bit is 1 (dead time disabled), no dead time is set. Select a count source for the dead time timer by the INV12 bit in the INVC1 register.

A trigger for the dead time timer can be selected by the INV16 bit in the INVC1 register.

When both conditions below are met, set the INV16 bit to 1 (the rising edge of the three-phase output shift register is a trigger for the dead time timer).

- The INV15 bit is 0 (dead time enabled).
- The Dij bit and DiBj bit have different values whenever the INV03 bit is set to 1 (three-phase motor control timer output enabled) (i = U, V or W; j = 0, 1). (During the period except dead time, the highand low-side output signals always output opposite level signals.)

If either of the conditions above is not met, set the INV16 bit to 0 (a trigger for the dead time timer is the falling edge of one-shot pulse of the timer).

In sawtooth wave modulation mode, the generation of a transfer trigger causes a trigger for the dead time timer.

19.3.1.4 **Output Level of Three-Phase PWM Output Pins**

Set a value in registers IDB0 and IDB1 to select the state of each high- or low-side output signal (either active (on) or not active (off)). The values of registers IDB0 and IDB1 are transferred to the three-phase output shift register by a transfer trigger. After a transfer trigger is generated, the value set in the IDB0 register becomes the first output signal of each phase (internal signal), and then at the falling edge of one-shot pulse of timer A1, A2, or A4 (internal signal), the value set in the IDB1 register becomes the output signal of each phase.

A transfer trigger is generated under any of the following conditions:

- At the first timer B2 underflow after registers IDB0 and IDB1 are written (in triangular wave modulation mode)
- Each time timer B2 underflows (in sawtooth wave modulation mode)
- Writing to the TB2 register (when the INV10 bit in the INVC1 register is 1)
- Setting the INV07 bit in the INVC0 register to 1 (software trigger)

The active level can be selected by the INV14 bit in the INVC1 register.

Table 19.6 Output Level of Three-Phase PWM Output Pins

Value Set in Registers	Output Signal of Each	Value Set in INV14 Bit in INVC1 Register		
IDB0 and IDV1	Phase (Internal Signal)	0 (active, low level)	1 (active, high level)	
0 (active (on))	0	Low	High	
1 (not active (off))	1	High	Low	

19.3.1.5 **Simultaneous Conduction Prevention**

This function prevents the upper and lower output signals from being active simultaneously due to program errors or an unexpected program operation. When the high- and low-side output signals become active at the same time while the simultaneous conduction is disabled by the INV04 bit in the INVC0 register, the following occur:

- The INV03 bit in the INVC0 register becomes 0 (three-phase motor control timer output disabled).
- The INV05 bit in the INVC0 register becomes 1 (simultaneous conduction detected).
- Pins U, \overline{U} , V, \overline{V} , W, and \overline{W} go to a high-impedance state.

19.3.1.6 **Three-Phase PWM Waveform Output Pins**

Pins U, \overline{U} , V, \overline{V} , W, and \overline{W} output the PWM waveform under the following conditions:

- The INVC02 bit in the INVC0 register is 1 (three-phase motor control timer function).
- The INVC03 bit is 1 (three-phase motor control timer output enabled).
- The PFCi bit in the PFCR register is 1 (three-phase PWM output (selected independently for each

The three-phase output forced cutoff by the \overline{SD} pin is available.

Three-Phase PWM Output Pin Select 19.3.1.7

Pins U, \overline{U} , V, \overline{V} , W, and \overline{W} output the three-phase PWM waveform when the PFCi bit (i = 0 to 5) in the PFCR register is 1 (three-phase PWM output). When the PFCi bit is 0 (I/O port), these pins are used as I/O ports (or other peripheral function I/O ports). Therefore, while some of the six pins output the three-phase PWM waveform, the other pins can be used as I/O ports (or other peripheral function I/O ports).

The PFCR register can be rewritten when the TPRC0 bit in the TPRC register is 1 (write to the PFCR register enabled). The functions of the three-phase PWM waveform output pins are protected from being rewritten due to an unexpected program operation. To prevent rewrite, follow these steps:

- (1) Set the TPRC0 bit to 1.
- (2) Rewrite the PFCR register.
- (3) Set the TPRC0 bit to 0 (write to the PFCR register disabled).

Figure 19.4 shows Usage Example of Three-Phase Output and I/O Port Switch Function.

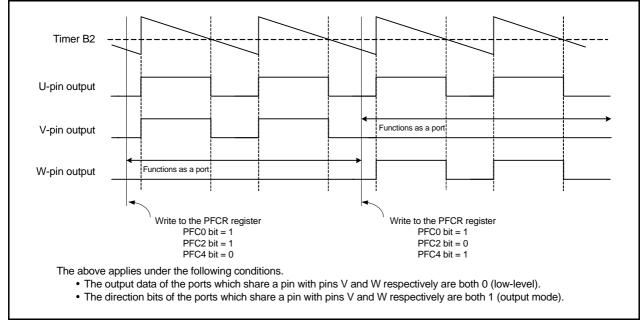


Figure 19.4 Usage Example of Three-Phase Output and I/O Port Switch Function

19.3.1.8 **Three-Phase Output Forced Cutoff Function**

While the INV02 bit in the INVC0 register is 1 (three-phase motor control timer function) and the INV03 bit is 1 (three-phase motor control timer output enabled), when a low-level signal is applied to the SD pin, the INV03 bit in the INVC0 register becomes 0 (three-phase motor control timer output disabled), and pins corresponding to U, \overline{U} , V, \overline{V} , W and \overline{W} outputs change all together as follows:

- When the IVPCR1 bit in the TB2SC register is 1 (three-phase output forced cutoff enabled) High-impedance state
- When the IVPCR1 bit in the TB2SC register is 0 (three-phase output forced cutoff disabled) I/O ports or other peripheral function I/O ports

However, applying a low-level signal to the SD pin while the IVPCR1 bit is 1 places the pins in a highimpedance state even when the pins are used as functions other than U, \overline{U} , V, \overline{V} , W and \overline{W} outputs. Table 19.7 lists State of Pins U, \overline{U} , V, \overline{V} , W, and \overline{W} .

Table 19.7 State of Pins U, \overline{U} , V, \overline{V} , W, and \overline{W}

State of Bit and Pin		
IVPCR1 bit in TB2SC register	SD input	Function or State of Pins U, \overline{U} , V, \overline{V} , W and \overline{W}
1	High	Three-phase PWM output
	Low	High-impedance
0	High	Three-phase PWM output
	Low	I/O port or other peripheral functions

Note:

1. In the above case, bits INVC02, INVC03 and PFCi are all 1.

The digital filter is available for the SD pin. When the value of bits NMIDF2 to NMIDF0 in the NMIDF register is other than 000b (digital filter enabled), the SD level is sampled for every sampling clock. When the same sampled level is detected three times in a row, the level is transferred to the internal circuit. Refer to 13.4.3 "NMI/SD Digital Filter".

To return the pin function to the three-phase PWM output after the forced cutoff, follow these steps below:

- (1) Apply a high-level signal to the \overline{SD} pin.
- (2) Wait for more than three cycles of the digital filter sampling clock.
- (3) Set the INV03 bit in the INVC0 register to 1 (three-phase motor control timer output enabled).
- (4) Confirm that the INV03 bit is 1. If the bit is 0, return to step 3.
- (5) Set the IVPCR1 bit to 0 (three-phase output forced cutoff disabled).
- (6) Set the IVPCR1 bit to 1 (when enabling three-phase output forced cutoff again).

When not using the three-phase output forced cutoff function, set a port direction bit which shares the pin with \overline{SD} input to 0 (input port), and apply a high-level signal to the \overline{SD} pin.

The same pin is used for both SD input and NMI input. To disable the NMI interrupt, set the PM24 bit in the PM2 register to 0 (NMI interrupt disabled).

19.3.1.9 **Position-Data-Retain Function**

Three position-data input pins for U-, V-, and W-phases are available. Input levels of IDU, IDV and IDW inputs are retained. The falling edge or rising edge of the high-side output signal of each phase can be selected by the PDRT bit in the PDRF register as a position-data-retain trigger.

For example, in the case of U-phase, when the U-phase trigger is generated, the state at the IDU pin is transferred to the PDRU bit in the PDRF register. Until the next trigger of the U-phase waveform output, the value is retained.

Figure 19.5 shows Usage Example of Position-Data-Retain Function (U-Phase).

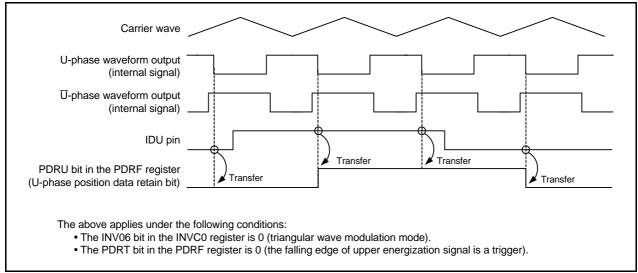


Figure 19.5 Usage Example of Position-Data-Retain Function (U-Phase)

Triangular Wave Modulation Three-Phase Mode 0 19.3.2

Triangular wave modulation uses the timer B2 cycle as a reference cycle. Table 19.8 lists Three-Phase Mode 0 Specifications, and Figure 19.6 shows Usage Example of Three-Phase Mode 0.

Table 19.8 Three-Phase Mode 0 Specifications

	Item	Specification
Carrier	wave cycle	$\frac{(m+1)\times 2}{fi}$
		m: Setting value of the TB2 register, 0 to FFFFh fi: Count source frequency (f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32)
Three-	phase PWM output width	$\frac{n \times 2}{fi}$
		n: Setting value of the TAi register, 1 to FFFFh fi: Count source frequency (f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32)
	Reference cycle	Timer B2 cycle (one-half cycle of the carrier wave)
←	Timer B2 reload timing	Timer B2 underflow
s from mode	Three-phase PWM waveform control	Counts the value of the TAi register every time a timer Ai start trigger is generated (the TAi1 register is not used).
Differences from three-phase mode	Timer B2 interrupt	When the setting value in the ICTB2 register is n, a timer B2 interrupt request is generated every nth time of timer B2 underflow (no bits INV00 and INV01 in the INVC1 register).
Did	Detection of a carrier wave cycle (first half or last half)	Not detected (the INV13 bit in the INVC1 register is invalid).

i = 1, 2, 4

Registers Used and Settings in Three-Phase Mode 0 (1/2) **Table 19.9**

Register	Bit	Functions, Setting Value
INVC0	INV00	Invalid (Despite the settings, the ICTB2 register counts timer B2 underflow.)
	INV01	
	INV02	1 (three-phase motor control timer function used)
	INV03	1 (three-phase motor control timer output enabled)
	INV04	Select simultaneous conduction enabled or disabled.
	INV05	Simultaneous conduction detect flag
	INV06	Set to 0 (triangular wave modulation mode).
	INV07	Software trigger bit
INVC1	INV10	Select a start trigger for timers A1, A2, and A4.
	INV11	Set to 0 (three-phase mode 0).
	INV12	Select a count source for the dead time timer.
	INV13	Invalid
	INV14	Select the active level (either active high or active high).
	INV15	Select the dead time enabled or disabled.
	INV16	Select a trigger for the dead time timer.
	7	Set to 0.
IDB0, IDB1	5 to 0	Set an output logic of the three-phase output shift register.
DTT	7 to 0	Set the dead time.
ICTB2	3 to 0	Set the frequency of timer B2 interrupts.
TB2SC	PWCON	Set to 0 (timer B2 underflow).
	IVPCR1	Select three-phase output forced cutoff enabled or disabled.
	b7 to b2	Set to 0.
PDRF	PDRU, PDRV, PDRW	Position-data-retain bit
	PDRT	Select a position-data-retain trigger.
PFCR	PFC5 to PFC0	Select I/O port or three-phase PWM output.
TPRC	TPRC0	Set to 1 when writing to the PFCR register, or to 0 when not writing to it.
TA1, TA2, TA4	15 to 0	Set the one-shot pulse width.
TA11, TA21, TA41	15 to 0	Not used.
TB2	15 to 0	Set one-half cycle of the carrier wave.
TRGSR	TA1TGH to TA1TGL	01b (when using V-phase output control circuit)
	TA2TGH to TA2TGL	01b (when using W-phase output control circuit)
	TA3TGH to TA3TGL	Not used for three-phase motor control timer.
	TA4TGH to TA4TGL	01b (when using U-phase output control circuit)

i = 1, 2, 4

Note:

This table does not show the procedures.

Table 19.10 Registers Used and Settings in Three-Phase Mode 0 (2/2)

Register	Bit	Functions, Setting Value
TABSR	TA0S	Not used for three-phase motor control timer.
	TA1S	Set to 1 when starting counting, and to 0 when stopping counting.
	TA2S	Set to 1 when starting counting, and to 0 when stopping counting.
	TA3S	Not used for three-phase motor control timer.
	TA4S	Set to 1 when starting counting, and to 0 when stopping counting.
	TB0S	Not used for three-phase motor control timer.
	TB1S	Not used for three-phase motor control timer.
	TB2S	Set to 1 when starting counting, and to 0 when stopping counting.
TA1MR, TA2MR,	TMOD1 to TMOD0	Set to 10b (one-shot timer mode).
TA4MR	MR0	Set to 0.
	MR1	Set to 0.
	MR2	1 (Select a trigger by bits TAiTGH and TAiTGL.)
	MR3	Set to 0.
	TCK1 to TCK0	Select a count source.
TB2MR	TMOD1 to TMOD0	Set to 00b (timer mode).
	MR1 to MR0	Set to 00b.
	4	Set to 0.
	MR3	Set to 0.
	TCK1 to TCK0	Select a count source.
PCLKR	PCLK0	Select a count source.
TCKDIVC0	TCDIV00	Select a clock prior to timer AB division.
TACS0 to TACS2	7 to 0	Select a count source.
TBCS1	TCS3 to TCS0	Select a count source.
TAPOFS	POFSi	Set to 0.
UDF	TAiP	Set to 0.

i = 1, 2, 4

Note:

1. This table does not show the procedures.

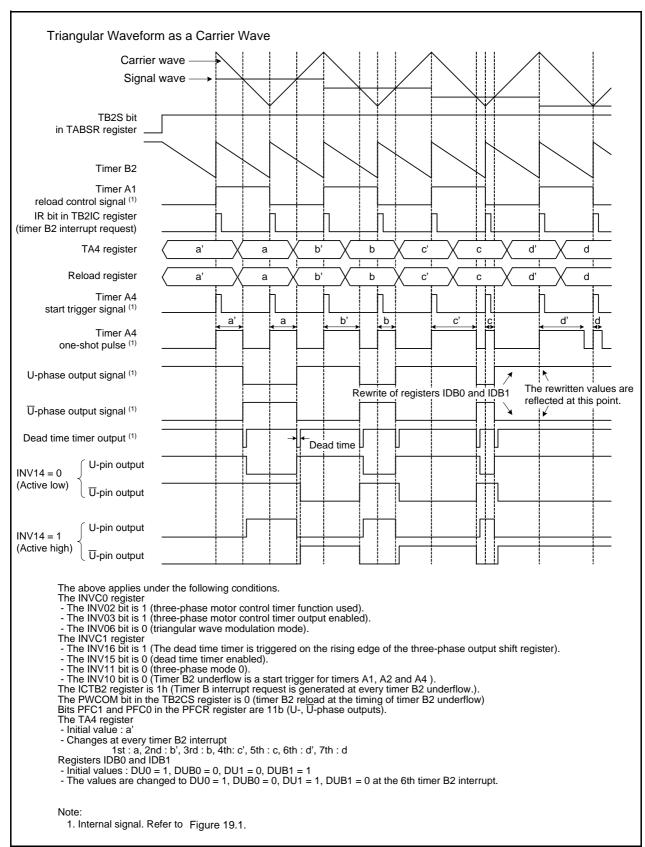


Figure 19.6 Usage Example of Three-Phase Mode 0

Three-Phase PWM Wave Output Timing Control 19.3.2.1

In three-phase mode 0, when a start trigger for timers A1, A2, and A4 is generated, the counter starts counting the value of the TAi register (i = 1, 2, 4).

19.3.2.2 Three-Phase PWM Waveform Output Level Control

In triangular wave modulation mode, the output levels set in registers IDB0 and IDB1 are transferred to the three-phase output shift register by a transfer trigger. After a transfer trigger is generated, first the value set in the IDB0 register, and then, at the falling edge of one-shot pulse for timers A1, A2, and A4, the values set in the IDB1 register become output signals for each phase (internal signal) and consequently the three-phase PWM output changes. Afterward, the values in registers IDB0 and IDB1 alternately become an output signal for each phase at every falling edge of the one-shot pulse for timers A1, A2 and A4.

When the INV15 bit in the INVC1 register is 0 (dead time enabled), a phase changing from active to nonactive changes simultaneously with output signals for each phase (internal signal), while a phase changing from nonactive to active changes when the dead time timer stops.

A transfer trigger is generated under the following conditions:

- The first timer B2 underflow after registers IDB0 and IDB1 are written
- Writing to the TB2 register (when the INV10 bit in the INVC1 register is 1)
- Setting the INV07 bit in the INVC0 register to 1 (software trigger)

Triangular Wave Modulation Three-Phase Mode 1 19.3.3

Triangular wave modulation uses twice the cycles of timer B2 as a reference cycle. Table 19.11 lists Three-Phase Mode 1 Specifications, and Figure 19.7 shows Usage Example of Three-Phase Mode 1.

Table 19.11 Three-Phase Mode 1 Specifications

Item		Specification
Carrier wave cycle		(m+1)×2 fi m: Setting value of the TB2 register, 0 to FFFFh fi: Count source frequency (f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32)
Three-phase PWM output width		$\frac{n\times 2}{\text{fi}}$ n: Setting value of the TAi register, 1 to FFFFh fi: Count source frequency (f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32)
	Reference cycle	Twice the cycle of timer B2 (cycle of the carrier wave)
from three- phase mode 0	Timer B2 reload timing	Select either of the following: • Timer B2 underflow • Timer A output at an odd number of times
	Three-phase PWM waveform control	Counts the values of registers TAi and TAi1 alternately every time the Timer Ai start trigger is generated
	Timer B2 interrupt	Select a count timing for the ICTB2 register: • Timer B2 underflow • When the INV13 bit changes its value from 0 to 1 • When the INV13 bit changes its value from 1 to 0 When the setting value in the ICTB2 register is n, the timer B2 interrupt request is generated every nth time of the timing selected by bits INV00 and INV01 in the INVC1 register.
	Detection of a carrier wave cycle (first half or last half)	Detected (The INV13 bit in the INVC1 register is valid.)

i = 1, 2, 4

Table 19.12 Registers Used and Settings in Three-Phase Mode 1 (1/2)

Register	Bit	Functions, Setting Value
INVC0	INV00	Select the timing that the ICTB2 register starts counting.
	INV01	
	INV02	1 (three-phase motor control timer function used)
	INV03	1 (three-phase motor control timer output enabled)
	INV04	Select simultaneous conduction enabled or disabled.
	INV05	Simultaneous conduction detect flag
	INV06	Set to 0 (triangular wave modulation mode).
	INV07	Software trigger bit
INVC1	INV10	Select a start trigger for timers A1, A2, and A4.
	INV11	Set to 1 (three-phase mode 1).
	INV12	Select a count source for the dead time timer.
	INV13	Carrier wave state detect flag
	INV14	Select the active level (either active high or active high).
	INV15	Select the dead time enabled or disabled.
	INV16	Select a trigger for the dead time timer.
	7	Set to 0.
IDB0, IDB1	5 to 0	Set an output logic of the three-phase output shift register.
DTT	7 to 0	Set the dead time.
ICTB2	3 to 0	Set the frequency of timer B2 interrupts.
TB2SC	PWCON	Select timer B2 reload timing.
	IVPCR1	Select three-phase output forced cutoff enabled or disabled.
	b7 to b2	Set to 0.
PDRF	PDRU, PDRV, PDRW	Position-data-retain bit
	PDRT	Select a position-data-retain trigger.
PFCR	PFC5 to PFC0	Select I/O port or three-phase PWM output.
TPRC	TPRC0	Set to 1 when writing to the PFCR register, or to 0 when not writing to it.
TA1, TA2, TA4	15 to 0	Set the one-shot pulse width.
TA11, TA21, TA41	15 to 0	Set the one-shot pulse width.
TB2	15 to 0	Set one-half cycle of the carrier wave.

i = 1, 2, 4

Note:

This table does not show the procedures.

Table 19.13 Registers Used and Settings in Three-Phase Mode 1 (2/2)

Register	Bit	Functions, Setting Value
TRGSR	TA1TGH to TA1TGL	01b (when using V-phase output control circuit)
	TA2TGH to TA2TGL	01b (when using W-phase output control circuit)
	TA3TGH to TA3TGL	(Not used for three-phase motor control timer.)
	TA4TGH to TA4TGL	01b (when using U-phase output control circuit)
TABSR	TA0S	Not used for three-phase motor control timer.
	TA1S	Set to 1 when starting counting, and to 0 when stopping counting.
	TA2S	Set to 1 when starting counting, and to 0 when stopping counting.
	TA3S	Not used for three-phase motor control timer.
	TA4S	Set to 1 when starting counting, and to 0 when stopping counting.
	TB0S	Not used for three-phase motor control timer.
	TB1S	Not used for three-phase motor control timer.
	TB2S	Set to 1 when starting counting, and to 0 when stopping counting.
TA1MR, TA2MR,	TMOD1 to TMOD0	Set to 10b (one-shot timer mode).
TA4MR	MR0	Set to 0.
	MR1	Set to 0.
	MR2	1 (Select a trigger by bits TAiTGH and TAiTGL.)
	MR3	Set to 0.
	TCK1 to TCK0	Select a count source.
TB2MR	TMOD1 to TMOD0	Set to 00b (timer mode).
	MR1 to MR0	Set to 00b.
	4	Set to 0.
	MR3	Set to 0.
	TCK1 to TCK0	Select a count source.
PCLKR	PCLK0	Select a count source.
TCKDIVC0	TCDIV00	Select a clock prior to timer AB division.
TACS0 to TACS2	7 to 0	Select a count source.
TBCS1	TCS3 to TCS0	Select a count source.
TAPOFS	POFSi	Set to 0.
UDF	TAiP	Set to 0.

i = 1, 2, 4

Note:

1. This table does not show the procedures.

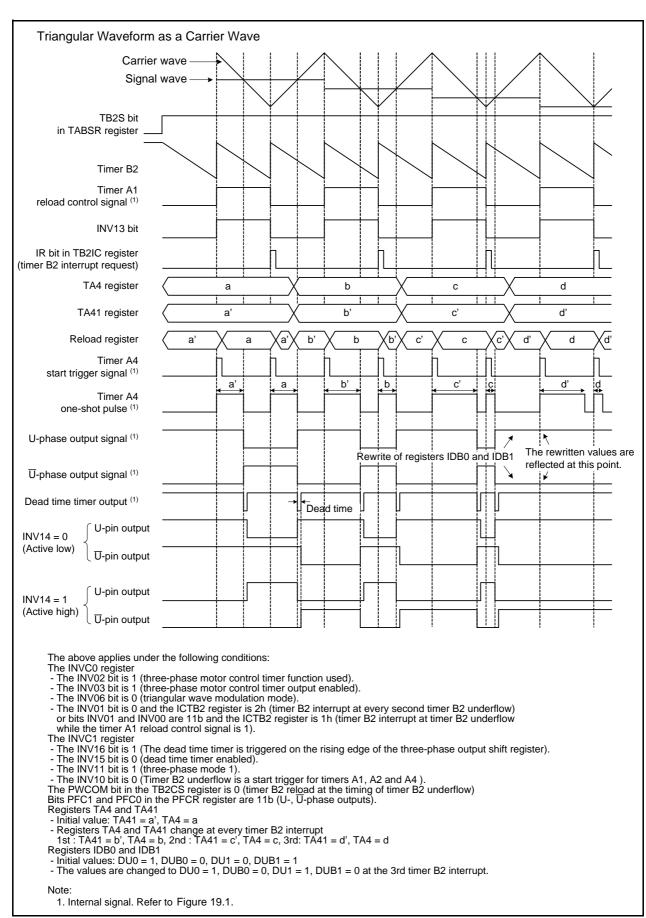
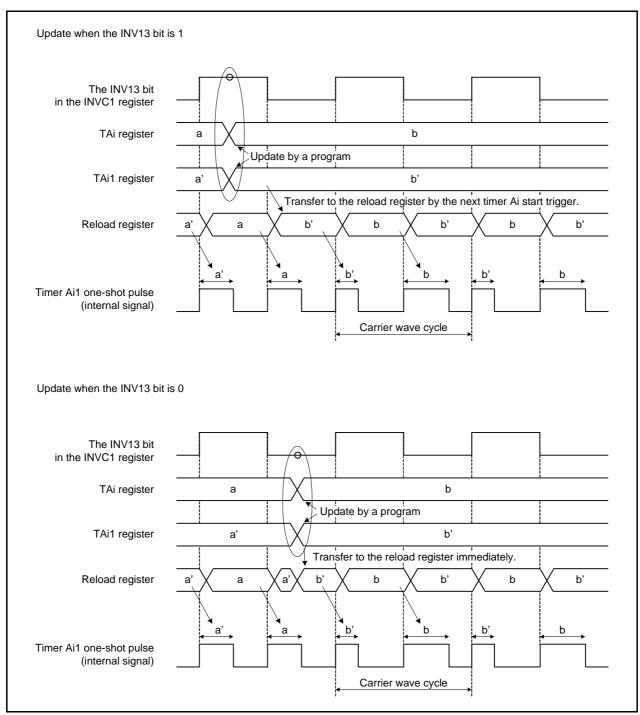


Figure 19.7 **Usage Example of Three-Phase Mode 1**

The INV13 Bit in the INVC1 Register 19.3.3.1

In three-phase mode 1, the INV13 bit can be used to detect whether the cycle of the carrier wave is the first half or the last half. The INV13 bit is a flag which checks the state of timer A1 reload control signals. Timer A1 reload control signal becomes 0 while timer A1 is stopped, and the value is reversed at every start trigger signal for timers A1, A2, and A4. Thus, if the cycle of carrier wave starts at the first timer B2 underflow, the first half comes when the INV13 bit is 1, and the last half comes when it is 0. Table 19.14 lists The Relations of the INV13 Bit with Other Factors.

Table 19.14 The Relations of the INV13 Bit with Other Factors


INV13 bit	4	0
Timer A1 reload control signal	1	
One-shot pulse count value	Value at the TAi1 register	Value at the TAi register
Timer B2 underflow	At an odd number of times	At an even number of times
Carrier wave	First half	Last half

i = 1, 2, 4

Three-Phase PWM Waveform Output Timing Control 19.3.3.2

In three-phase mode 1, a start trigger for timers A1, A2, and A4 is generated, the value set in the TAi1 register is counted first. Afterward, the values in registers TAi1 and TAi alternately are counted every time a start trigger for timers A1, A2, and A4 is generated.

When the values in registers TAi1 and TAi are rewritten during the process, the updated value is output from the next carrier wave cycle. Figure 19.8 shows Three-Phase Mode 1 Update Timing of Registers TAi and TAi1.

Three-Phase Mode 1 Update Timing of Registers TAi and TAi1 Figure 19.8

Carrier Wave Control 19.3.3.3

In three-phase mode 1, the reload timing of the TB2 register can be selected by the PWCON bit in the TB2SC register.

19.3.3.4 Three-Phase PWM Waveform Output Level Control

In triangular wave modulation mode, the output levels set in registers IDB0 and IDB1 are transferred to the three-phase output shift register by a transfer trigger. After a transfer trigger is generated, first the value set in the IDB0 register, and then, at the falling edge of one-shot pulse for timers A1, A2, and A4, the values set in the IDB1 register become output signals for each phase (internal signal) and consequently the three-phase PWM output changes. Afterward, the values in registers IDB0 and IDB1 alternately become an output signal for each phase at every falling edge of one-shot pulse for timers A1, A2, and A4.

When the INV15 bit in the INVC1 register is 0 (dead time enabled), a phase changing from active to nonactive changes simultaneously with output signals for each phase (internal signal), while a phase changing from nonactive to active changes when the dead time timer stops.

A transfer trigger is generated under the following conditions:

- The first timer B2 underflow after registers IDB0 and IDB1 are written
- Writing to the TB2 register (when the INV10 bit in the INVC1 register is 1)
- Setting the INV07 bit in the INVC0 register to 1 (software trigger)

Sawtooth Wave Modulation Mode 19.3.4

The sawtooth wave is modulated. Table 19.15 lists Sawtooth Wave Modulation Mode Specifications, and Figure 19.9 shows Usage Example of Sawtooth Wave Modulation Mode.

Table 19.15 Sawtooth Wave Modulation Mode Specifications

	Item	Specification
Carrier wave cycle		$\frac{m+1}{\text{fi}}$ m: Setting value of the TB2 register, 0 to FFFFh fi: Count source frequency (f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32)
Three-phase PWM output width		n: Setting value of the TAi register, 1 to FFFFh fi: Count source frequency (f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-F, fOCO-S, fC32)
Differences	Reference cycle	Timer B2 cycle (one-half cycle of the carrier wave)
from	Timer B2 reload timing	Timer B2 underflow
triangular wave	Three-phase PWM waveform control	Counts the value of the TAi register every time the timer Ai start trigger is generated (the TAi1 register is not used).
modulation mode		The output levels set in registers IDB0 and IDB1 are transferred to the three-phase output shift register at every timer B2 underflow.
	Timer B2 interrupt	When the setting value in the ICTB2 register is n, the timer B2 interrupt request is generated every nth time of timer B2 underflow (no bits INV00 and INV01 in the INVC1 register).
	Dead time timer trigger	Both of the following: • Transfer trigger (generated at every timer B2 underflow) • Falling edge of timer Ai one-shot pulse
	Detection of a carrier wave cycle (first half or last half)	-

i = 1, 2, 4

Table 19.16 Registers Used and Settings in Sawtooth Wave Modulation Mode (1/2)

Register	Bit	Functions, Setting Value
INVC0	INV00	Invalid (despite the settings, the ICTB2 register counts timer B2 underflow)
	INV01	
	INV02	1 (three-phase motor control timer function used)
	INV03	1 (three-phase motor control timer output enabled)
	INV04	Select simultaneous conduction enabled or disabled.
	INV05	Simultaneous conduction detect flag
	INV06	Set to 1 (sawtooth wave modulation mode).
	INV07	Software trigger bit
INVC1	INV10	Select a start trigger for timers A1, A2, and A4.
	INV11	Set to 0.
	INV12	Select a count source for the dead time timer.
	INV13	Invalid
	INV14	Select the active level (either active high or active high).
	INV15	Select the dead time enabled or disabled.
	INV16	Select a trigger for the dead time timer.
	7	Set to 0.
IDB0, IDB1	5 to 0	Set an output logic of the three-phase output shift register.
DTT	7 to 0	Set the dead time.
ICTB2	3 to 0	Set the frequency of timer B2 interrupts.
TB2SC	PWCON	Set to 0 (timer B2 underflow).
	IVPCR1	Select three-phase output forced cutoff enabled or disabled.
	b7 to b2	Set to 0.
PDRF	PDRU, PDRV, PDRW	Position-data-retain bit
	PDRT	Select a position-data-retain trigger.
PFCR	PFC5 to PFC0	Select I/O port or three-phase PWM output.
TPRC	TPRC0	Set to 1 when writing to the PFCR register, or to 0 when not writing to it.
TA1, TA2, TA4	15 to 0	Set the one-shot pulse width.
TA11, TA21, TA41	15 to 0	Not used
TB2	15 to 0	Set the cycle of the carrier wave.

i = 1, 2, 4

Note:

This table does not show the procedures.

Table 19.17 Registers Used and Settings in Sawtooth Wave Modulation Mode (2/2)

TRGSR TA1TGH to TA1TGL TA2TGL TA2TGL TA2TGL TA3TGH to TA2TGL TA3TGH to TA3TGL TA3TGH to TA3TGL TA3TGH to TA3TGL TA3TGH to TA3TGL TA4TGH to TA3TGL TA4TGL TA4TGL TA5TGH to TA3TGL TA4TGH to TA3TGL TA4TGH to TA4TGL TA4TGH to TA4TGL TA4TG	Register	Bit	Functions, Setting Value
TA2TGL	TRGSR		01b (when using V-phase output control circuit)
TA3TGL TA4TGH to TA4TGL TA4TGL TABSR TA0S Not used for three-phase motor control timer. TA1S Set to 1 when starting counting, and to 0 when stopping counting. TA2S Set to 1 when starting counting, and to 0 when stopping counting. TA3S Not used for three-phase motor control timer. TA4S Set to 1 when starting counting, and to 0 when stopping counting. TA4S Set to 1 when starting counting, and to 0 when stopping counting. TB0S Not used for three-phase motor control timer. TB1S Not used for three-phase motor control timer. TB1S Set to 1 when starting counting, and to 0 when stopping counting. TMOD1 TMOD0 Set to 10b (one-shot timer mode). MR0 Set to 0. MR1 Set to 0. MR1 Set to 0. TCK1 to TCK0 Select a count source. TB2MR TMOD1 to TMOD0 MR1 to MR0 Set to 00b. 4 Set to 0. MR1 to MR0 Set to 0. TCK1 to TCK0 Select a count source. PCLKR PCLK0 Select a count source. PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a count source. TCS3 to TCS0 Select a count source.			01b (when using W-phase output control circuit)
TA4TGL TABSR TA0S Not used for three-phase motor control timer. TA1S Set to 1 when starting counting, and to 0 when stopping counting. TA2S Set to 1 when starting counting, and to 0 when stopping counting. TA3S Not used for three-phase motor control timer. TA4S Set to 1 when starting counting, and to 0 when stopping counting. TB0S Not used for three-phase motor control timer. TB1S Not used for three-phase motor control timer. TB1S Not used for three-phase motor control timer. TB2S Set to 1 when starting counting, and to 0 when stopping counting. TA1MR, TMOD1 to TMOD0 MR0 Set to 10b (one-shot timer mode). MR1 Set to 0. MR2 1 (select a trigger by bits TAiTGH and TAiTGL) MR3 Set to 0. TCK1 to TCK0 Select a count source. TB2MR TMOD1 to TMOD0 MR1 to MR0 Set to 00b (timer mode). MR3 Set to 0. MR3 Set to 0. TCK1 to TCK0 Select a count source. TCK1 to TCK0 Select a count source. PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a count source. TCKDIVC0 TCDIV00 Select a count source. TCKS0 to TACS0 to TACS1 TCS3 to TCS0 Select a count source.			(Not used for three-phase motor control timer.)
TA1S Set to 1 when starting counting, and to 0 when stopping counting. TA2S Set to 1 when starting counting, and to 0 when stopping counting. TA3S Not used for three-phase motor control timer. TA4S Set to 1 when starting counting, and to 0 when stopping counting. TB0S Not used for three-phase motor control timer. TB1S Not used for three-phase motor control timer. TB1S Not used for three-phase motor control timer. TB2S Set to 1 when starting counting, and to 0 when stopping counting. TA1MR, TA2MR, TMOD1 to TMOD0 Set to 10b (one-shot timer mode). MR0 Set to 0. MR1 Set to 0. MR2 1 (select a trigger by bits TAiTGH and TAiTGL) MR3 Set to 0. TCK1 to TCK0 Select a count source. TB2MR TMOD1 to TMOD0 Set to 00b (timer mode). TCK1 to MR0 Set to 0. TCK1 to TCK0 Select a count source. TCKDIVC0 TCDIV00 Select a count source.			01b (when using U-phase output control circuit)
TA2S Set to 1 when starting counting, and to 0 when stopping counting. TA3S Not used for three-phase motor control timer. TA4S Set to 1 when starting counting, and to 0 when stopping counting. TB0S Not used for three-phase motor control timer. TB1S Not used for three-phase motor control timer. TB1S Not used for three-phase motor control timer. TB2S Set to 1 when starting counting, and to 0 when stopping counting. TA1MR, TA2MR, TMOD1 to TMOD0 MR0 Set to 0. MR1 Set to 0. MR2 1 (select a trigger by bits TAiTGH and TAiTGL) MR3 Set to 0. TCK1 to TCK0 Select a count source. TB2MR TMOD1 to TMOD0 MR1 to MR0 Set to 00b (timer mode). TMOD0 MR1 to MR0 Set to 0.0 TCK1 to TCK0 Select a count source. TCK1 TCK1 TCK0 Select a count source. TCK1 TCK1 TCK0 Select a count source. TCKDIVC0 TCDIV00 Select a count source. TCKDIVC0 TCDIV00 Select a count source. TCKDIVC0 TCDIV00 Select a count source. TCK3 to TCS3 to TCS0 Select a count source.	TABSR	TA0S	Not used for three-phase motor control timer.
TA3S Not used for three-phase motor control timer. TA4S Set to 1 when starting counting, and to 0 when stopping counting. TB0S Not used for three-phase motor control timer. TB1S Not used for three-phase motor control timer. TB1S Set to 1 when starting counting, and to 0 when stopping counting. TA1MR, TA2MR, TA2MR, TA4MR TMOD1 to TMOD0 MR0 Set to 0. MR1 Set to 0. MR2 1 (select a trigger by bits TAiTGH and TAiTGL) MR3 Set to 0. TCK1 to TCK0 Select a count source. TB2MR TMOD1 to TMOD0 MR1 to MR0 Set to 00b (timer mode). TCK1 to TCK0 Select a count source. TE2MR TMOD1 to TMOD0 MR1 to MR0 Set to 00b. 4 Set to 0. TCK1 to TCK0 Select a count source. TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TACS2 TCS3 to TCS0 Select a count source.		TA1S	Set to 1 when starting counting, and to 0 when stopping counting.
TA4S Set to 1 when starting counting, and to 0 when stopping counting. TB0S Not used for three-phase motor control timer. TB1S Not used for three-phase motor control timer. TB2S Set to 1 when starting counting, and to 0 when stopping counting. TA1MR, TA2MR, TA2MR, TA4MR TA4MR TA6D0 Set to 10b (one-shot timer mode). MR0 Set to 0. MR1 Set to 0. MR2 1 (select a trigger by bits TAITGH and TAITGL) MR3 Set to 0. TCK1 to TCK0 Select a count source. TB2MR TMOD1 to TMOD0 MR1 to MR0 Set to 00b (timer mode). MR1 to MR0 Set to 0. TCK1 to TCK0 Select a count source. TCKDIVC0 TCDIV00 Select a count source. TCKDIVC0 TCDIV00 Select a count source. TCK2 to TCS3 to TCS0 Select a count source.		TA2S	Set to 1 when starting counting, and to 0 when stopping counting.
TB0S Not used for three-phase motor control timer. TB1S Not used for three-phase motor control timer. TB1S Set to 1 when starting counting, and to 0 when stopping counting. TA1MR, TA2MR, TA4MR MR0 Set to 10b (one-shot timer mode). MR1 Set to 0. MR1 Set to 0. MR2 1 (select a trigger by bits TAiTGH and TAiTGL) MR3 Set to 0. TCK1 to TCK0 Select a count source. TB2MR TMOD1 to TMOD0 MR1 to MR0 Set to 00b (timer mode). MR3 Set to 0. TCK1 to TCK0 Select a count source. TB2MR PCLKR Select a count source. PCLKR PCLKO Select a count source. TCKDIVC0 TCDIV00 Select a count source. TCK3 to TCS3 to TCS0 Select a count source.		TA3S	Not used for three-phase motor control timer.
TB1S Not used for three-phase motor control timer. TB2S Set to 1 when starting counting, and to 0 when stopping counting. TA1MR, TA2MR, TA4MR TA4MR TA4MR TA5 Set to 0. MR1 Set to 0. MR2 1 (select a trigger by bits TAiTGH and TAiTGL) MR3 Set to 0. TCK1 to TCK0 Select a count source. TB2MR TMOD1 to TMOD0 MR1 to MR0 Set to 00b (timer mode). TCK1 to TCK0 Select a count source. TB2MR TA5 Set to 0. MR1 to MR0 Set to 00b. 4 Set to 00b. MR3 Set to 0. TCK1 to TCK0 Select a count source. PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a count source. TACS0 to TACS0 to TACS0 Select a count source. TCK3 to TCS0 Select a count source.		TA4S	Set to 1 when starting counting, and to 0 when stopping counting.
TB2S Set to 1 when starting counting, and to 0 when stopping counting. TA1MR, TA2MR, TA4MR		TB0S	Not used for three-phase motor control timer.
TA1MR, TA2MR, TA4MR		TB1S	Not used for three-phase motor control timer.
TA2MR, TA4MR TMOD0 MR0 Set to 0. MR1 Set to 0. MR2 1 (select a trigger by bits TAiTGH and TAiTGL) MR3 Set to 0. TCK1 to TCK0 Select a count source. TB2MR TMOD1 to TMOD0 Set to 00b (timer mode). MR1 to MR0 Set to 00b. 4 Set to 0. MR3 Set to 0. TCK1 to TCK0 Select a count source. PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TCS0 to TCS0 Select a count source.		TB2S	Set to 1 when starting counting, and to 0 when stopping counting.
MR1			Set to 10b (one-shot timer mode).
MR2 1 (select a trigger by bits TAiTGH and TAiTGL) MR3 Set to 0. TCK1 to TCK0 Select a count source. TB2MR TMOD1 to Set to 00b (timer mode). MR1 to MR0 Set to 00b. 4 Set to 0. MR3 Set to 0. TCK1 to TCK0 Select a count source. PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TACS2 TCS3 to TCS0 Select a count source.	TA4MR	MR0	Set to 0.
MR3		MR1	Set to 0.
TCK1 to TCK0 Select a count source. TB2MR TMOD1 to TMOD0 Set to 00b (timer mode). MR1 to MR0 Set to 00b. 4 Set to 0. MR3 Set to 0. TCK1 to TCK0 Select a count source. PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TACS2 TCS3 to TCS0 Select a count source.		MR2	1 (select a trigger by bits TAiTGH and TAiTGL)
TB2MR TMOD1 to TMOD0 MR1 to MR0 Set to 00b. 4 Set to 0. MR3 Set to 0. TCK1 to TCK0 Select a count source. PCLKR PCLKO Select a count source. TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TACS2 TCS3 to TCS0 Select a count source.		MR3	Set to 0.
TMOD0 MR1 to MR0 Set to 00b. 4 Set to 0. MR3 Set to 0. TCK1 to TCK0 Select a count source. PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TACS2 TCS3 to TCS0 Select a count source. TBCS1 TCS3 to TCS0 Select a count source.		TCK1 to TCK0	Select a count source.
4 Set to 0. MR3 Set to 0. TCK1 to TCK0 Select a count source. PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TACS2 To 0 Select a count source. TCKDIVC0 TCS3 to TCS0 Select a count source.	TB2MR		Set to 00b (timer mode).
MR3 Set to 0. TCK1 to TCK0 Select a count source. PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TACS2 TBCS1 TCS3 to TCS0 Select a count source.		MR1 to MR0	Set to 00b.
TCK1 to TCK0 Select a count source. PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TACS2 TCS3 to TCS0 Select a count source.		4	Set to 0.
PCLKR PCLK0 Select a count source. TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TACS2 TCS3 to TCS0 Select a count source. TACS0 TCS3 to TCS0 Select a count source.		MR3	Set to 0.
TCKDIVC0 TCDIV00 Select a clock prior to timer AB division. TACS0 to TACS2 TCS3 to TCS0 Select a count source. TCS3 to TCS0 Select a count source.		TCK1 to TCK0	Select a count source.
TACS0 to 7 to 0 Select a count source. TACS2 TBCS1 TCS3 to TCS0 Select a count source.	PCLKR	PCLK0	Select a count source.
TACS2 TBCS1 TCS3 to TCS0 Select a count source.	TCKDIVC0	TCDIV00	Select a clock prior to timer AB division.
		7 to 0	Select a count source.
TAPOFS POFSi Set to 0.	TBCS1	TCS3 to TCS0	Select a count source.
	TAPOFS	POFSi	Set to 0.
UDF TAiP Set to 0.	UDF	TAiP	Set to 0.

i = 1, 2, 4

Note:

1. This table does not show the procedures.

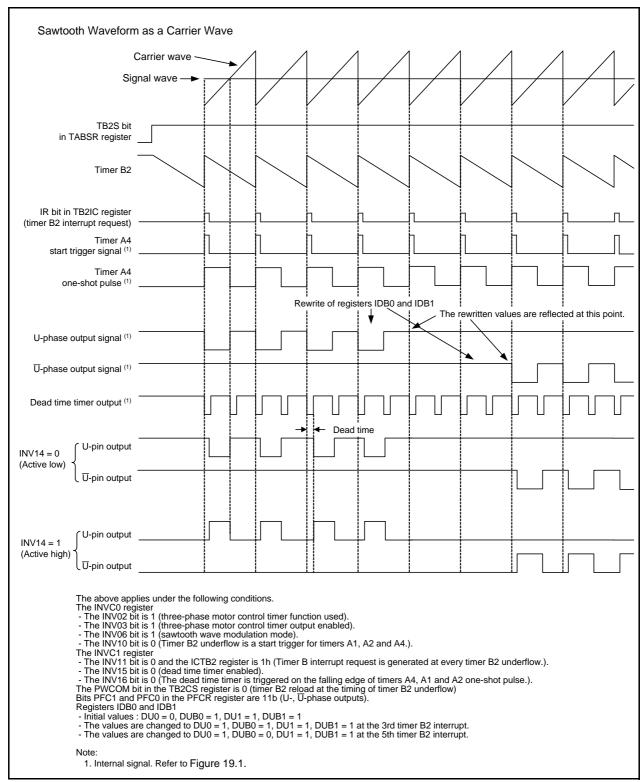


Figure 19.9 **Usage Example of Sawtooth Wave Modulation Mode**

19.3.4.1 **Three-Phase PWM Waveform Output Timing Control**

In sawtooth wave modulation mode, when a start trigger for timers A1, A2, and A4 is generated, the counter starts counting the value of the TAi register (i = 1, 2, 4).

19.3.4.2 Three-Phase PWM Waveform Output Level Control

In sawtooth wave modulation mode, the output levels set in registers IDB0 and IDB1 are transferred to the three-phase output shift register by a transfer trigger. After a transfer trigger is generated, first the value set in the IDB0 register, and then at the falling edge of one-shot pulse for timers A1, A2, and A4, the value set in the IDB1 register become output signals for each phase (internal signal) and consequently the three-phase PWM output changes. Afterward, the following two actions are repeated:

(1) The setting levels are transferred to the three-phase output shift register by a transfer trigger generated at timer B2 underflow, and therefore, the value in the IDB0 register becomes output signals for each phase. (2) The values set in the IDB1 register become output signals for each phase at the falling edge of one-shot pulse for timers A1, A2, and A4.

When the INV15 bit in the INVC1 register is 0 (dead time enabled), a phase changing from active to nonactive changes simultaneously with output signals for each phase (internal signal), while a phase changing from nonactive to active changes when the dead time timer stops.

A transfer trigger is generated under the following conditions:

- Timer B2 underflow (each time)
- Writing to the TB2 register (when the INV10 bit in the INVC1 register is 1)
- Setting the INV07 bit in the INVC0 register to 1 (software trigger)

19.4 Interrupts

The timer B2 interrupt and timer A1, A2 and A4 interrupts are available for the three-phase motor control timer.

19.4.1 Timer B2 Interrupt

When the setting value in the ICTB2 register is n, a timer B2 interrupt request is generated at the timings below. For details, refer to the specifications and usage examples of each mode.

In triangular wave modulation three-phase mode 0 and sawtooth wave modulation mode, the interrupt request is generated at the nth count of timer B2 underflow (when setting value in the ICTB2 register is n).

In triangular wave modulation three-phase mode 1, the interrupt request is generated at the nth count of the following timings selected by bits INV01 and INV00 in the INVC0 register:

- Timer B2 underflow
- When the INV13 bit changes its value from 0 to 1
- When the INV13 bit changes its value from 1 to 0

Refer to 14.7 "Interrupt Control" for details of interrupt control. Table 19.18 lists Timer B2 Interrupt Related Register.

Table 19.18 Timer B2 Interrupt Related Register

Address	Register Name	Register Symbol	After Reset
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b

19.4.2 Timers A1, A2 and A4 Interrupts

A timer Ai interrupt request is generated at the falling edge of timer Ai (i = 1, 2, 4) one-shot pulse (internal signal). Refer to 14.7 "Interrupt Control" for details of interrupt control. Table 19.19 lists Timers A1, A2, and A4 Interrupts Related Registers.

Table 19.19 Timers A1, A2, and A4 Interrupts Related Registers

Address	Register Name	Register Symbol	After Reset
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXX X000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXX X000b

In the timer Ai interrupt, when the TMOD1 bit in the TAiMR register is changed from 0 to 1 (from timer mode or event counter mode to one-shot timer mode, PWM mode or programmable output mode), the IR bit in the TAilC register is sometimes automatically set to 1 (interrupt requested). Thus, when changing the TMOD1 bit, follow the steps below. Also refer to 14.13 "Notes on Interrupts".

- (1) Set bits ILVL2 to ILVL0 in the TAilC register to 000b (interrupt disabled).
- (2) Set the TAiMR register.
- (3) Set the IR bit in the TAilC register to 0 (interrupt not requested).

Notes on Three-Phase Motor Control Timer Function 19.5

19.5.1 Timer A, Timer B

Refer to 17.5 "Notes on Timer A" and 18.5 "Notes on Timer B".

19.5.2 **Forced Cutoff Input**

The following pins are affected by the three-phase forced cutoff due to the \overline{SD} pin input: P7_2/CLK2/TA1OUT/V, P7_3/CTS2/RTS2/TA1IN/V, P7_4/TA2OUT/W, P7_5/TA2IN/W, P8_0/TA4OUT/RXD5/SCL5/U, P8_1/TA4IN/CTS5/RTS5/U

20. Real-Time Clock

20.1 Introduction

The real-time clock generates a 1-second signal from a count source and counts seconds, minutes, hours, a.m./p.m., a day, and a week. It also detects matches with specified seconds, minutes, and hours. Table 20.1 lists Real-Time Clock Specifications, Figure 20.1 shows a Real-Time Clock Block Diagram, and Table 20.2 lists the I/O Port.

Table 20.1 Real-Time Clock Specifications

Item	Specification
Count source	f1, fC
Count operation	• Increment
	Compare mode 1 or not using compare mode
	The count value is continuously used, and the count continues
	Compare mode 2
	When a compare match is detected, the count value is set to 0 and the count continues.
	Compare mode 3
	When a compare match is detected, the count value is set to 0 and the count stops.
Count start condition	1 (count starts) is written to the TSTART bit in RTCCR1 register
Count stop condition	0 (count stops) is written to the TSTART bit in RTCCR1 register
Interrupt request generation timing	Select one of the following:
	Update second data
	Update minute data
	Update hour data
	Update day data
	When day data is set to 000b
	When the count data and the compare data match
RTCOUT pin function	Programmable I/O ports or compare output
Read from timer	When the RTCSEC, RTCMIN, RTCHR, or RTCWK register is read,
	the count value can be read. The values read from registers
	RTCSEC, RTCMIN, and RTCHR are represented by the BCD
	code.
Write to timer	When bits TSTART and TCSTF in the RTCCR1 register are 0
	(timer stopped), the RTCSEC, RTCMIN, RTCHR, and RTCWK
	registers can be written to. The values written to registers
	RTCSEC, RTCMIN, and RTCHR are represented by the BCD
Select function	codes.
Select function	• 12-hour mode / 24-hour mode switch function
Notes	Compare output

Note:

In this manual, day refers to one day of the week. Refer to 20.2.4 "Real-Time Clock Day Data Register (RTCWK)" for details.

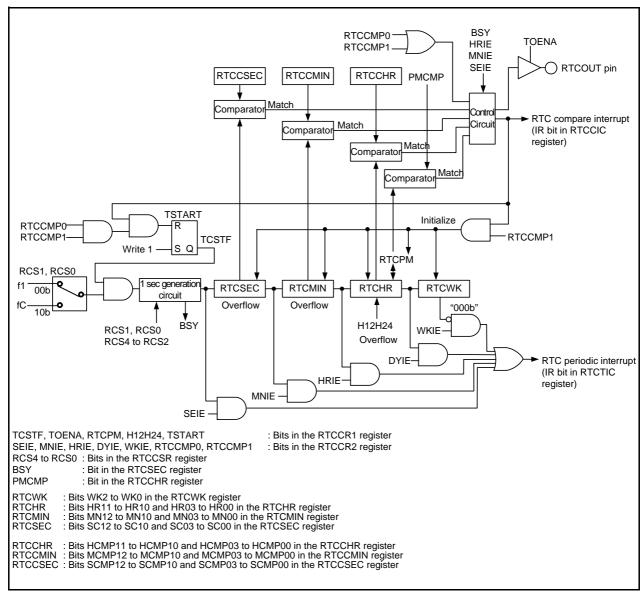
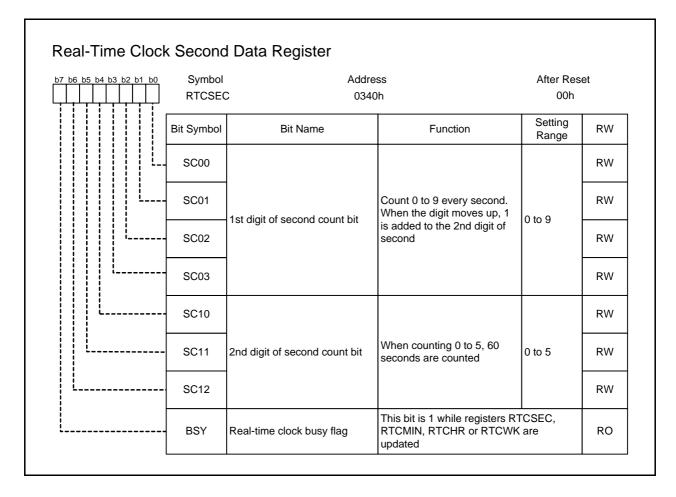


Figure 20.1 **Real-Time Clock Block Diagram**

Table 20.2 I/O Port


Pin Name	I/O Type	Function
RTCOUT	Output	Compare output

Registers 20.2

Table 20.3 Register Structure

Address	Register Name	Register Symbol	After Reset
0340h	Real-Time Clock Second Data Register	RTCSEC	00h
0341h	Real-Time Clock Minute Data Register	RTCMIN	X000 0000b
0342h	Real-Time Clock Hour Data Register	RTCHR	XX00 0000b
0343h	Real-Time Clock Day Data Register	RTCWK	XXXX X000b
0344h	Real-Time Clock Control Register 1	RTCCR1	0000 X00Xb
0345h	Real-Time Clock Control Register 2	RTCCR2	X000 0000b
0346h	Real-Time Clock Count Source Select	RTCCSR	XXX0 0000b
	Register		
0348h	Real-Time Clock Second Compare Data	RTCCSEC	X000 0000b
	Register		
0349h	Real-Time Clock Minute Compare Data	RTCCMIN	X000 0000b
	Register		
034Ah	Real-Time Clock Hour Compare Data	RTCCHR	X000 0000b
	Register		

20.2.1 Real-Time Clock Second Data Register (RTCSEC)

SC03-SC00 (1st Digit of Second Count Bit) (b3-b0) SC12-SC10 (2nd Digit of Second Count Bit) (b6-b4)

Set a value between 00 and 59 by the BCD codes.

These bits become 00 at compare match in compare 2 mode and compare 3 mode.

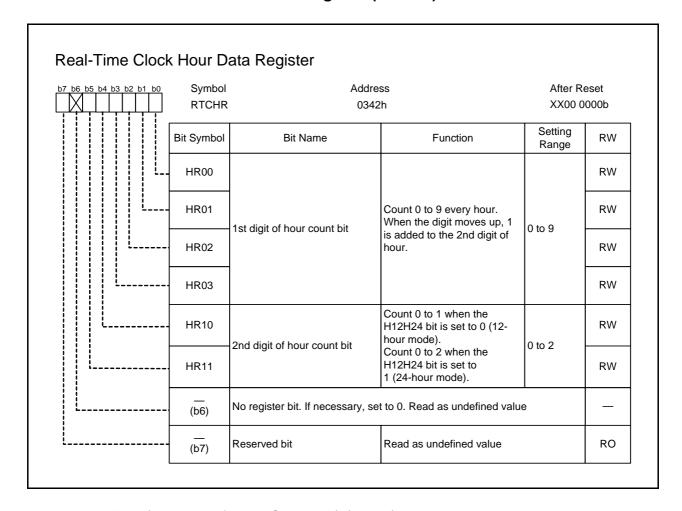

Write to bits SC12 to SC10 and SC03 to SC00 in the RTCSEC register when both bits TSTART and TCSTF in the RTCCR1 register are 0 (timer stops). Read when the BSY bit is 0 (not while data is updated).

BSY (Real-Time Clock Busy Flag) (b7)

This bit is 1 while data is updated. Read the following bits when the BSY bit is 0 (not while data is updated).

- Bits SC12 to SC10 and SC03 to SC00 in the RTCSEC register
- Bits MN12 to MN10 and MN03 to MN00 in the RTCMIN register
- Bits HR11 to HR10 and HR03 to HR00 in the RTCHR register
- Bits WK2 to WK0 in the RTCWK register

20.2.2 Real-Time Clock Minute Data Register (RTCMIN)

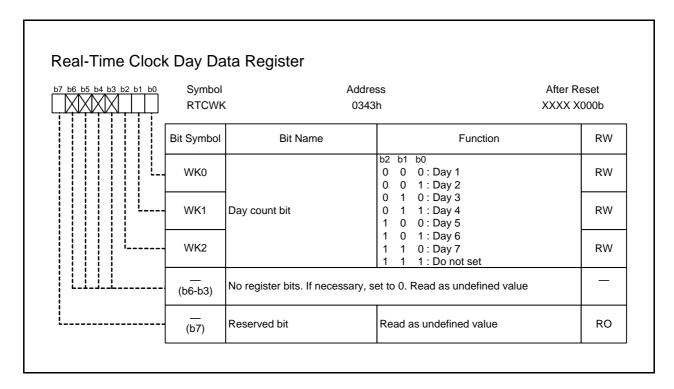

MN03-MN00 (1st Digit of Minute Count Bit) (b3-b0) MN12-MN10 (2nd Digit of Minute Count Bit) (b6-b4)

Set a value between 00 and 59 by the BCD codes.

These bits become 00 at compare match in compare 2 mode and compare 3 mode.

Write to bits MN12 to MN10 and MN03 to MN00 in the RTCMIN register when both bits TSTART and TCSTF in the RTCCR1 register are 0 (timer stops). Read when the BSY bit in the RTCSEC is 0 (not while data is updated).

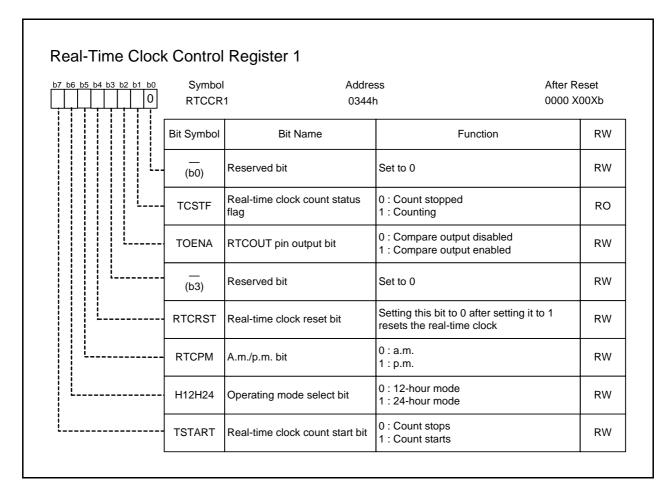
20.2.3 Real-Time Clock Hour Data Register (RTCHR)


HR03-HR00 (1st Digit of Hour Count Bit) (b3-b0) HR11-HR10 (2nd Digit of Hour Count Bit) (b5-b4)

When the H12H24 bit in the RTCCR1 register is 0 (12-hour mode), set a value between 00 and 11 by BCD code. When the H12H24 bit in the RTCCR1 register is 1 (24-hour mode), set a value between 00 and 23 by the BCD codes.

These bits become 00 at compare match in compare 2 mode and compare 3 mode.

Write to bits HR11 to HR10 and HR03 to HR00 in the RTCHR register when both bits TSTART and TCSTF in the RTCCR1 register are 0 (timer stops). Read when the BSY bit in the RTCSEC register is 0 (not while data is updated).


20.2.4 Real-Time Clock Day Data Register (RTCWK)

WK2-WK0 (Day Count Bit) (b2-b0)

A week is counted by counting from 000b (Day 1) to 110b (Day 7) repeatedly. Do not set to 111b. These bits become 000b at compare match in compare 2 mode and compare 3 mode. Write to bits WK2 to WK0 in the RTCWK register when both bits TSTART and TCSTF in the RTCCR1 register are 0 (timer stops). Read when the BSY bit in the RTCSEC register is 0 (not while data is updated).

20.2.5 Real-Time Clock Control Register 1 (RTCCR1)

TCSTF (Real-Time Clock Count Status Flag) (b1) TSTART (Real-Time Clock Count Start Bit) (b7)

The real-time clock has the TSTART bit for instructing the count to start or stop, and the TCSTF bit, which indicates count start or stop.

The real-time clock starts counting and the TCSTF bit becomes 1 (count starts) when the TSTART bit is set to 1 (count starts). It takes up to two cycles of the count source until the TCSTF bit becomes 1 after setting the TSTART bit to 1. During this time, do not access registers associated with the real-time clock (1) other than the TCSTF bit.

Also, when setting the TSTART bit to 0 (count stops), the real-time clock stops counting and the TCSTF bit becomes 0 (count stops). It takes the time for up to three cycles of the count source until the TCSTF bit becomes 0 after setting the TSTART bit to 0. During this time, do not access registers associated with the real-time clock (1) other than the TCSTF bit.

Note:

1. Registers associated with the real-time clock: RTCSEC, RTCMIN, RTCHR, RTCWK, RTCCR1, RTCCR2, and RTCCSR.

RTCRST (Real-Time Clock Reset Bit) (b4)

When setting this bit to 0 after setting it to 1, the following are set automatically.

- The values are reset in registers RTCSEC, RTCMIN, RTCHR, RTCWK, RTCCR2, RTCCSR, RTCCSEC, RTCCMIN, and RTCCHR.
- Bits TCSTF, RTCPM, H12H24, and TSTART in the RTCCR1 register become 0.

RTCPM (A.M./P.M. Bit) (b5)

Write to the RTCPM bit when both bits TSTART and TCSTF in the RTCCR1 register are 0 (timer stops). Read this bit when the BSY bit in the RTCSEC register is 0 (not while data is updated).

The RTCPM bit is enabled when the H12H24 bit is 0 (12-hour mode) or 1 (24-hour mode). Set the RTCPM bit as below to set time while the H12H24 bit is 1.

- Set the RTCPM bit to 0 when bits HR11 to HR10 and HR03 to HR00 in the RTCHR register are 00 to 11.
- Set the RTCPM bit to 1 when bits HR11 to HR10 and HR03 to HR00 in the RTCHR register are 12

The RTCPM bit changes as follows while counting.

- Becomes 0 when the RTCPM bit is 1 (p.m.) while the clock increments from 11:59:59 (23:59:59 for 24-hour mode) to 00:00:00.
- Becomes 1 when the RTCPM bit is 0 (a.m.) while the clock increments from 11:59:59 to 00:00:00 (12:00:00 for 24-hour mode).

Figure 20.2 shows Definition of Time Representation.

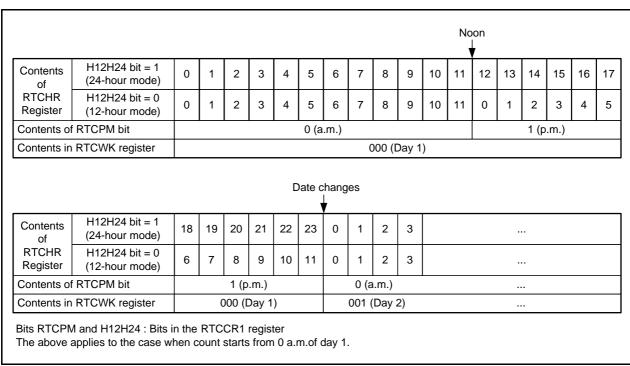



Figure 20.2 Definition of Time Representation

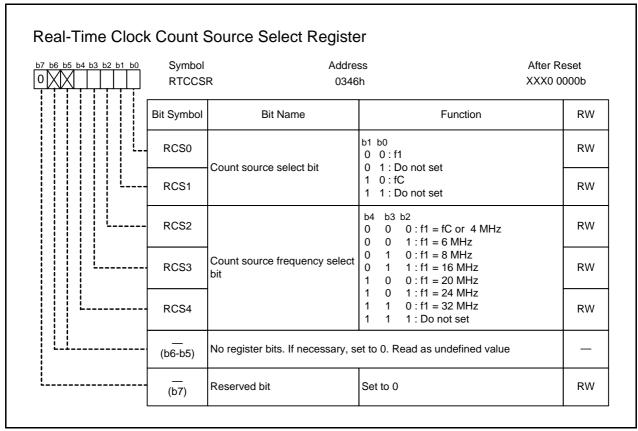
H12H24 (Operating Mode Select Bit) (b6)

Write to the H12H24 bit when both bits TSTART and TCSTF in the RTCCR1 register are 0 (timer stops).

20.2.6 Real-Time Clock Control Register 2 (RTCCR2)

Write to the RTCCR2 register when both bits TSTART and TCSTF in the RTCCR1 register are 0 (timer stops).

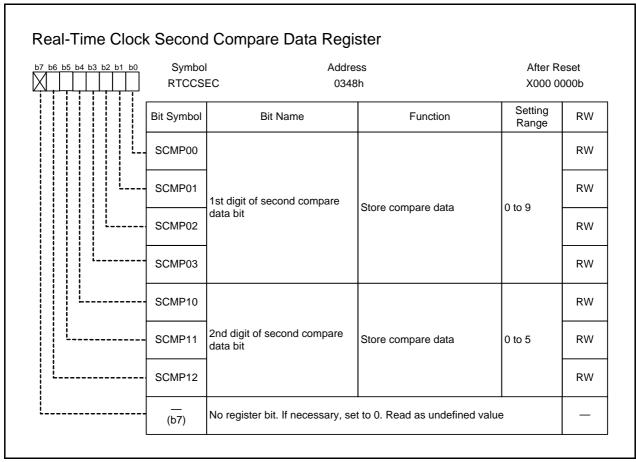
While bits RTCCMP1 to RTCCMP0 are 00b (no compare mode), an interrupt request can be generated every second, minute, hour, day, or week. To generate an interrupt request, set one of the following bits to 1 (interrupt enabled): SEIE, MNIE, HRIE, DAYIE, and WKIE (Be sure to set only one bit to 1). Table 20.4 lists Periodic Interrupt Sources.


Table 20.4 Periodic Interrupt Sources

Factor	Interrupt Source	Interrupt Enable Bit
Periodic interrupt triggered every week	Value in RTCWK register is set to 000b (1-week period)	WKIE
Periodic interrupt triggered every day	RTCWK register is updated (1-day period)	DYIE
Periodic interrupt triggered every hour	RTCHR register is updated (1-hour period)	HRIE
Periodic interrupt triggered every minute	RTCMIN register is updated (1-minute period)	MNIE
Periodic interrupt triggered every second	RTCSEC register is updated (1-second period)	SEIE

When bits RTCCMP1 to RTCCMP0 are 01b, 10b, or 11b (any compare mode), set as follows depending on what to compare.

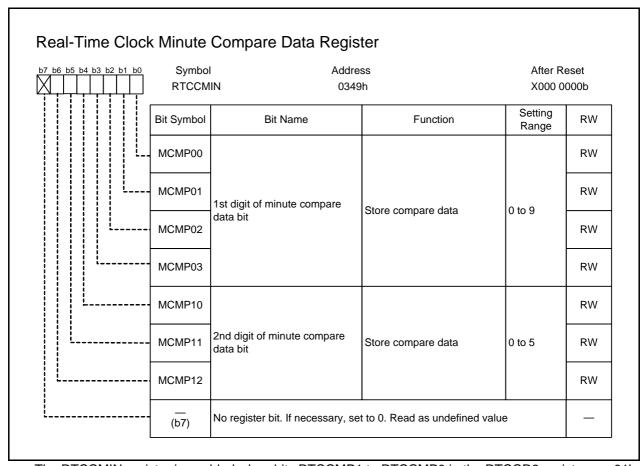
- When comparing to the RTCCSEC register, set the SEIE bit to 1 (interrupt enabled).
- When comparing to the RTCCMIN register, set both bits SEIE and MNIE to 1.
- When comparing to the RTCCHR register, set all the bits SEIE, MNIE, and HRIE to 1.


20.2.7 Real-Time Clock Count Source Select Register (RTCCSR)

When bits RCS1 to RCS0 are 10b (fC), set bits RCS4 to RCS2 to 000b.

When bits RCS1 to RCS0 are 00b (f1), select a frequency matched to f1 by bits RCS4 to RCS2. Write to the RTCCSR register when both bits TSTART and TCSTF in the RTCCR1 register are 0 (timer stops).

20.2.8 Real-Time Clock Second Compare Data Register (RTCCSEC)

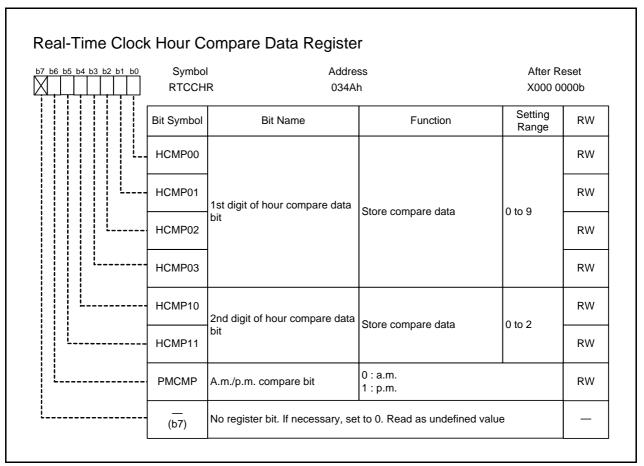

The RTCCSEC register is enabled when bits RTCCMP1 to RTCCMP0 in the RTCCR2 register are 01b, 10b, or 11b (any compare mode).

SCMP03-SCMP00 (1st Digit of Second Compare Data Bit) (b3-b0) SCMP12-SCMP10 (2nd Digit of Second Compare Data Bit) (b6-b4)

Set a value between 00 and 59 by the BCD codes.

Write to these bits when the BSY bit in the RTCSEC register is 0 (not while data is updated).

20.2.9 Real-Time Clock Minute Compare Data Register (RTCCMIN)


The RTCCMIN register is enabled when bits RTCCMP1 to RTCCMP0 in the RTCCR2 register are 01b, 10b, or 11b (any compare mode).

MCMP03-MCMP00 (1st Digit of Minute Compare Data Bit) (b3-b0) MCMP12-MCMP10 (2nd Digit of Minute Compare Data Bit) (b6-b4)

Set a value between 00 and 59 by the BCD codes.

Write to these bits when the BSY bit in the RTCSEC register is 0 (not while data is updated).

20.2.10 Real-Time Clock Hour Compare Data Register (RTCCHR)

The RTCCHR register is enabled when bits RTCCMP1 to RTCCMP0 in the RTCCR2 register are 01b, 10b, or 11b (any compare mode).

HCMP03-HCMP00 (1st Digit of Hour Compare Data Bit) (b3-b0) HCMP11-HCMP10 (2nd Digit of Hour Compare Data Bit) (b5-b4)

When the H12H24 bit in the RTCCR1 register is 0 (12-hour mode), set a value between 00 and 11 by the BCD codes. When the H12H24 bit in the RTCCR1 register is 1 (24-hour mode), set a value between 00 and 23 by the BCD codes.

Write to these bits when the BSY bit in the RTCSEC register is 0 (not while data is updated).

PMCMP (A.M./P.M Compare Bit) (b6)

This bit is enabled both when the H12H24 bit in the RTCCR1 register is 0 (12-hour mode) or 1 (24-hour mode). When the H12H24 bit is 1, set as follows.

- When bits HCMP11 to HCMP10 and HCMP03 to HCMP00 are 00 to 11, set the PMCMP bit to 0.
- When bits HCMP11 to HCMP10 and HCMP03 to HCMP00 are 12 to 23, set the PMCMP bit to 1.

Write to these bits when the BSY bit in the RTCSEC register is 0 (not while data is updated).

M16C/65 Group 20. Real-Time Clock

20.3 **Operations**

20.3.1 **Basic Operation**

Real-time clock generates one-second signal from the count source selected in the RTCCSR register and counts seconds, minutes, hours, a.m./p.m., a day, and a week.

Time and day to start counting are settable by registers RTCSEC, RTCMIN, RTCHR, RTCWK, and the RTCPM bit in the RTCCR1 register. Current time and day are read from registers RTCSEC, RTCMIN, RTCHR, RTCWK, and the RTCPM bit in the RTCCR1 register. However, do not read these registers when the BSY bit in the RTCSEC register is 1 (while data is updated).

An interrupt request can be generated every second, minute, hour, day, or week. While bits RTCCMP1 to RTCCMP0 are 00b (no compare mode), use the RTCCR2 register to enable one of the periodic interrupts triggered every second, minute, hour, day and week. When a periodic interrupt is generated, the IR bit in the RTCTIC register becomes 1 (interrupt request).

Figure 20.3 shows Real-Time Clock Basic Operating Example, Figure 20.4 shows Time and Day Change Procedure (No Compare Mode or Compare 1 Mode), and Figure 20.5 shows Time and Day Change Procedure (Compare 2 Mode or Compare 3 Mode).

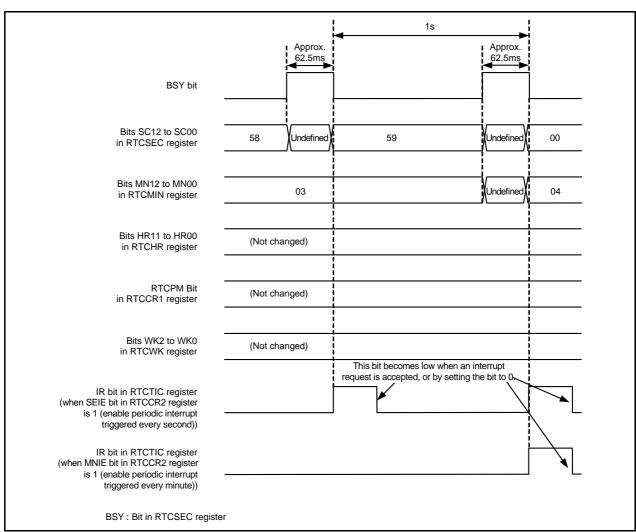


Figure 20.3 **Real-Time Clock Basic Operating Example**

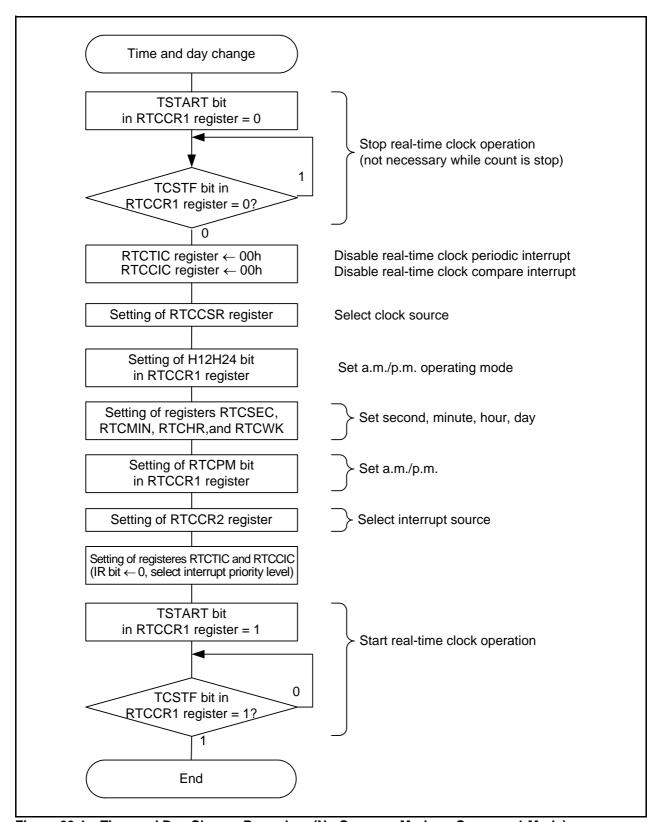
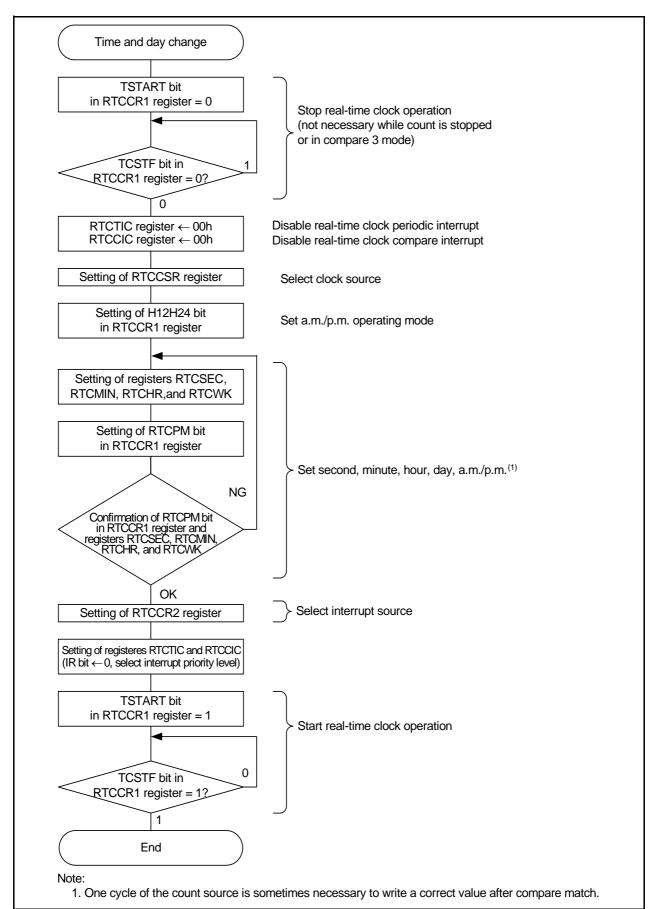



Figure 20.4 Time and Day Change Procedure (No Compare Mode or Compare 1 Mode)

Time and Day Change Procedure (Compare 2 Mode or Compare 3 Mode)

20.3.2 **Compare Mode**

In compare mode, time data (1) and compare data (1) are compared, and compare value match is detected. When match is detected, the following occur.

Compare interrupt request

Refer to 20.4 "Interrupts" for details.

RTCOUT pin output level inversion

While the TOENA bit in the RTCCR1 register is 1 (compare output enabled), when compare value match is detected, RTCOUT pin output level is converted.

Notes:

1. Bits for time data are as follows:

Bits SC12 to SC10 and SC03 to SC00 in the RTCSEC register

Bits MN12 to MN10 and MN03 to MN00 in the RTCMIN register

Bits HR11 to HR10 and HR03 to HR00 in the RTCHR register

The RTCPM bit in the RTCCR1 register

Bits for compare data are as follows:

Bits SCMP12 to SCMP10 and SCMP03 to SCMP00 in the RTCCSEC register

Bits MCMP12 to MCMP10 and MCMP03 to MCMP00 in the RTCCMIN register

Bits HCMP11 to HCMP10 and HCMP03 to HCMP00 in the RTCCHR register

The PMCMP bit in the RTCCHR register

In compare mode, set the SEIE, MNIE, or HRIE bit in the RTCCR2 register to 1 (interrupt enabled) according to compare data (second, minute, or hour). Refer to 20.2.6 "Real-Time Clock Control Register 2 (RTCCR2)" for details.

Compare mode has three modes: compare 1 mode, compare 2 mode, and compare 3 mode. Operation after compare value match differs depending on a compare mode.

Compare 1 mode

The time data is used continuously and counting continues.

Compare 2 mode

The value after reset is used as the time data and counting continues.

Compare 3 mode

The value after reset is used as the time data and counting stops.

Figure 20.6 shows Difference between Compare Modes, Figure 20.7 shows Count Start/Stop Operating Example, Figure 20.8 shows Compare 1 Mode Operating Example, Figure 20.9 shows Compare 2 Mode Operating Example, and Figure 20.10 shows Compare 3 Mode Operating Example.

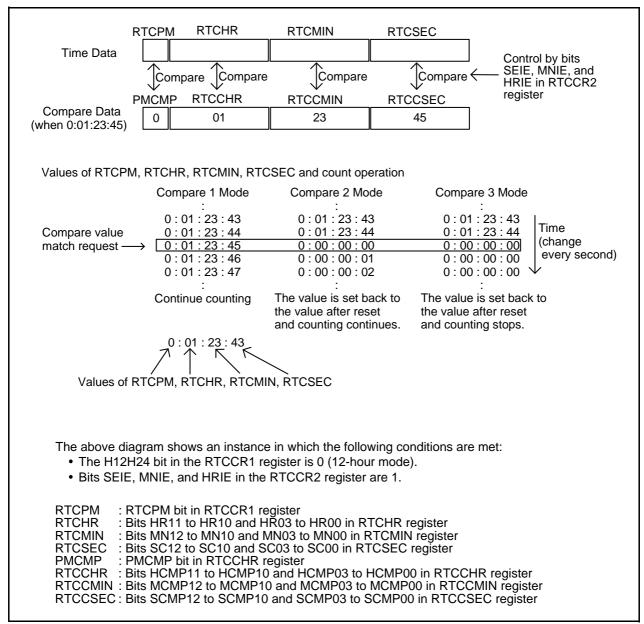
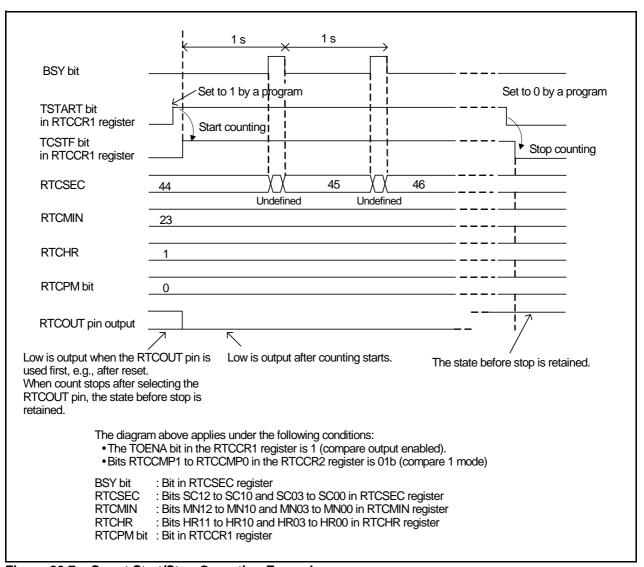



Figure 20.6 Difference between Compare Modes

Count Start/Stop Operating Example Figure 20.7

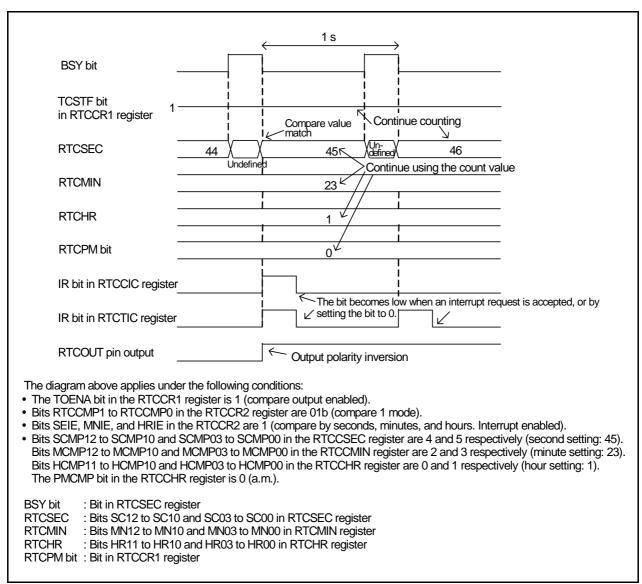


Figure 20.8 Compare 1 Mode Operating Example

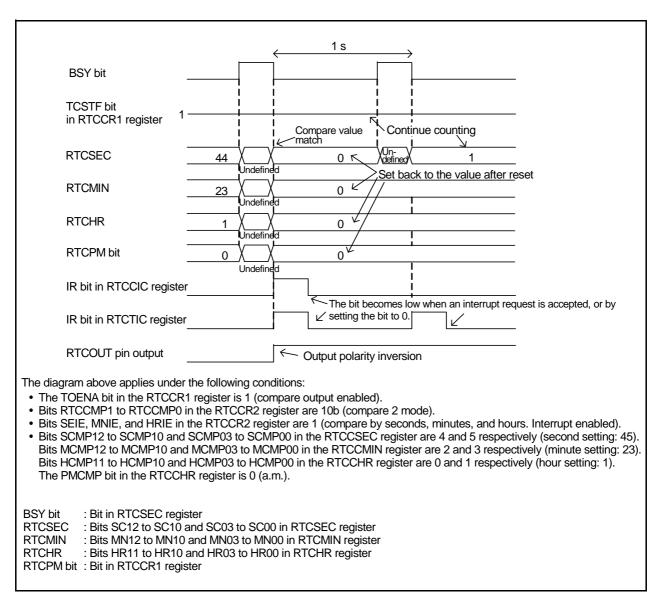


Figure 20.9 Compare 2 Mode Operating Example

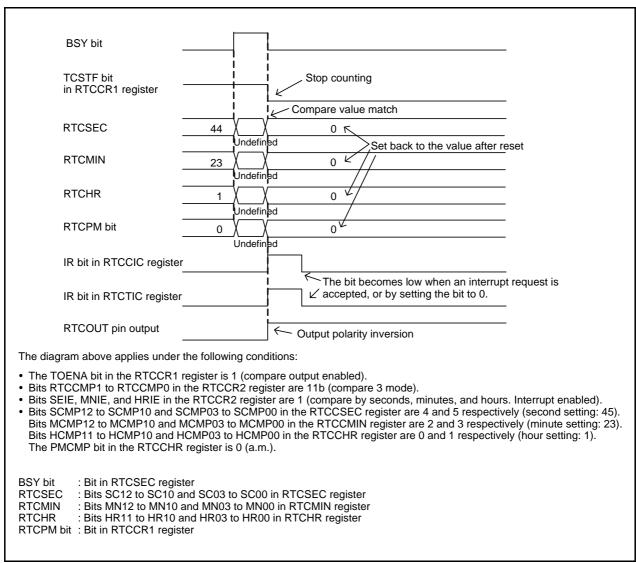


Figure 20.10 Compare 3 Mode Operating Example

20. Real-Time Clock M16C/65 Group

20.4 Interrupts

Real-time clock generates the following two types of interrupts.

- Periodic interrupts triggered every second, minute, hour, day, and week
- Compare value match interrupt

Refer to Table 20.4 Periodic Interrupt Sources for details of periodic interrupt sources, each mode's specification and operating example for the interrupt request generating timing, and 14.7 "Interrupt Control" for details of interrupt control. Table 20.5 lists Real-Time Clock Interrupt-Associated Registers.

Table 20.5 Real-Time Clock Interrupt-Associated Registers

Address	Register Name	Register Symbol	After Reset
006Eh	Real-Time Clock Period Interrupt Control Register	RTCTIC	XXXX X000b
006Fh	Real-Time Clock Compare Match Interrupt	RTCCIC	XXXX X000b
	Control Register		
0205h	Interrupt Source Select Register 3	IFSR3A	00h

Real-time clock shares the interrupt vectors and interrupt control registers with other peripheral functions. To use period interrupts, set the IFSR35 bit in the IFSR3A register to 1 (real-time clock cycle), and to use compare interrupts, set the IFSR36 bit in the IFSR3A register to 1 (real-time clock compare).

Notes on Real-Time Clock 20.5

20.5.1 **Starting and Stopping Count**

Real-time clock has the TSTART bit for instructing the count to start or stop, and the TCSTF bit, which indicates count start or stop. Bits TSTART and TCSTF are in the RTCCR1 register.

Real-time clock starts counting and the TCSTF bit becomes 1 (count starts) when the TSTART bit is set to 1 (count starts). It takes up to two cycles of the count source until the TCSTF bit becomes 1 after setting the TSTART bit to 1. During this time, do not access registers associated with real-time clock (1) other than the TCSTF bit.

Also, real-time clock stops counting when setting the TSTART bit to 0 (count stops) and the TCSTF bit becomes 0 (count stops). It takes up to three cycles of the count source until the TCSTF bit becomes 0 after setting the TSTART bit to 0. During this time, do not access registers associated with real-time clock other than the TCSTF bit.

Note:

1. Registers associated with real-time clock: RTCSEC, RTCMIN, RTCHR, RTCWK, RTCCR1, RTCCR2, RTCCSR, RTCCSEC, RTCCMIN, and RTCCHR.

20.5.2 Register Setting (Time Data etc.)

Write to the following registers or bits while real-time clock is stopped.

- Registers RTCSEC, RTCMIN, RTCHR, RTCWK, and RTCCR2
- Bits H12H24 and RTCPM in the RTCCR1 register
- Bits RCS0 to RCS4 in the RTCCSR register

Real-time clock is stopped when bits TSTART and TCSTF in the RTCCR1 register are 0 (real-time clock stopped).

Also, set all above-mentioned registers and bits (immediately before real-time clock count starts) before setting the RTCCR2 register.

Figure 20.4 shows Time and Day Change Procedure (No Compare Mode or Compare 1 Mode), and Figure 20.5 shows Time and Day Change Procedure (Compare 2 Mode or Compare 3 Mode).

20.5.3 Register Setting (Compare Data)

Write to the following registers when the BSY bit in the RTCSEC register is 0 (not while data is updated).

Registers RTCCSEC, RTCCMIN, and RTCCHR

Time Reading Procedure of Real-Time Clock Mode 20.5.4

In real-time clock mode, read time data bits (1) when the BSY bit in the RTCSEC register is 0 (not while data is updated).

When reading multiple registers, if data is rewritten between reading registers, an errant time will be read.

In order to prevent this, use the reading procedure shown below.

Using an interrupt

Read necessary contents of time data bits in the real-time clock interrupt routine.

Monitoring by a program 1

Monitor the IR bit in the RTCTIC register by a program and read necessary contents of time data bits after the IR bit in the RTCTIC register becomes 1 (periodic interrupt request generated).

- Monitoring by a program 2
- (1)Monitor the BSY bit.
- (2)Monitor until the BSY bit becomes 0 after the BSY bit becomes 1 (the BSY bit is set to 1 for approximately 62.5 ms).
- (3)Read necessary contents of time data bits after the BSY bit becomes 0.
- Using read results if they are the same value twice
- (1)Read necessary contents of time data bits.
- (2) Read the same bit as (1) and compare the contents.
- (3)Recognize as the correct value if the contents match. If the contents do not match, repeat until the read contents match with the previous contents.

Also, when reading several registers, read them as continuously as possible.

Note:

1. Time data bits are shown below.

> Bits SC12 to SC10 and SC03 to SC00 in the RTCSEC register Bits MN12 to MN10 and MN03 to MN00 in the RTCMIN register Bits HR11 to HR10 and HR03 to HR00 in the RTCHR register Bits WK2 to WK0 in the RTCWK

The RTCPM bit in the RTCCR1 register

21. Pulse Width Modulator

Note •

The 80-pin package does not have pins P4_6 and P4_7. Use pins P9_3 and P9_4 for PWM0 and PWM1 output.

21.1 Introduction

The pulse width modulator (PWM) consists of two independent PWM circuits. Table 21.1 lists PWM Specification, Figure 21.1 shows Block Diagram of PWM, and Table 21.2 lists I/O Port.

Table 21.1 PWM Specification

Item	Specification
Resolution	8 bits
Count source	f1 divided by 2, 4, 8, or 16
PWM Cycle	
	$\frac{(2^8-1)\times(m+1)}{fj} \text{(Unit : s)}$ m: PWMPREi register setting value fj: Count source frequency (Unit : Hz)
High-level pulse width	
	$\frac{(m+1)\times n}{fj} \text{(Unit:s)}$ m: PWMPREi register setting value n: PWMREGi register setting value fj: Count source frequency (Unit: Hz)
Selectable function	Select output pin: P4 or P9

i = 0, 1

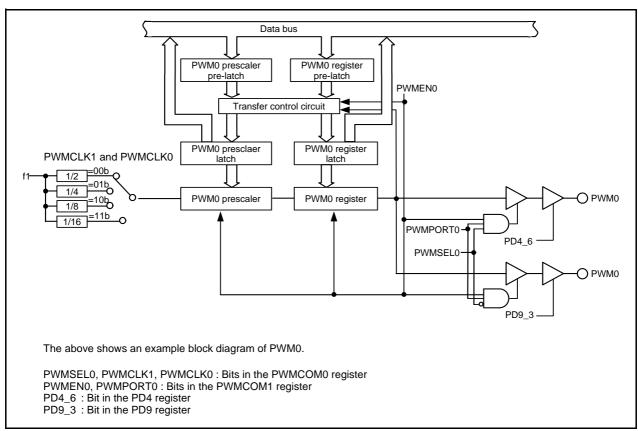
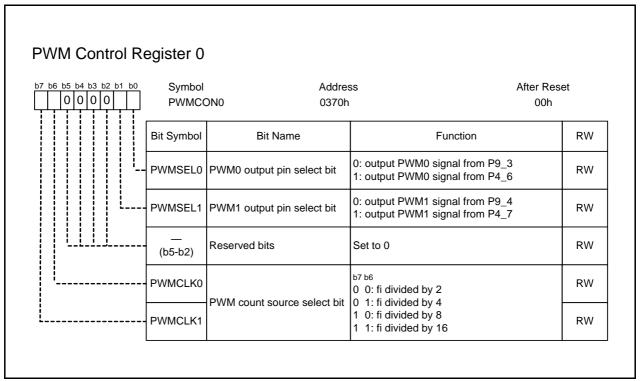


Figure 21.1 **Block Diagram of PWM**

Table 21.2 I/O Port

Port	I/O	Function
PWM0	O (1)	PWM output
PWM1		
N		

Note:


1. Set the direction bit corresponding to selected pin to 1 (output mode)

21.2 Registers

Table 21.3 Register Structure

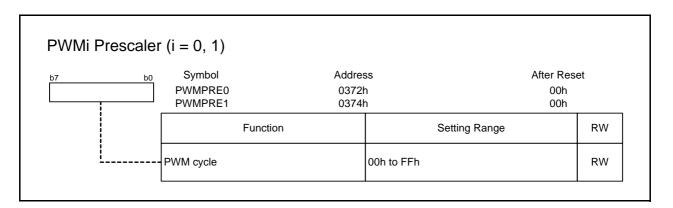
Address	Register Name	Symbol	After Reset
0370h	PWM Control Register 0	PWMCON0	00h
0372h	PWM0 Prescaler	PWMPRE0	00h
0373h	PWM0 Register	PWMREG0	00h
0374h	PWM1 Prescaler	PWMPRE1	00h
0375h	PWM1 Register	PWMREG1	00h
0376h	PWM Control Register 1	PWMCON1	00h

21.2.1 **PWM Control Register 0 (PWMCON0)**

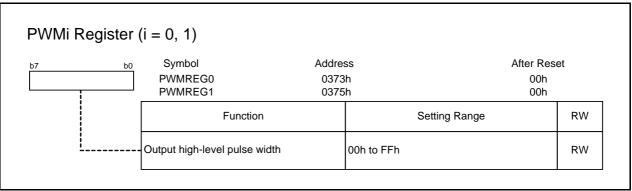
Set bits PWMSELi and PWMCLKi (i = 0, 1) in the PWMCON0 register when the PWMENi bit in the PWMCON1 register is 0 (PWMi output disabled).

PWMSEL0 (PWM0 Output Select Bit) (b0)

This bit select a PWM output pin. See Table 21.4 "PWM Pin and Bit Setting".


PWMSEL1 (PWM1 Output Select Bit) (b1)

This bit select a PWM output pin. See Table 21.4 "PWM Pin and Bit Setting".


PWMCLK1-PWMCLK0 (PWM Count Source Select Bit) (b7-b6)

Bits PWMCLK1 and PWMCLK0 select a count source for PWMi prescaler. Prescalers PWM0 and PWM1 share the same count source.

PWMi Prescaler (PWMPREi) (i = 0, 1) 21.2.2

PWMi Register (PWMREGi) (i = 0, 1) 21.2.3

The PWMi register (i = 0, 1) sets the PWMi cycle (i = 0, 1) and high-level pulse width. The PWM cycle and high-level pulse width are given by:

PWM cycle =
$$\frac{(2^8 - 1) \times (m + 1)}{f_j}$$
 (Unit : s)

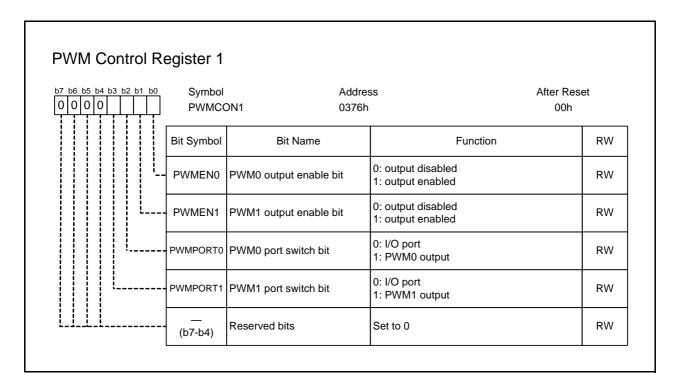
High level pulse width =
$$\frac{(m+1) \times n}{fi}$$
 (Unit:s)

fj: PWM count source frequency (Unit : Hz)

m: PWMPREi register setting

n: PWMREGi register setting

The written value in the PWMPREi register is written into the PWMi prescaler prelatch. The state in the PWMi prescaler prelatch cannot be read. At the beginning of the next PWM cycle, the PWMi prescalser prelatch value is transferred to the PWMi prescaler latch and the PWMi prescaler, and then the associated PWMi waveform is output. When reading the PWMPREi register, the state in the PWMi prescaler latch can be read. (See Figure 21.1 "Block Diagram of PWM")


The written value in the PWMREGi register is written into the PWMi register prelatch. The state in the PWMi register prelatch cannot be read. At the beginning of the next PWM cycle, the PWMi register prelatch value is transferred to the PWMi register latch and the PWMi register, and then the associated PWMi waveform is output. When reading the PWMREGi register, the state in the PWMi register latch

Therefore, the written value in registers PWMPREi and PWMREGi may differ from the values read from registers PWMPREi and PWMREGi.

Even if the PWMENi bit is set to 1 (PWMi output enabled) when the PWMPREi and PWMREGi register values are rewritten while the PWMENi bit in the PWMCON1 register is set to 0 (PWMi output disabled), the rewritten values are not reflected immediately. The values prior to the change are reflected for the first one cycle of PWM output. The values read from registers PWMPREi and PWMREGi during this cycle are the values prior to the change. When the second PWM cycle begins, the rewritten values should be read from registers PWMPREi and PWMREGi and the associated PWM waveform is output.

See 21.3.2 "Operation Example" for output waveforms and transfer timings.

21.2.4 **PWM Control Register 1 (PWMCON1)**

PWMEN0 (PWM0 Output Enable Bit) (b0)

The PWMEN0 bit is used to start PWM output. See Table 21.4 "PWM Pin and Bit Setting" for details.

PWMEN1 (PWM1 Output Enable Bit) (b1)

The PWMEN1 bit is used to start PWM output. See Table 21.4 "PWM Pin and Bit Setting" for details.

PWMPORT0 (PWM0 Port Switch Bit) (b2)

A PWM output pin can be selected. See Table 21.4 "PWM Pin and Bit Setting".

PWMPORT1 (PWM1 Port Switch Bit) (b3)

A PWM output pin can be selected. See Table 21.4 "PWM Pin and Bit Setting".

Table 21.4 PWM Pin and Bit Setting

Bit Setting			Pin Function or State				
PWMCON0 register	PWMCON1 i	register	i = 0		i = 1		
PWMSELi bit	PWMPORTi bit	PWMENi bit	P9_3 P9_4		P4_6	P4_7	
0	0 0 or 1 I/O port or pin for other peripheral function 1 (1) 0 PWM0 output level maintained (2)			I/O port or pin for other peripheral function			
		1	PWM0 pulse output		1		
1	0	0 or 1	or 1 I/O port or pin for other peripheral function		' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		
	1 (1)	0			PWM1 output level maintained (2)		
		1			PWM1 pulse	output	

i = 0, 1Notes:

- 1. Set the direction bit corresponding to selected pin to 1 (output mode).
- Even if the PWMENi bit is set from 1 to 0 during PWMi output, maintain the PWMi output remains unchanged. The PWM output signal is in the low-level state immediately after the MCU is reset.

21.3 **Operations**

21.3.1 **Setting Procedure**

Follow the procedures below to set the individual register in order to start PWMi (i = 0, 1) output. (all SFRs are assumed to be reset. Refer the register descriptions to access registers or bits.)

- (1) Write output data of the port corresponding to the pin for PWMi output to the P9 or P4 register. Then, set the direction bit for the corresponding port to 1 (output mode).
- (2) Set the PWMSELi bit in the PWMCON0 register to select a pin for PWMi output. Set the PWMCLKi bit to select the count source.
- (3) Set registers PWMPREi and PWMREGi to set the PWM cycle and high-level pulse width.
- (4) Set the PWMPORTi bit in the PWMCON1 register to 1 (PWMi function) and the PWMENi bit to 1 (PWM output enabled).

21.3.2 **Operation Example**

The values written to the PWMPREi and PWMREGi register during PWMi (i = 0, 1) output is not reflected until the next cycle of PWMi output begins.

The PWM output signal is in the low state immediately after the MCU is reset. Then the associated waveform output starts. The PWMi output level remains unchanged even if the PWMENi bit is changed from 1 (PWMi output enabled) to 0 (PWMi output disabled) during PWMi output. Registers PWMPREi and PWMREGi maintains the value before the PWMi output is disabled. When the PWMENi bit is set to 1 after registers PWMPREi and PWMREGi are rewritten during PWMi output disabled, the PWMPREi and PWMREGi register values prior to the change are reflected for the first cycle of PWM output. The rewritten register values are reflected in the following PWMi cycle. Figure 21.2 to Figure 21.4 shows PWMi output examples.

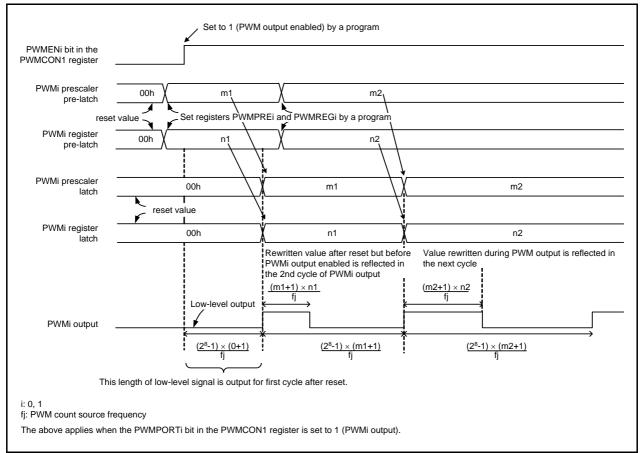


Figure 21.2 PWMi Output Example (after reset and during PWM output)

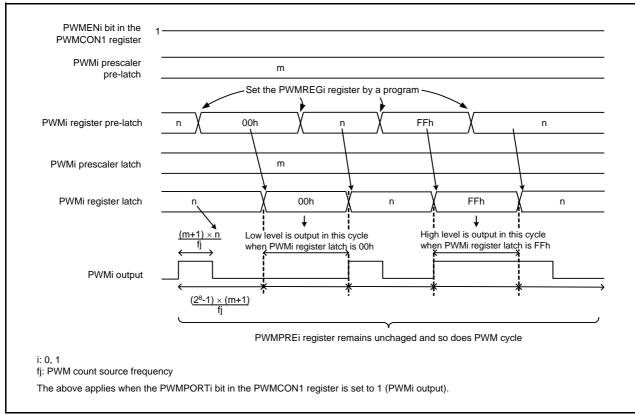


Figure 21.3 PWMi Output Example (Duty 0%, Duty 100%)

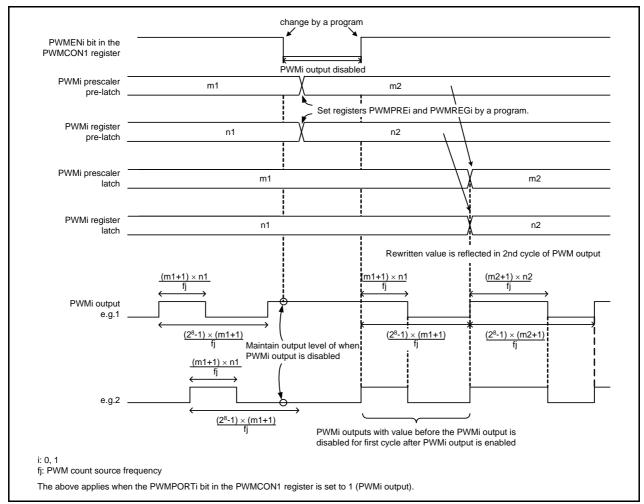


Figure 21.4 PWMi Output Example (PWM Output Disabled and PWM Output Resumed)

22. Remote Control Signal Receiver

Note -

The 80-pin package does not have the PMC1 pin. Use the PMC0 pin for external pulse input.

22.1 Introduction

Remote control signal receiver has two circuits for checking width and period of external pulse. Table 22.1 lists Remote Control Receiver Specifications, Figure 22.1 to Figure 22.3 show remote control signal receiver block diagram, and Table 22.2 lists Input/Output Pin.

Table 22.1 Remote Control Receiver Specifications

Item		Content			
l	item	PMC0 circuit	PMC1 circuit		
Count sources	Clock sources	One of the following	One of the following		
		•fC	•fC		
		•f1	•f1		
		Timer B2 underflow	Timer B1 underflow		
		Count source of PMC1	Timer B2 underflow		
	Division	No division, divided-by-8, divided	d-by-32, or divided-by-64		
Count operation		Increment			
Operation modes		Pattern match mode			
		Determines that external pulse	e matches specified pattern		
		Input capture mode			
		Measures width and period of	external pulse		
Pattern match	Detect patterns	Header			
mode		Data 0			
		Data 1			
		Special data			
	Receive buffer	6 bytes (48 bits)	None		
	Interrupt request	Receive error	Receive error		
	generation timing	Completion of data reception	Completion of data reception		
		Header match	Header match		
		Data 0/1 match	Data 0/1 match		
		Special data match			
		Receive buffer full			
		Compare match			
	Selectable functions	Input signal inversion			
		Digital filter			
Input capture	Measurement items	Pulse period (between rising e	edge and rising edge)		
mode		Pulse period (between falling e	• • • •		
		• Pulse width	3 3 7		
	Interrupt request	• Timer measurement			
	generation timing	Counter overflow			
	Selectable functions	Input signal inversion			
		Digital filter			
			or simultaneous count of two		
		 Individual count of two inputs or simultaneous count of two inputs 			

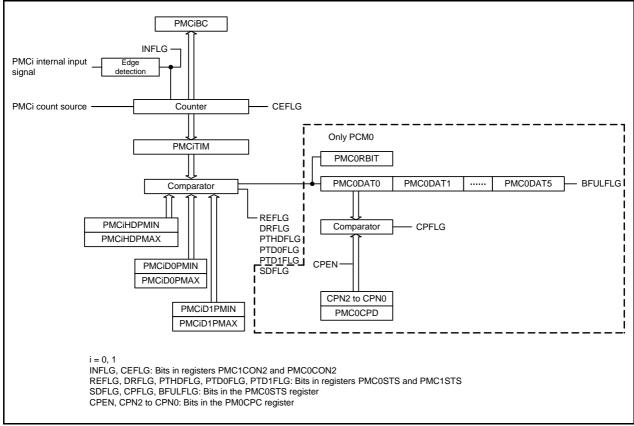


Figure 22.1 Remote Control Signal Receiver Block Diagram (1/3)

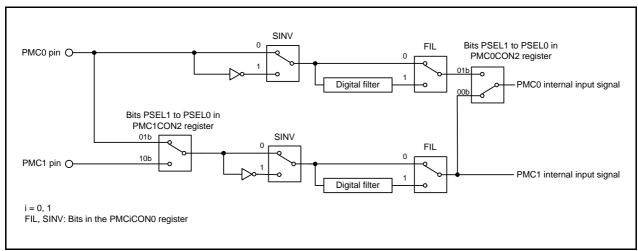
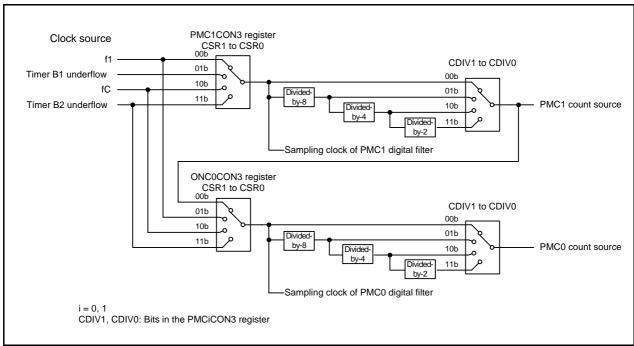



Figure 22.2 Remote Control Signal Receiver Block Diagram (2/3) (PMCi Input)

Remote Control Signal Receiver Block Diagram (3/3) (PMCi Count Source) Figure 22.3

Table 22.2 Input/Output Pin

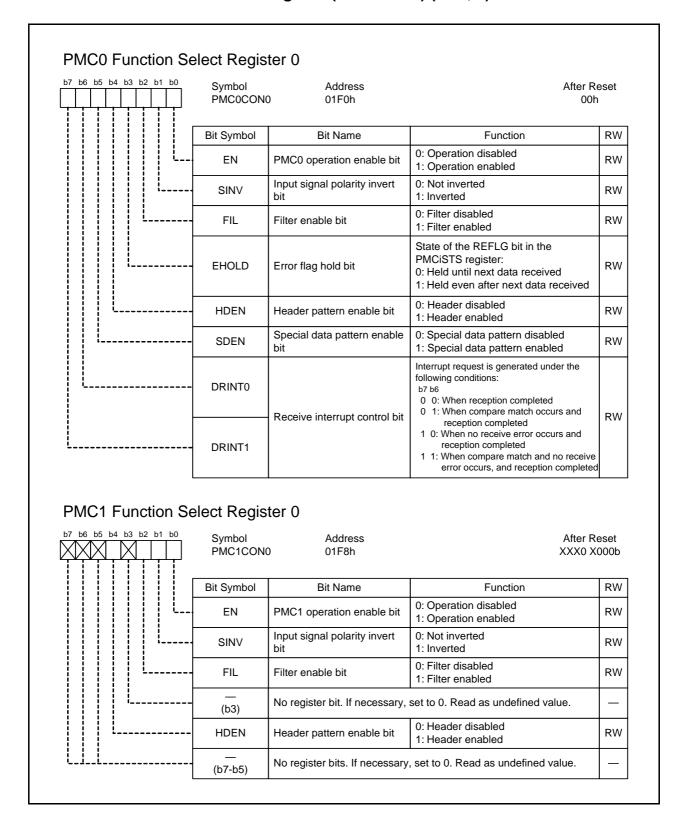
Pin Name	Input/Output	Function
PMC0	Input (1)	External pulse input
PMC1		

Note:

Set the port direction bits sharing pins to 0 (input mode).

Registers 22.2

Table 22.3 Register Structure (PMC0 Circuit)


Address	Register Name	Register Symbol	After Reset
01F0h	PMC0 Function Select Register 0	PMC0CON0	00h
01F1h	PMC0 Function Select Register 1	PMC0CON1	00XX 0000b
01F2h	PMC0 Function Select Register 2	PMC0CON2	00h
01F3h	PMC0 Function Select Register 3	PMC0CON3	00h
01F4h	PMC0 Status Register	PMC0STS	00h
01F5h	PMC0 Interrupt Source Select Register	PMC0INT	00h
01F6h	PMC0 Compare Control Register	PMC0CPC	XXX0 X000b
01F7h	PMC0 Compare Data Register	PMC0CPD	00h
D080h	PMC0 Header Pattern Set Register (Min)	PMC0HDPMIN	00h
D081h			XXXX X000b
D082h	PMC0 Header Pattern Set Register (Max)	PMC0HDPMAX	00h
D083h			XXXX X000b
D084h	PMC0 Data0 Pattern Set Register (Min)	PMC0D0PMIN	00h
D085h	PMC0 Data0 Pattern Set Register (Max)	PMC0D0PMAX	00h
D086h	PMC0 Data1 Pattern Set Register (Min)	PMC0D1PMIN	00h
D087h	PMC0 Data1 Pattern Set Register (Max)	PMC0D1PMAX	00h
D088h	PMC0 Measurements Register	PMC0TIM	0000h
D089h			
D08Ah	PMC0 Counter Value Register	PMC0BC	0000h
D08Bh			
D08Ch	PMC0 Receive Data Store Register 0	PMC0DAT0	00h
D08Dh	PMC0 Receive Data Store Register 1	PMC0DAT1	00h
D08Eh	PMC0 Receive Data Store Register 2	PMC0DAT2	00h
D08Fh	PMC0 Receive Data Store Register 3	PMC0DAT3	00h
D090h	PMC0 Receive Data Store Register 4	PMC0DAT4	00h
D091h	PMC0 Receive Data Store Register 5	PMC0DAT5	00h
D092h	PMC0 Receive Bit Count Register	PMC0RBIT	XX00 0000b

Register Structure (PMC1 Circuit) Table 22.4

Address	Register Name	Register Symbol	After Reset
01F8h	PMC1 Function Select Register 0	PMC1CON0	XXX0 X000b
01F9h	PMC1 Function Select Register 1	PMC1CON1	XXXX 0X00b
01FAh	PMC1 Function Select Register 2	PMC1CON2	00h
01FBh	PMC1 Function Select Register 3	PMC1CON3	00h
01FCh	PMC1 Status Register	PMC1STS	X000 X00Xb
01FDh	PMC1 Interrupt Source Select Register	PMC1INT	X000 X00Xb
D094h	PMC1 Hedder Pattern Set Register (Min)	PMC1HDPMIN	00h
D095h			XXXX X000b
D096h	PMC1 Header Pattern Set Register (Max)	PMC1HDPMAX	00h
D097h			XXXX X000b
D098h	PMC1 Data0 Pattern Set Register (Min)	PMC1D0PMIN	00h
D099h	PMC1 Data0 Pattern Set Register (Max)	PMC1D0PMAX	00h
D09Ah	PMC1 Data1 Pattern Set Register (Min)	PMC1D1PMIN	00h
D09Bh	PMC1 Data1 Pattern Set Register (Max)	PMC1D1PMAX	00h
D09Ch	PMC1 Measurements Register	PMC1TIM	00h
D09Dh			00h
D09Eh	PMC1 Counter Value Register	PMC1BC	00h
D09Fh			00h

Under development

PMCi Function Select Register (PMCiCON0) (i = 0, 1) 22.2.1

EN (PMC0 Operation Enable Bit) (b0)

The EN bit is used to control start/stop of PMCi operation. Confirm that the operation has started or stopped by the ENFLG bit in the PMCiCON2 register.

EHOLD (Error Flag Hold Bit) (b3)

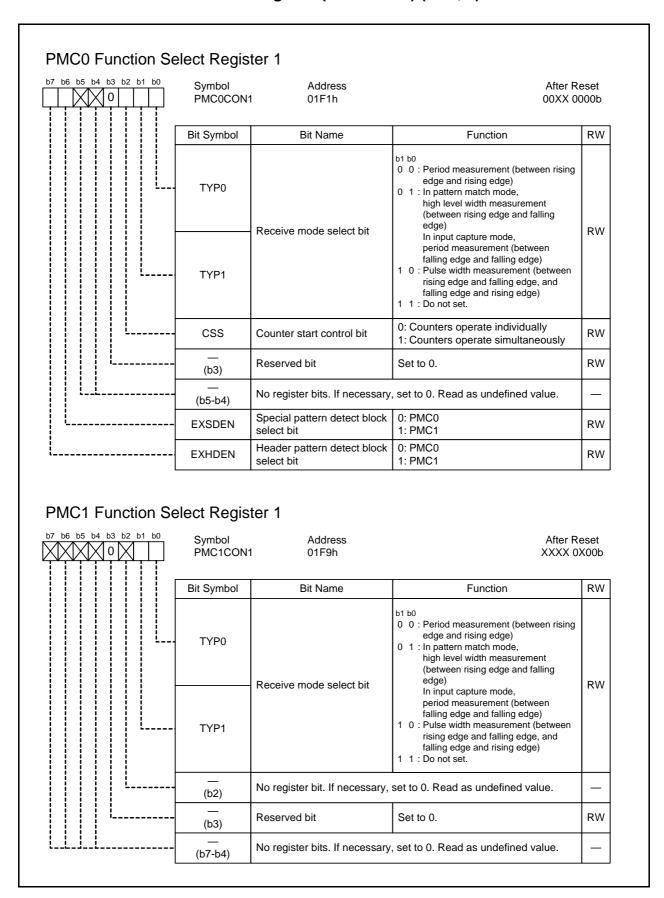
When receive error occurs, period when the REFLG bit in the PMC0STS register holds 1 (receive error) can be selected. Refer to "REFLG (Receive Error Flag) (b1)" in 22.2.5 "PMCi Status Register (PMCiSTS) (i = 0, 1)" for details.

HDEN (Header Pattern Enable Bit) (b4)

If the HDEN bit is set to 1 (header enabled), the following occur when detecting data 0, data 1, or special data before detecting header.

- The REFLG bit in the PMCiSTS register becomes 1 (error occurs)
- Bits PTD0FLG, PTD1FLG, and SDFLG in the PMCiSTS register remain unchanged.
- Registers PMCDAT0 to PMCDAT5 remain unchanged.

DRINT1-DRINT0 (Receive Interrupt Control Bit) (b7-b6)

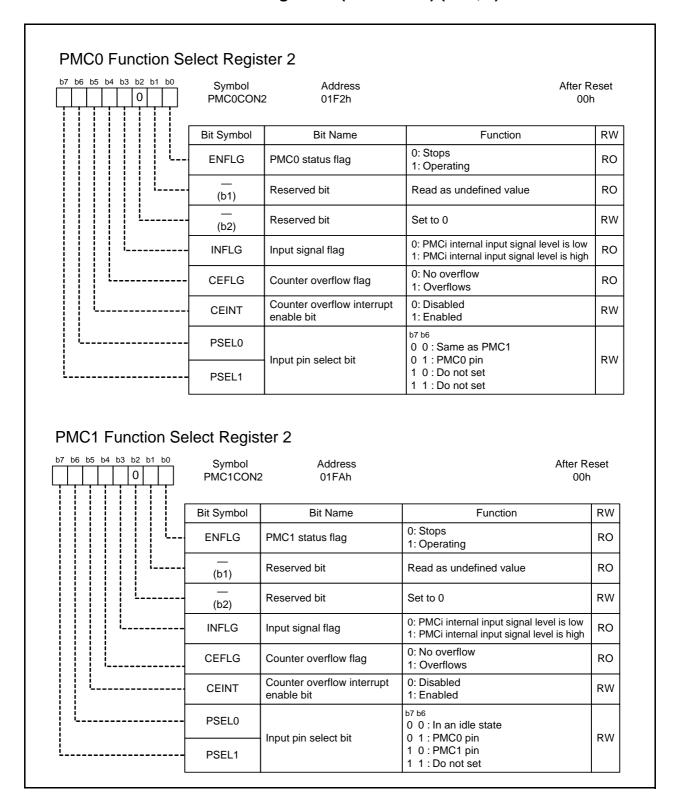

A condition for generating a data reception complete interrupt request can be selected.

Set the DRINT bit in the PMC0INT register to 1 (reception complete interrupt enabled) after setting bits DRINT1 to DRINT0.

When setting the DRINT1 bit to 1, set the EHOLD bit in the PMC0CON0 register to 1 (hold the REFLG bit state after next data received).

Under development

PMCi Function Select Register (PMCiCON1) (i = 0, 1) 22.2.2



EXSDEN (Special Pattern Detect Block Select Bit) (b6) EXHDEN (Header Pattern Detect Block Select Bit) (b7)

Use these bits when PMC0 and PMC1 are linked and operated in pattern match mode. Otherwise, set

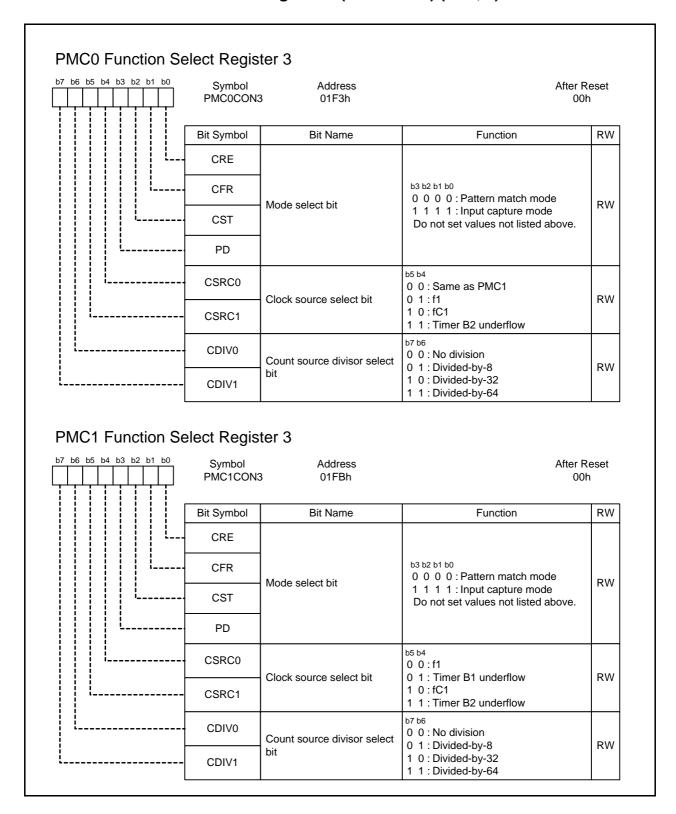
Set bits EXHDEN and EXSDEN to 01b or 10b when setting the HDEN bit in the PMC0CON0 register to 1 (header enabled) and SDEN bit to 1 (special data enabled).

PMCi Function Select Register 2 (PMCiCON2) (i = 0, 1) 22.2.3

CEFLG (Counter Overflow Flag) (b4)

Condition to become 0:

- The EN bit is 0 (PMCi operation stops)
- Measurement timing selected by bits TYP1 to TYP0 in the PMCiCON1 register

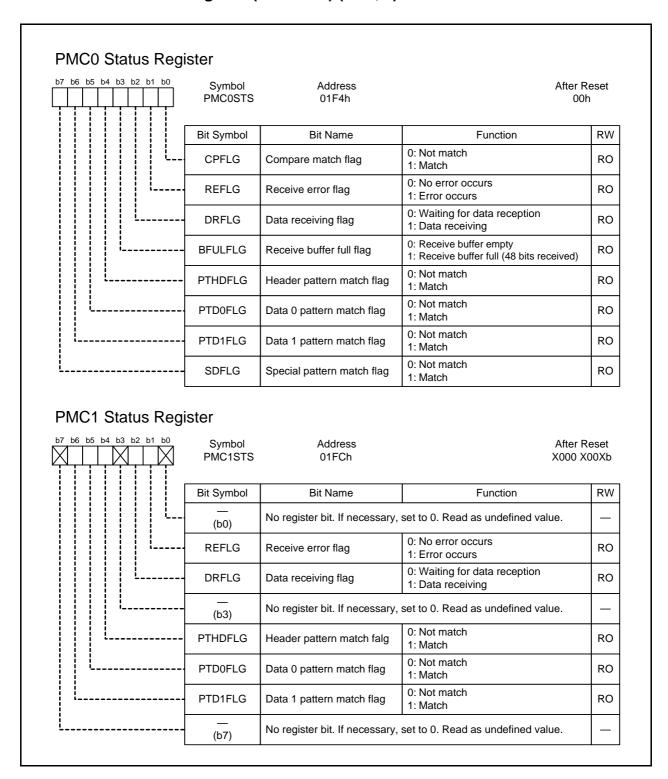

Condition to become 1:

• The first counter overflow (the value exceeds FFFFh)

PSEL1-PSEL0 (Input Pin Select Bit) (b7-b6)

Change these bits when the EN bit in the PMCiCON0 register and the ENFLG bit in the PMCiCON2 register are both 0 (PMCi stops).

22.2.4 PMCi Function Select Register 3 (PMCiCON3) (i = 0, 1)



CDIV1-CDIV0 (Clock Source Select Bit) (b5-b4)

When bits CSCR1 to CSCR0 in the PMC0CON3 register is set to 00b (same as PMC1), set bits CDIV1 to CDIV0 in the PMC0CON3 register to 00b (no division).

Under development

22.2.5 PMCi Status Register (PMCiSTS) (i = 0, 1)

CPFLG (Compare Match Flag) (b0)

This bit is valid when the CPEN bit in the PMC0CPC register is set to 1 (compare enabled). Condition to become 0:

- When the DRFLG bit in the PMC0STS register changes from 0 to 1 (next frame reception starts).
- When the 48th bit is received after the CPFLG bit becomes 1, and then (the DRFLG bit remains 1 (receiving)) no compare match occurs after receiving bit n (n = value set by bits CPN2 to CPN0 in the PMC0CPC register)

Condition to become 1:

 The PMC0CPD register matches the PMC0DAT0 register (when the setting value of bits CPN2 to CPN0 in the PMC0CPC register is n, bits n to 0 in the PMC0CPD register matches bits n to 0 in the PMC0DAT0 register).

REFLG (Receive Error Flag) (b1)

The REFLG bit is a flag indicating receive error. Conditions for changing the REFLG bit are affected by the HDEN bit in the PMCiCOM0 register and bits EHOLD and SDEN in the PMC0COM0 register. Table 22.5 lists Conditions for Changing the REFLG Bit.

Table 22.5 Conditions for Changing the REFLG Bit

Bit Se	etting (1) Conditions for Changing the REFLG Bit		Conditions for Changing the REFLG bit	
EHOLD	HDEN	to 1 ⁽²⁾	to 0 (2)(3)	
0	0	Input signal width is neither data 0 nor	Receive data 0 or data 1 (or special	
		data 1 (special data)	data)	
0	1	 Input signal width is none of header, 	Receive header	
		data 0, or data 1 (special data)	Receive header prior to data 0 or data	
		Detect data 0 or data 1 (or special	1 (or special data)	
		data) prior to header		
1	0	Input signal width is neither data 0 nor	-	
		data 1 (special data)		
1	1	• Input signal width is none of header,	Receive header	
		data 0, or data 1 (special data)		
		Detect data 0 or data1 (or special data)		
		prior to header		

EHOLD: Bit in the PMC0COM0 register

HDEN: Bit in the PMCiCOM0 register (i = 0, 1)

Notes:

- 1. Refer to EHOLD = 0 when operating PMC1 individually.
- 2. Special data is added to the conditions when the SDEN bit in the PMC0COM0 register is 1 (special data enabled)
- 3. The REFLG bit becomes 0 regardless of bits HEDN and EHOLD under the following conditions:
 - •EN bit is 0 (PMCi stops)
 - •The DRFLG bit in the PMCiSTS register changes from 0 to 1 (next frame reception starts)

DRFLG (Data Receiving Flag) (b2)

The DRFLG bit indicates the receiving state of the remote control signal.

Condition to become 0:

 The counter value is larger than values of registers PMCiHDPMAX, PMCiD0PMAX, and PMCiD1PMAX (if the counter value is larger than these register values, this bit becomes 0 after waiting for 1 to 2 cycles of the count source).

Condition to become 1:

It depends on bits TYP1 to TYP0 in the PMCiCON1 register (receive mode select).

- When bits TYP1 to TYP0 are 00b (pulse period measurement) or 01b (high level width measurement):
 - rising edge of the PMCi internal input signal
- When bits TYP1 to TYP0 are 10b (pulse width measurement): rising edge and falling edge of the PMCi internal input signal

BFULFLG (Receive Buffer Full Flag) (b3)

Condition to become 0:

• The value of the PMC0RBIT register changes from 48 to 1.

Condition to become 1:

• The value of the PMC0RBIT register is 48.

PTHDFLG (Header Pattern Match Flag) (b4),

PTD0FLG (Data 0 Pattern Match Flag) (b5).

PTD1FLG (Data 1 Pattern Match Flag) (b6),

SDFLG (Special Pattern Match Flag) (b7)

Condition to become 0:

- The EN bit is 0 (PMCi stops)
- DRFLG bit in the PMCiSTS register changes from 0 to 1 (next frame reception starts)
- Refer to Table 22.6 "Measurements and Flag".

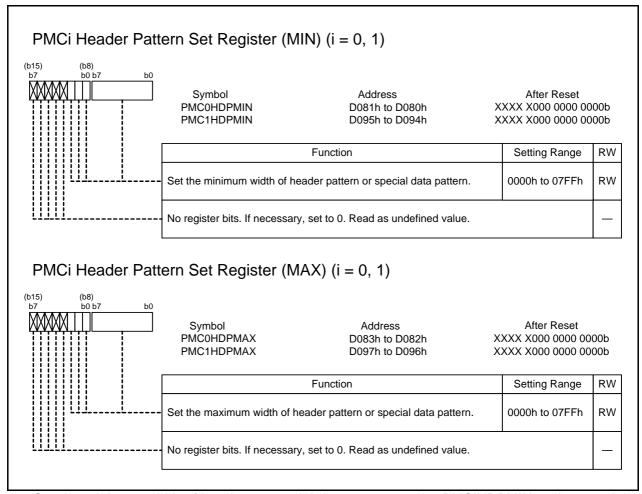
Condition to become 1:

Refer to Table 22.6 "Measurements and Flag".

Table 22.6 Measurements and Flag


Value (Measurements) of the PMCiTIM Register	Flag				
value (Measurements) of the FMOTTIM Register	PTHDFLG	PTD0FLG	PTD1FLG	SDFLG	
Between PMCiHDPMIN and PMCiHDPMAX	1	0	0	0	
(header measurement in PMCi)	'	U	U	U	
Between PMCiD0PMIN and PMCiD0PMAX	0	1 (1)	0	0	
Between PMCiD1PMIN and PMCiD1PMAX	0	0	1 (1)	0	
Between PMCiHDPMIN and PMCiHDPMAX	0	0	0	1 (1)	
(special data measurement in PMCi)		U	U	1 (1)	
Other than those above	0	0	0	0	

Note:

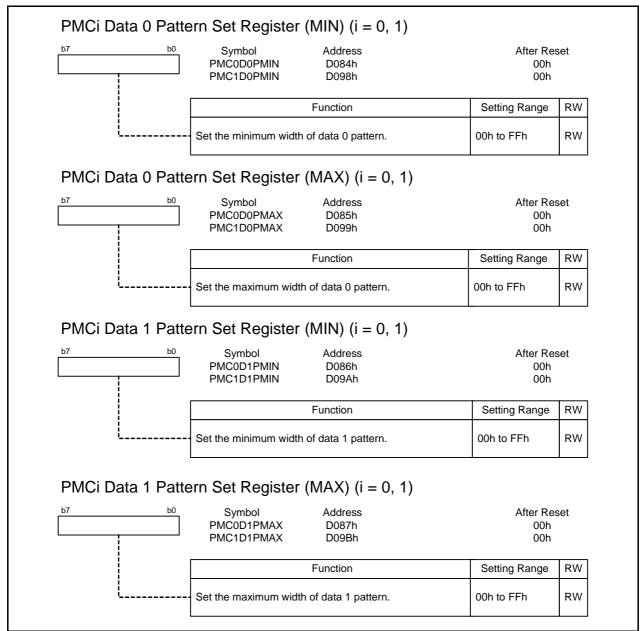

When the HDEN bit in the PMCiCON0 register is 1(header enabled), PTD0FLG, PTD1FLG, and SDFLG remain unchanged until header is detected.

Under development

PMCi Interrupt Source Register (PMCiINT) (i = 0, 1) 22.2.6

PMCi Header Pattern Set Register (MIN) (PMCiHDPMIN) (i = 0, 1) 22.2.7 PMCi Header Pattern Set Register (MAX) (PMCiHDPMAX) (i = 0, 1)

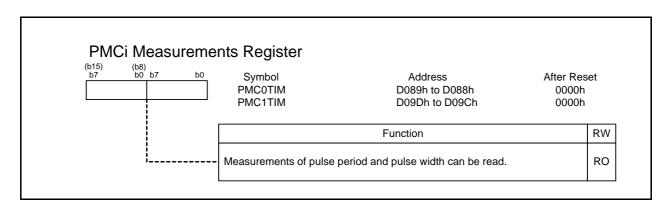
Set the minimum width of header or special data pattern to the PMCiHDPMIN register and the maximum width to the PMCiHDPMAX.

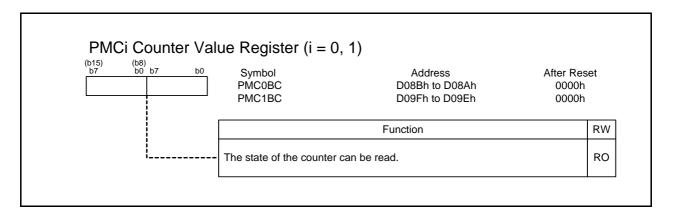

Set the different value from data 0 or data 1 to these register.

Set the following: PMCiHDPMIN register value < PMCiHDPMAX register value.

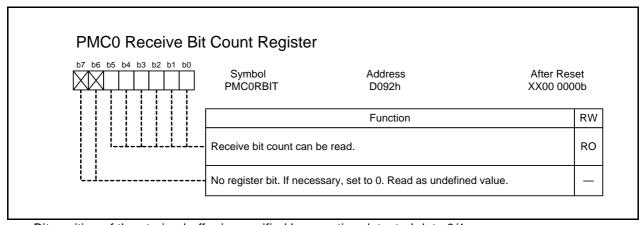
When not using header or special data detection, set registers PMCiHDPMIN and PMCiHDPMAX to 0000h.

PMCi Data 0 Pattern Set Register (MAX) (PMCiD0PMAX) (i = 0, 1) PMCi Data 1 Pattern Set Register (MIN) (PMCiD1PMIN) (i = 0, 1)


PMCi Data 1 Pattern Set Register (MAX) (PMCiD1PMAX) (i = 0, 1)

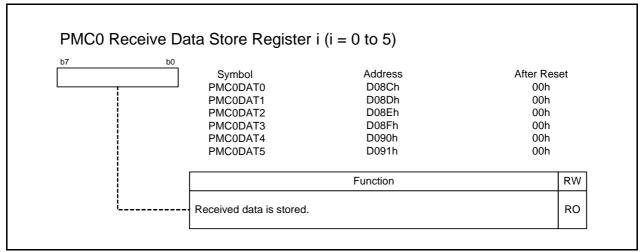

Set the minimum width of data 0 pattern to the PMCiD0PMIN register and the maximum width to the PMCiD0PMAX register. Also set the minimum width of data 1 pattern to the PMCiD1PMIN register and the maximum width to the PMCiD1PMAX register.

minimum width (maximum width) of data 0/1 pattern Setting value n = count source


Data 0, data 1, and header or special data pattern must be the different values. Set the following: PMCiD0PMIN register value < PMCiD0PMAX register value, and PMCiD1PMIN < PMCiD1PMAX. When not detecting data 0, registers PMCiD0PMIN and PMCiD0PMAX to 00h. When not detecting data 1, registers PMCiD1PMIN and PMCiD1PMAX to 00h.

22.2.10 PMCi Counter Value Register (PMCiBC) (i = 0, 1)

22.2.11 PMC0 Receive Bit Count Register (PMC0RBIT)



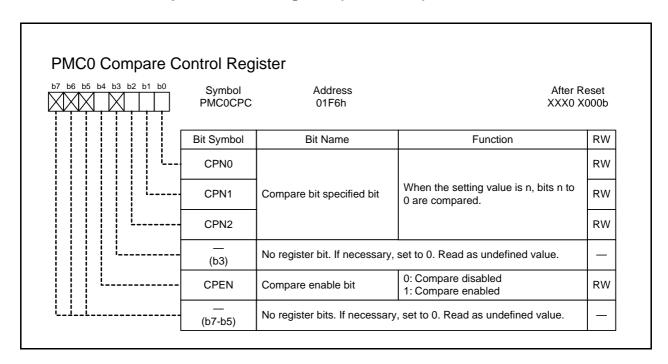
Bit position of the storing buffer is specified by counting detected data 0/1.

When the receive bit count exceeds 48, it returns 1. Header and special data are not counted.

When the DRFLG bit in the PMC0STS register changes from 0 to 1, the PMC0RBIT register becomes 0.

22.2.12 PMC0 Receive Data Store Register i (PMC0DATi) (i = 0 to 5)

When detecting data 0 or data 1, the result is stored bit by bit according to the PMC0RBIT register. The data is stored into the PMC0DATi register starting from the bit 0 in the PMC0DAT0 register. Table 22.7 lists Order of Storing Data.


When the data exceeds 48 bits, the PMC0DATi register is sequentially overwritten from the first bit in the PMC0DAT0 register. Also, after the DRFLG bit in the PMCiSTS register changes from 0 to 1 (next frame reception starts), the PMC0DATi register is sequentially overwritten from the first bit in the PMC0DAT0 register.

Header and special data are not stored.

Order of Storing Data Table 22.7

Register	b7	b6	b5	b4	b3	b2	b1	b0
PMC0DAT0	8	7	6	5	4	3	2	1
PMC0DAT1	16	15	14	13	12	11	10	9
PMC0DAT2	24	23	22	21	20	19	18	17
PMC0DAT3	32	31	30	29	28	27	26	25
PMC0DAT4	40	39	38	37	36	35	34	33
PMC0DAT5	48	47	46	45	44	43	42	41

22.2.13 PMC0 Compare Control Register (PMC0CPC)

CPN2-CPN0 (Compare Bit Specified Bit) (b2-b0)

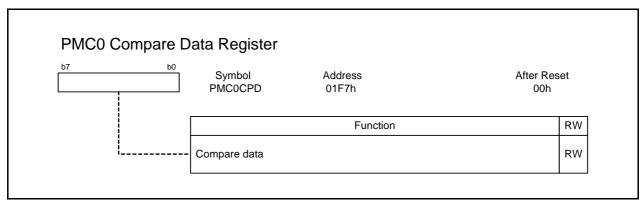
These bits are valid when the CPEN bit is 1 (compare enabled).

When the setting value of bits CPN2 to CPN0 is n, bits n to 0 are compared.

e.g.1 Setting value = 0

Bit 0 in the PMC0CPD register and bit 0 in the PMC0DAT0 register are compared.

e.g.2 Setting value = 7


Bits 7 to 0 in the PMC0CPD register and bits 7 to 0 in the PMC0DAT0 register are compared.

CPEN (Compare Enable Bit) (b4)

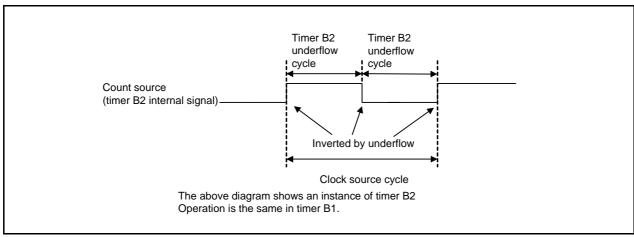
When the CPEN bit is 1 (compare enabled), contents of registers PMC0CPD and PMC0DAT0 are compared.

The contents are matched, the CPFLG bit in the PMC0STS register becomes 1 (compare match).

22.2.14 PMC0 Compare Data Register (PMC0CPD)

This register is valid when the CPEN bit in the PMC0CPC register is 1 (compare enabled). Bits to be compared are selected by bits CPN2 to CPN0 in the PMC0CPC register.

22.3 **Operations**


22.3.1 **Common Operations in Multiple Modes**

22.3.1.1 **Count Source**

Clock source and divisor of the count source can be selected by bits CSRC1 to CSRC0 and bits CDIV1 to CDIV0 in the PMCiCON3 register (Refer to Figure 22.3 "Remote Control Signal Receiver Block Diagram (3/3) (PMCi Count Source)").

When using fC, set the PM25 bit in the PM2 register to 1 (peripheral clock fC provided). Refer to 8. "Clock Generator" for details of fC.

When using timer B1 or B2 underflow, the internal signal of a timer B1 or B2 is inverted every time the timer B1 or B2 underflows. This internal signal is the count source. One cycle of the count source consists of two timer B1 or B2 underflow cycles. Figure 22.4 shows Clock Source When Selecting Timer B1 or B2 Underflow. Use the timer B1 or B2 in timer mode. Refer to 18. "Timer B" for details.

Clock Source When Selecting Timer B1 or B2 Underflow

To use the same count source in PMC0 and PMC1, set bits CSRC1 to CSRC0 in the PMC0CON3 register to 00b (same count source as PMC1), and bits CDIV1 to CDIV0 in the PMC0CON3 register to 00b (no division).

PMCi Input 22.3.1.2

The following can be selected in PMCi input (Refer to Figure 22.2 "Remote Control Signal Receiver Block Diagram (2/3) (PMCi Input)").

- Input pin
- Input polarity
- Digital filter

A pin to which the PMCi signal is input is selected by bits PSEL1 to PSEL0 in the PMCiCON2 register.

Input polarity of the PMCi pin can be inverted. Whether to invert or not can be selected by the SINV bit in the PMCiCON0 register.

If the signal input to the PMCi pin holds the same level four sequential cycles when the FIL bit in the PMCiCON0 register is 1 (digital filter enabled), that level is transferred to internal circuit. Sampling clock of the digital filter is the count source.

Input to the PMCi pin is transferred to the internal circuit in synchronization with the count source. Internal processing causes delay. Figure 22.5 shows PMCi Input Delay.

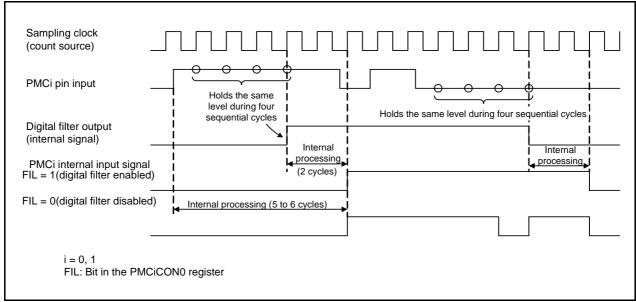


Figure 22.5 PMCi Input Delay

22.3.2 Pattern Match Mode (PMC0 and PMC1 Operate Individually)

Pattern match mode determines whether external pulse matches specified pattern. Header, data 0, and data 1 patterns can be measured in PMC0 and PMC1 separately.

Table 22.8 lists Specifications in Pattern Match Mode (Individual Operation), Table 22.9 and Table 22.10 list registers and setting values in pattern match mode (individual operation), Figure 22.6 shows Difference of Operations in Receive Modes (Pattern Match Mode), and Figure 22.7 shows Flag Operation Example.

Table 22.8 Specifications in Pattern Match Mode (Individual Operation)

Item		Contents			
		PMC0 Circuit	PMC1 Circuit		
Count Clock		One of the following:	One of the following:		
sources	sources	•fC	•fC		
		•f1	•f1		
		Timer B2 underflow	Timer B1 underflow		
		Count source of PMC1	• Timer B2 underflow		
	Division	No division, divided-by-8, divided-b	y-32, or divided-by-64		
Count opera	ation	Increment			
Detect patte	erns	Header or special data	Header		
		Data 0	Data 0		
		Data 1	Data 1		
Receive but	ffer	6 bytes (48 bits)	None		
Interrupt red	quest generation	Receive error	Receive error		
timing		Completion of data reception	 Completion of data reception 		
		Header match	Header match		
		Data 0/1 match	Data 0/1 match		
		Special data match			
		Receive buffer full			
		Compare match			
Selectable f	unctions	• Input signal inversion			
		Digital filter			

Registers and Setting Values in Pattern Match Mode (Individual Operation) (1/2) **Table 22.9**

Pegister	Bit	Fun	Function			
Register	DIL	PMC0	PMC1			
PMCiCON0	EN	1	1			
	SINV	Select input signal polarity	Select input signal polarity			
	FIL	Select filter enabled or	Select filter enabled or			
		disabled	disabled			
	EHOLD	Select receive error holding	-			
		period				
	HDEN	Select header enabled or	Select header enabled or			
		disabled	disabled			
	SDEN	Select special data enabled or disabled	-			
	DRINT0	Select receive interrupt	-			
	DRINT1	generating condition				
PMCiCON1	TYP0	Select measuring object	Select measuring object			
	TYP1		3 . ,			
	CSS	0	-			
	EXSDEN	0	-			
	EXHDEN	0	-			
PMCiCON2	ENFLG	Flag indicating PMCi operated/	Flag indicating PMCi operated/			
		stopped	stopped			
	INFLG	Input signal flag	Input signal flag			
	CEFLG	Not used	Not used			
	CEINT	0	0			
	PSEL0	01b	Select input pin			
	PSEL1					
PMCiCON3	CRE	0	0			
	CFR	0	0			
	CST	0	0			
	PD	0	0			
	CSRC0	Select clock source	Select clock source			
	CSRC1					
	CDIV0	Select count source divisor	Select count source divisor			
	CDIV1					
PMCiSTS	CPFLG	Compare match flag	-			
	REFLG	Receive error flag	Receive error flag			
	DRFLG	Data receiving flag	Data receiving flag			
	BFULFLG	Receive buffer full flag	-			
	PTHDFLG	Header pattern match flag	Header pattern match flag			
	PTD0FLG	Data 0 pattern match flag	Data 0 pattern match flag			
	PTD1FLG	Data 1 pattern match flag	Data 1 pattern match flag			
	SDFLG	Special pattern match flag	-			

i = 0, 1

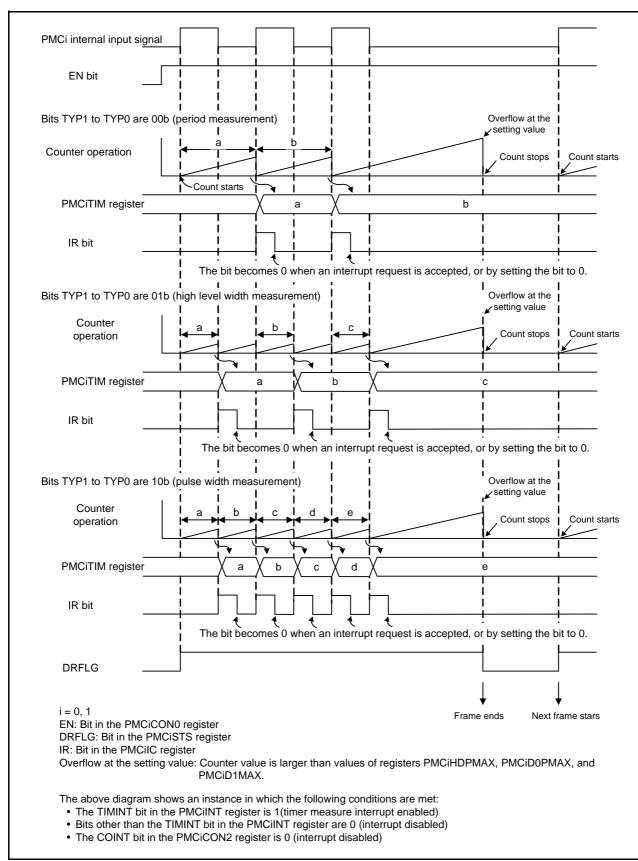

^{-:} No register bits in PMC1

Table 22.10 Registers and Setting Values in Pattern Match Mode (Individual Operation) (2/2)

Register	Bit	Function		
		PMC0	PMC1	
PMCiINT	CPINT	Set to 1 when using compare	-	
		match flag interrupt		
	REINT	Set to 1 when using receive	Set to 1 when using receive	
		error flag interrupt	error flag interrupt	
	DRINT	Set to 1 when using data	Set to 1 when using data	
		reception complete interrupt	reception complete interrupt	
	BFULINT	Set to 1 when using receive	-	
	DTUDINT	buffer full flag interrupt	Out to 4. hours also have to	
1	PTHDINT	Set to 1 when using header	Set to 1 when using header	
	DTDINT	match flag interrupt	match flag interrupt	
	PTDINT	Set to 1 when using data 0/1 match flag interrupt	Set to 1 when using data 0/1 match flag interrupt	
	TIMINT			
	I IIVIIIN I	Set to 1 when using timer measure interrupt	Set to 1 when using timer measure interrupt	
	SDINT	Set to 1 when using special	measure interrupt	
	SUINT	data match flag interrupt	-	
PMCiCPC	CPN0	Select bits to be compared	_	
1 MOIOI O	CPN1	when using compare function		
	CPN2			
	CPEN	Set to 1 when using compare	_	
	OFLIN	function		
PMCiCPD	0 to 7	Set compare value when using	_	
1 WOOD B		compare function		
PMCiHDPMIN	0 to 10	Set minimum value of header	Set minimum value of header	
		pattern	pattern	
PMCiHDPMAX	0 to 10	Set maximum value of header	Set maximum value of header	
		pattern	pattern	
PMCiD0PMIN	0 to 7	Set minimum value of data 0	Set minimum value of data 0	
		pattern	pattern	
PMCiD0PMAX	0 to 7	Set maximum value of data 0	Set maximum value of data 0	
		pattern	pattern	
PMCiD1PMIN	0 to 7	Set minimum value of data 1	Set minimum value of data 1	
		pattern	pattern	
PMCiD1PMAX	0 to 7	Set maximum value of data 1	Set maximum value of data 1	
		pattern	pattern	
PMCiTIM	0 to 15	Measured value of pulse	Measured value of pulse	
		period or width can be read	period or width can be read	
PMCiBC	0 to 15	Counter value can be read	Counter value can be read	
PMCiDAT0 to	0 to 7	Received data can be read	-	
PMCiDAT5				
PMC0RBIT	0 to 5	Received bit count can be read	-	

i = 0, 1

^{-:} No register bit in PMC1

Difference of Operations in Receive Modes (Pattern Match Mode)

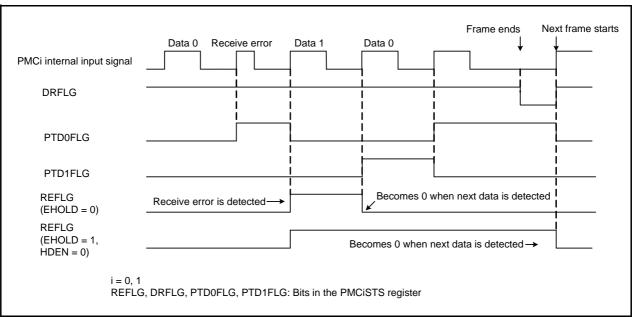


Figure 22.7 Flag Operation Example

22.3.2.1 **Header Detection (PMC0, PMC1)**

When the HDEN bit in the PMCiCON0 register is 1 (header enabled), the following occur by detecting data 0, data 1, or special data prior to header.

- The REFLG bit in the PMCiSTS register becomes 1 (error occurs).
- Bits PTD0FLG, PTD1FLG, and SDFLG in the PMCiSTS register remain unchanged.
- Registers PMCDAT0 to PMCDAT5 remain unchanged.

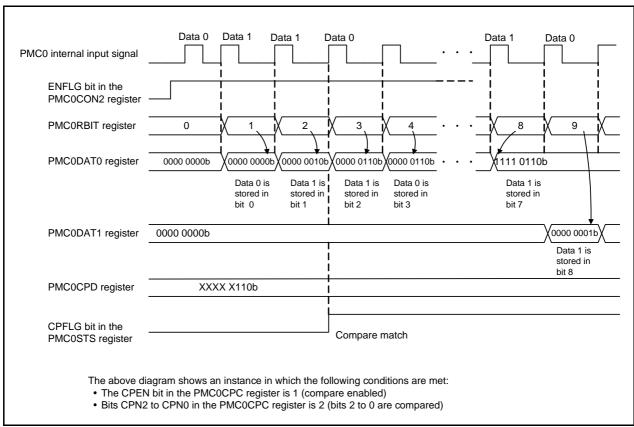
When detecting header in PMC0, set the SDEN bit in the PMC0CON0 register to 0 (special data disabled).

22.3.2.2 **Special Data Detection (PMC0)**

When the SDEN bit in the PMC0COM0 register is 1 (special data enabled), special data can be detected. When detecting the special data, set the HDEN bit in the PMC0CON0 register to 0 (header disabled).

22.3.2.3 Receive Data Buffer (PMC0)

There is a 6-byte (48-bit) buffer for storing received data. When the data exceeds 48 bits, the buffer is sequentially overwritten from the first bit. Refer to 22.2.12 "PMC0 Receive Data Store Register i (PMC0DATi) (i = 0 to 5)" and 22.2.11 "PMC0 Receive Bit Count Register (PMC0RBIT)".


Compare Function (PMC0) 22.3.2.4

Contents of registers PMC0CPD and PMCDAT0 are compared. Reception of the specific data which is 1 to 8 bits can be detected.

When using compare function, follow the instructions below:

- The CPEN bit in the PMC0CPC register: 1 (compare enabled)
- Select bits to be compared by bits CPN2 to CPN0 in the PMC0CPC register (when setting value is n, bits n to 0 are compared. n: 0 to 7)
- Set the compare data in the PMC0CPD register

The contents which have been compared are matched, the CPFLG bit in the PMC0STS register becomes 1 (compare match).

Receive Buffer and Compare Function Figure 22.8

22.3.3 Pattern Match Mode (Connected Operation of PMC0 and PMC1)

PMC0 and PMC1 is connected and one remote control signal can be received. In connected operation, data 0 and data 1 are detected in PMC1. Whether to detect header and special data in PMC0 or PMC 1 can be selected. Select count source and remote control signal input pins in PMC1.

Table 22.11 lists Specifications in Pattern Match Mode (Connected Operation) and Figure 22.1 and Figure 22.2 shows registers and setting values in pattern match mode (connected operation).

Specifications in Pattern Match Mode (Connected Operation) Table 22.11

ltem		C	ontent
	цеш	PMC0 Circuit	PMC1 Circuit
Count	Clock sources	Count source of PMC1	One of the following:
sources			•fC
			•f1
			• Timer B1 underflow
			• Timer B2 underflow
	Division	No division	No division, divided-by-8, divided-
			by-32, or divided-by-64
Count ope	ration	Increment	
Detect pat	terns	• Header	• Header
		Data 0	
		Data 1	
		Special data	Special data
Receive b	uffer	6 bytes (48 bits)	None
Interrupt request generation		Receive error	Not used
timing		 Completion of data reception 	
		Header match	
		Data 0/1 match	
		Special data match	
		Receive buffer full	
		Compare match	
Selectable	functions	Input signal inversion	
		Digital filter	

Table 22.12 Registers and Setting Values in Pattern Match Mode (Connected Operation) (1/2)

Register	Bit	Function		
· ·	Dit	PMC0	PMC1	
PMCiCON0	EN	1. Refer to 22.3.3.1 "Setting Procedure"	1. Refer to 22.3.3.1 "Setting Procedure"	
	SINV	0	Select input signal polarity	
	FIL	0	Select filter enabled/disabled	
	EHOLD	Select receive error holding period	-	
	HDEN	Select header enabled/ disabled	1	
	SDEN	Select special data enabled/ disabled	-	
	DRINT0	Select receive interrupt	-	
	DRINT1	generating condition		
PMCiCON1	TYP0 TYP1	Select measuring object	Select measuring object	
	CSS	0	-	
	EXSDEN	Select block in which header	-	
	EXHDEN	and special pattern is detected		
PMCiCON2	ENFLG	Flag indicating PMCi operated/ stopped	Flag indicating PMCi operated/ stopped	
	INFLG	Input signal flag	Not used	
	CEFLG	Not used	Not used	
	CEINT	0	0	
	PSEL0	00b	Select input pin	
	PSEL1			
PMCiCON3	CRE	0	0	
	CFR	0	0	
	CST	0	0	
	PD	0	0	
	CSRC0	00b	Select clock source	
	CSRC1			
	CDIV0	00b	Select count source divisor	
	CDIV1			
PMCiSTS	CPFLG	Compare match flag	-	
	REFLG	Receive error flag	Not used	
	DRFLG	Data receiving flag	Not used	
	BFULFLG	Receive buffer full flag	-	
	PTHDFLG	Header pattern match flag	Not used	
	PTD0FLG	Data 0 pattern match flag	Not used	
	PTD1FLG	Data 1 pattern match flag	Not used	
	SDFLG	Special pattern match flag	-	

i = 0, 1

^{-:} No register bit in PMC1

Table 22.13 Registers and Setting Values in Pattern Match Mode (Connected Operation) (2/2)

Register	Bit	Function		
-		PMC0	PMC1	
PMCiINT	CPINT	Set to 1 when using compare	-	
		match flag interrupt		
	REINT	Set to 1 when using receive	0	
		error flag interrupt		
	DRINT	Set to 1 when using data	0	
		reception complete interrupt		
	BFULINT	Set to 1 when using receive	-	
		buffer full flag interrupt		
	PTHDINT	Set to 1 when using header	0	
		match flag interrupt		
	PTDINT	Set to 1 when using data 0/1	0	
		match flag interrupt		
	TIMINT	Set to 1 when using timer	0	
		measure interrupt		
	SDINT	Set to 1 when using special	-	
		data match flag interrupt		
PMCiCPC	CPN0	Select bits to be compared	-	
	CPN1	when using compare function		
	CPN2			
	CPEN	Set to 1 when using compare	-	
		function		
PMCiCPD	0 to 7	Set compare value when using	-	
		compare function		
PMCiHDPMIN	0 to 10	Set minimum value of header	Set minimum value of header	
		pattern or special data pattern	pattern or special data pattern	
PMCiHDPMAX	0 to 10	Set maximum value of header	Set maximum value of header	
		pattern or special data pattern	pattern or special data pattern	
PMCiD0PMIN	0 to 7	Set minimum value of data 0	00h	
		pattern		
PMCiD0PMAX	0 to 7	Set maximum value of data 0	00h	
		pattern		
PMCiD1PMIN	0 to 7	Set minimum value of data 1	00h	
		pattern		
PMCiD1PMAX	0 to 7	Set maximum value of data 1	00h	
		pattern		
PMCiTIM	0 to 15	Measured value of pulse	Not used	
		period or width can be read		
PMCiBC	0 to 15	Counter value can be read	Not used	
PMCiDAT0 to	0 to 7	Received data can be read	-	
PMCiDAT5				
PMC0RBIT	0 to 5	Received bit count can be read	-	

i = 0, 1

^{-:} No register bit in PMC1

22.3.3.1 **Setting Procedure**

To start or stop counting, follow procedures below:

- (1) Set the EN bit in the PMC0CON0 register to 1 (0 to stop).
- (2) Set the EN bit in the PMC1CON0 register to 1 (1 to stop).
- (3) Wait for two cycles of count source.
- (4) Confirm that the ENFLG bit in the PMC0CON2 register is 1 (0 to stop). (The ENFLG bit in the PMC1CON2 register is disabled)

22.3.3.2 **Header and Special Data Detection**

Header and special data can be detected. Table 22.14 lists Selection of Header and Special Data Detecting Block.

Table 22.14 Selection of Header and Special Data Detecting Block

Detected Item		Bit Setting				
PMC0	PMC1	PMC0CON0 register		PMC0CON1 register		
FIVICO		HDEN bit	SDEN bit	EXHDEN bit	EXSDEN bit	
-	Header	1	0	1	0	
-	Special data	0	1	0	1	
Header	Special data	1	1	0	1	
Special data	Header	1	1	1	0	

^{-:} Neither header nor special data is detected

Note:

1. Do not set values not listed above.

When header is valid, the following occur by detecting data 0, data 1, or special data prior to header.

- The REFLG bit in the PMCiSTS register becomes 1 (error occurs).
- Bits PTD0FLG, PTD1FLG, and SDFLG in the PMCiSTS register remain unchanged.
- Registers PMCDAT0 to PMCDAT5 remain unchanged.

22.3.3.3 Status Flag and Interrupt

When connecting PMC0 and PMC1, use flags and interrupt control in PMC0. The object bits are as follows:

Each bit in the PMC0STS register

Each bit in the PMC0INT register

INFLG bit in the PMC0CON2 register

Even when detecting header or special data in PMC1, the result including those data can be detected in the above registers.

22.3.3.4 Receive Data Buffer (PMC0)

There is a 6-byte (48-bit) buffer for storing received data. When the data exceeds 48 bits, the buffer is sequentially overwritten from the first bit. Refer to 22.2.12 "PMC0 Receive Data Store Register i (PMC0DATi) (i = 0 to 5)" and 22.2.11 "PMC0 Receive Bit Count Register (PMC0RBIT)".

Compare Function (PMC0) 22.3.3.5

Contents of registers PMC0CPD and PMCDAT0 are compared. Reception of the specific data which is 1 to 8 bits can be detected.

When using compare function, follow the instructions below:

- The CPEN bit in the PMC0CPC register: 1 (compare enabled)
- Select bits to be compared by bits CPN2 to CPN0 in the PMC0CPC register (when setting value is n, bits n to 0 are compared. n: 0 to 7)
- Set the compare data in the PMC0CPD register

The contents which have been compared are matched, the CPFLG bit in the PMC0STS register becomes 1 (compare match).

22.3.4 Input Capture Mode (PMC0 and PMC1 Operate Individually)

Input capture mode measures width or period of external pulse. PMC0 and PMC1 can be measured individually.

Table 22.15 lists Specifications in Input Capture Mode (Individual Operation), Table 22.16 and Table 22.17 list registers and setting values in input capture mode (individual operation), and Figure 22.9 shows Difference of Operations in Receive Modes (Input Capture Mode).

Table 22.15 Specifications in Input Capture Mode (Individual Operation)

ltem		Content		
		PMC0 Circuit	PMC1 Circuit	
Count	Clock sources	One of the following:	One of the following:	
sources		•fC	•fC	
		•f1	•f1	
		• Timer B2 underflow	Timer B1 underflow	
		Count source of PMC1	Timer B2 underflow	
	Division	No division, divided-by-8, divided-by-32, or divided-by-64		
Count opera	ation	Increment		
Measureme	ent items	One of the following:		
		Pulse period (between rising edge and rising edge)		
		Pulse period (between falling edge and falling edge)		
		Pulse width (both high level and low level)		
Interrupt request generation		Timer measurement		
timing		Counter overflow		
Selectable functions		Input signal inversion		
		Digital filter		

Table 22.16 Registers and Setting Values in Input Capture Mode (Individual Operation) (1/2)

Desirter Dit		Fun	Function		
Register	Bit	PMC0	PMC1		
PMCiCON0	EN	1	1		
	SINV	Select input signal polarity	Select input signal polarity		
	FIL	Select filter enabled or disabled	Select filter enabled or disabled		
	EHOLD	0	-		
	HDEN	0	0		
	SDEN	0	-		
	DRINT0	00b	-		
	DRINT1	1			
PMCiCON1	TYP0	Select measuring object	Select measuring object		
	TYP1	_	g ,		
	CSS	0	-		
	EXSDEN	0	-		
	EXHDEN	0	-		
PMCiCON2	ENFLG	Flag indicating PMCi operated/	Flag indicating PMCi operated/		
		stopped	stopped		
	INFLG	Input signal flag	Input signal flag		
	CEFLG	Counter overflow flag	Counter overflow flag		
	CEINT	Set to 1 when using counter	Set to 1 when using counter		
		overflow interrupt	overflow interrupt		
	PSEL0	01b	10b		
	PSEL1				
PMCiCON3	CRE	1	1		
	CFR	1	1		
	CST	1	1		
	PD	1	1		
	CSRC0	Select clock source	Select clock source		
	CSRC1				
	CDIV0	Select count source divisor	Select count source divisor		
	CDIV1				
PMCiSTS	CPFLG	Not used (read as undefined value)	-		
	REFLG	Not used (read as undefined value)	Not used (read as undefined value)		
	DRFLG	Not used (read as undefined value)	Not used (read as undefined value)		
	BFULFLG	Not used (read as undefined value)	-		
	PTHDFLG	Not used (read as undefined value)	Not used (read as undefined value)		
	PTD0FLG	Not used (read as undefined value)	Not used (read as undefined value)		
1			Not and formal and offered at all all		
	PTD1FLG	Not used (read as undefined value)	Not used (read as undefined value)		

i = 0, 1

^{-:} No register bits in PMC1

Table 22.17 Registers and Setting Values in Input Capture Mode (Individual Operation) (2/2)

Decistes	Bit	Function		
Register	BIL	PMC0	PMC1	
PMCiINT	CPINT	0	-	
	REINT	0	0	
	DRINT	0	0	
	BFULINT	0	-	
	PTHDINT	0	0	
	PTDINT	0	0	
	TIMINT	Set to 1 when using timer	Set to 1 when using timer	
		measure interrupt	measure interrupt	
	SDINT	0	-	
PMCiCPC	CPN0	000b	-	
	CPN1			
	CPN2			
	CPEN	0	-	
PMCiCPD	0 to 7	00h	-	
PMCiHDPMIN	0 to 10	0000h	0000h	
PMCiHDPMAX	0 to 10	0000h	0000h	
PMCiD0PMIN	0 to 7	00h	00h	
PMCiD0PMAX	0 to 7	00h	00h	
PMCiD1PMIN	0 to 7	00h	00h	
PMCiD1PMAX	0 to 7	00h	00h	
PMCiTIM	0 to 15	Measured value of pulse	Measured value of pulse	
		period or width can be read	period or width can be read	
PMCiBC	0 to 15	Counter value can be read	Counter value can be read	
PMCiDAT0 to	0 to 7	Not used	Not used	
PMCiDAT5				
PMC0RBIT	0 to 5	Not used	Not used	

i = 0, 1

^{-:} No register bit in PMC1

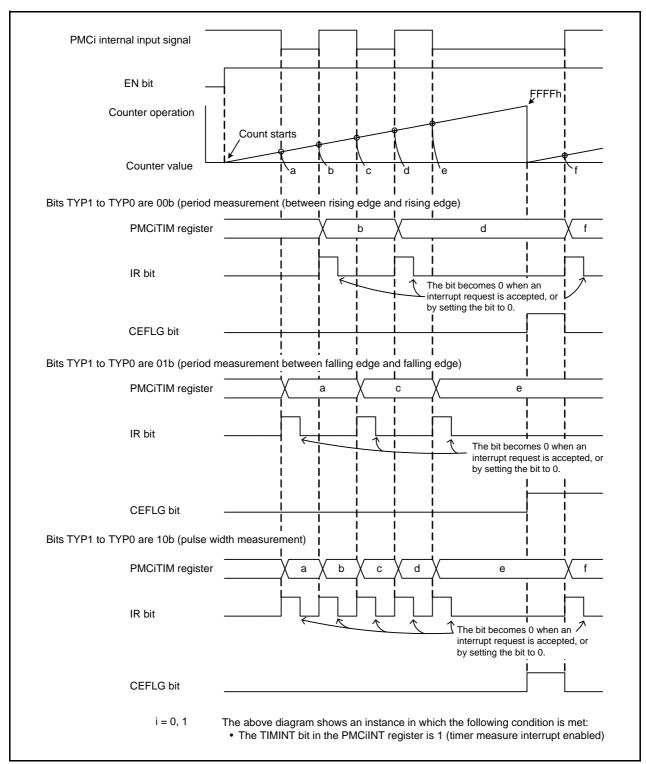


Figure 22.9 **Difference of Operations in Receive Modes (Input Capture Mode)**

22.3.4.1 **Count Operation**

In input capture mode, the counter counts from 0000h to FFFFh, and then return to 0000h to continue counting.

When the counter becomes 0000h after FFFFh, the CEFLG bit in the PMCiCON2 register becomes 1 (counter overflow) and holds 1 until the next measurement timing.

Under development

22.3.5 Input Capture Mode (Simultaneous Count Operation of PMC0 and PMC1)

Table 22.18 lists Specifications in Input Capture Mode (Simultaneous Count Operation) and Table 22.19 and Table 22.20 list registers and setting values in input capture mode (simultaneous count operation).

Table 22.18 Specifications in Input Capture Mode (Simultaneous Count Operation)

Item		Content		
		PMC0 Circuit	PMC1 Circuit	
Count	Clock sources	Count source of PMC1	One of the following:	
sources			• fC	
			•f1	
			Timer B1 underflow	
			• Timer B2 underflow	
	Division	No division	No division, divided-by-8, divided-	
			by-32, or divided-by-64	
Count ope	ration	Increment		
Measurem	ent items	One of the following:		
		Pulse period (between rising edge and rising edge)		
		Pulse period (between falling edge and falling edge)		
		Pulse width (both high level and low level)		
Interrupt request generation		Timer measurement		
timing		Counter overflow		
Selectable functions		• Input signal inversion		
		Digital filter		

Table 22.19 Registers and Setting Values in Input Capture Mode (Simultaneous Count Operation) (1/2)

,	1/2)	Function		
Register	Bit	PMC0		
PMCiCON0	EN	= -	PMC1	
PIVICICONU	EIN	1. (Refer to 22.3.5.1 "Setting Procedure")	1. (Refer to 22.3.5.1 "Setting	
	SINV	,	Procedure")	
		Select input signal polarity	Select input signal polarity	
	FIL	Select filter enabled/disabled	Select filter enabled/disabled	
	EHOLD	0	-	
	HDEN	0	0	
	SDEN	0	-	
	DRINT0	00b	-	
	DRINT1			
PMCiCON1	TYP0	Select measuring object	Select measuring object	
	TYP1			
	CSS	1	-	
	EXSDEN	0	-	
	EXHDEN	0	-	
PMCiCON2	ENFLG	Flag indicating PMCi operated/	Flag indicating PMCi operated/	
		stopped	stopped	
	INFLG	Input signal flag	Input signal flag	
	CEFLG	Counter overflow flag	Counter overflow flag	
	CEINT	Set to 1 when using counter	Set to 1 when using counter	
		overflow interrupt	overflow interrupt	
	PSEL0	01b	10b	
	PSEL1			
PMCiCON3	CRE	1	1	
	CFR	1	1	
	CST	1	1	
	PD	1	1	
	CSRC0	00b	Select clock source	
	CSRC1	7		
	CDIV0	00b	Select count source divisor	
	CDIV1			
PMCiSTS	CPFLG	Not used (read as undefined value)	-	
	REFLG	Not used (read as undefined value)	Not used (read as undefined value)	
	DRFLG	Not used (read as undefined value)	,	
	BFULFLG	Not used (read as undefined value)	-	
	PTHDFLG	Not used (read as undefined value)	Not used (read as undefined value)	
	PTD0FLG	Not used (read as undefined value)	Not used (read as undefined value)	
	PTD0FLG	Not used (read as undefined value)	,	
	SDFLG	`	Thot used (read as dilidelilled value)	
	SUFLG	Not used (read as undefined value)	-	

i = 0, 1

-: No register bit in PMC1

Table 22.20 Registers and Setting Values in Input Capture Mode (Simultaneous Count Operation) (2/2)

Dogistor	D:4	Fu	Function		
Register	Bit	PMC0	PMC1		
PMCiINT	CPINT	0	-		
	REINT	0	0		
	DRINT	0	0		
	BFULINT	0	-		
	PTHDINT	0	0		
	PTDINT	0	0		
	TIMINT	Set to 1 when using timer measure interrupt	Set to 1 when using timer measure interrupt		
	SDINT	0	-		
PMCiCPC	CPN0	000b	-		
	CPN1				
	CPN2				
	CPEN	0	-		
PMCiCPD	0 to 7	00h	-		
PMCiHDPMIN	0 to 10	0000h	0000h		
PMCiHDPMAX	0 to 10	0000h	0000h		
PMCiD0PMIN	0 to 7	00h	00h		
PMCiD0PMAX	0 to 7	00h	00h		
PMCiD1PMIN	0 to 7	00h	00h		
PMCiD1PMAX	0 to 7	00h	00h		
PMCiTIM	0 to 15	Measured value of pulse period or width can be read	Measured value of pulse period or width can be read		
PMCiBC	0 to 15	Counter value can be read	Counter value can be read		
PMCiDAT0 to PMCiDAT5	0 to 7	Not used	Not used		
PMC0RBIT	0 to 5	Not used	Not used		

i = 0, 1

22.3.5.1 **Setting Procedure**

To start or stop counting, follow procedures below:

- (1) Set the EN bit in the PMC0CON0 register to 1 (0 to stop).
- (2) Set the EN bit in the PMC1CON0 register to 1 (1 to stop).
- (3) Wait for two cycles of count source.
- (4) Confirm that the ENFLG bit in the PMC0CON2 register is 1 (0 to stop). (The ENFLG bit in the PMC1CON2 register is disabled)

22.3.5.2 **Count Operation**

In input capture mode, the counter counts from 0000h to FFFFh, and then return to 0000h to continue counting.

When the counter becomes 0000h after FFFFh, the CEFLG bit in the PMCiCON2 register becomes 1 (counter overflow) and holds 1.

^{-:} No register bit in PMC1

22.4 Interrupt

The remote control signal receiver has remote control signal receiver 0 interrupt and remote control signal receiver 1 interrupt. The remote control signal receiver 0 interrupt and remote control signal receiver 1 interrupt are interrupts in PMC0 and PMC1 respectively.

A remote control signal receiver i interrupt request signal is generated every time the conditions are met. If the interrupt enable bit in the PMCiCON2 or PMCiINT register is 1, the IR bit in the PMCiIC register becomes 1 (interrupt request) when the corresponding interrupt request signal is generated. Table 22.21 lists Interrupt Source of Remote Control Signal Receiver i Interrupt (i = 0, 1).

Table 22.21 Interrupt Source of Remote Control Signal Receiver i Interrupt (i = 0, 1)

Mode	Interrupt Source	Interrupt Request Generating Condition	Interrupt	Interrupt enable bit	
Mode	interrupt Source	Interrupt Request Generating Condition	Register	Bit	
Pattern match mode	Completion of data reception	Counter value is larger than values of registers PMCiHDPMAX, PMCiD0PMAX, and PMCiD1PMAX	PMCiINT	DRINT	
	Header match	The measured result is within the range set by registers PMCiHDPMIN and PMCiHDPMAX (when header is enabled)	PMCiINT	PTHDINT	
	Data 0/1 match	The measured result is within the range set by registers PMCiD0PMIN and PMCiD0PMAX or registers PMCiD1PMIN and PMCiD1PMAX	PMCiINT	PTDINT	
	Special data match	The measured result is within the range set by registers PMCiHDPMIN and PMCiHDPMAX (when special data is enabled)	PMC0INT	SDINT	
	Receive error	Input signal width is none of header, data 0, data 1, and special data Data 0 or data 1 is detected before detecting header when the HDEN bit is 1	PMCiINT	REINT	
	Receive buffer full	The value of the PMC0RBIT register is 48	PMC0INT	BFULINT	
	Compare match	The values of registers PMC0CPD and PMC0DAT0 are matched (only bits selected by the CPN bit in the PMC0CPC register are compared)	PMC0INT	CPINT	
	Timer measurement	Measurement end edge of PMCi internal input signal	PMCiINT	TIMINT	
Input capture	Timer measurement	Measurement end edge of PMCi internal input signal	PMCiINT	TIMINT	
mode	Counter overflow	Counter overflow (counter value exceeds FFFFh and becomes 0000h)	PMCiCON2	CEINT	

Measured result: Content of the PMCiTIM register

Figure 22.10 shows Interrupt of Remote Control Signal Receiver.

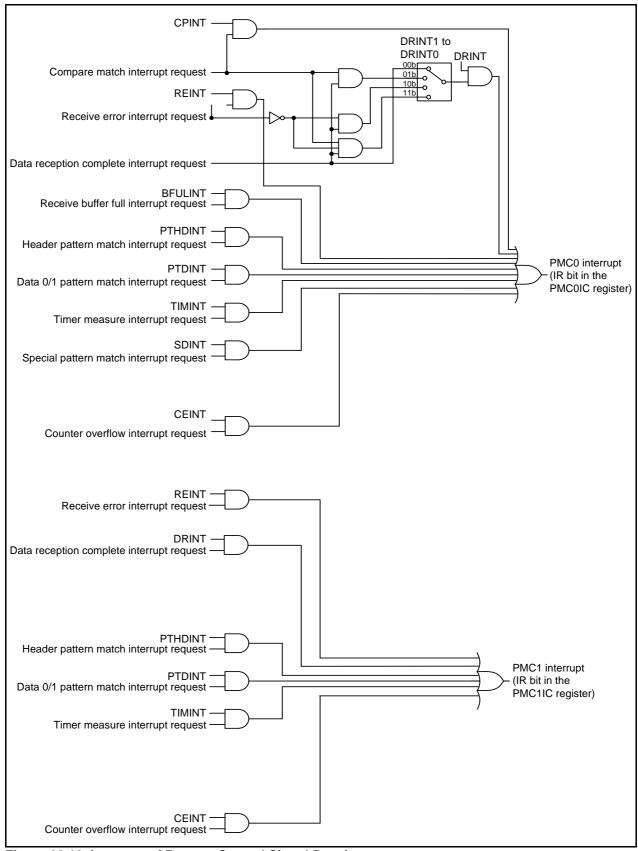


Figure 22.10 Interrupt of Remote Control Signal Receiver

Refer to 14.7 "Interrupt Control" for details of interrupt control. Table 22.22 lists Registers Associated with Interrupt of Remote Control Signal Receiver.

Table 22.22 Registers Associated with Interrupt of Remote Control Signal Receiver

Address	Register Name	Register Symbol	After Reset
0071h	UART7 Bus Collision Detection Interrupt Control	U7BCNIC/	XXXX X000b
	Register Remote Control Signal Receiver 0 Interrupt	PMC0IC	
	Control Register		
0072h	UART7 Transmit Interrupt Control Register Remote	S7TIC/PMC1IC	XXXX X000b
	Control Signal Receiver 1 Interrupt Control Register		
0206h	Interrupt Source Select Register 2	IFSR2A	00h

The remote control signal receiver shares interrupt vectors or interrupt control registers with other peripheral functions. To use remote control signal receiver 0 interrupt, set the IFSR24 bit in the IFSR2A register to 1 (remote control signal receiver 0). To use remote control signal receiver 1 interrupt, set the IFSR25 bit in the IFSR2A register to 1 (remote control signal receiver 1).

The IR bit in registers PMC0IC and PMC1IC is different from another IR bit in the following respects:

- •If the interrupt enable bit in the PMCiCON2 or PMCiINT register is 1, the IR bit in the PMCiIC register becomes 1 (interrupt request) when the corresponding interrupt request signal is generated.
- If multiple interrupts are enabled, IR bit becomes 1 and then remains 1 when another request source is generated.
- The IR bit does not become 0 automatically when the interrupt is accepted. Set the IR bit to 0 within interrupt routine.

22.5 **Notes on Remote Control Signal Receiver**

22.5.1 Start/Stop of PMCi

The EN bit in the PMCiCON0 register controls start/stop of PMCi. The ENFLG bit in the PMCiCON2 register indicates that the operation starts or stops.

The PMCi circuit starts operating by setting the EN bit to 1 (operation starts) and the ENFLG bit becomes 1. It takes up to two cycles of the count source until the ENFLG bit becomes 1 after setting the EN bit to 1. During this period, do not access registers associated with PMCi (registers listed in Table 22.3 and Table 22.4 "register structure (PMCi circuit)") excluding the ENFLG bit.

When the EN bit is set to 0 (operation stops), PMCi circuit stops operating and the ENFLG bit becomes 0 (operation stops). It takes up to one cycle of the count source until the ENFLG bit becomes 0 after setting the EN bit to 0.

22.5.2 **Register Reading Procedure**

If reading the following registers when the data changes, undefined value may be read.

Each flag in registers PMCiCON2 and PMCiSTS

Registers PMCiTIM, PMC0DAT0 to PMC0DAT5, PMCiBC, and PMC0RBIT

Read above registers as follows to avoid reading the undefined value.

In pattern match mode

Using interrupt

Set the DRINT bit in the PMCiINT register to 1 (data reception complete interrupt enabled) and read the registers within PMCi interrupt routine.

Monitoring by a program 1

Set the DRINT bit in the PMCiINT register to 1 (data reception complete interrupt enabled) and monitor the IR bit in the PMCiIC register by a program. Read the registers when the IR bit becomes 1 (interrupt request is generated).

- Monitoring by a program 2
- (1) Monitor the DRFLG bit in the PMCiSTS register
- (2) When the DRFLG bit becomes 1, monitor the DRFLG bit until it becomes 0.
- (3) Read the necessary content of the registers when the DRFLG bit becomes 0.

In input capture mode

Using interrupt

Set the TIMINT bit in the PMCiINT register to 1 (timer measure interrupt enabled) and read the registers within PMCi interrupt routine.

Monitoring by a program 1

Set the TIMINT bit in the PMCiINT register to 1 (timer measure interrupt enabled) and monitor the IR bit in the PMCilC register by a program. Read the registers when the IR bit becomes 1 (interrupt request is generated).

23. Serial Interface UARTi (i = 0 to 2, 5 to 7)

Note •

The 80-pin package does not have pins CLK2 and CTS2/RTS2 for UART2. Do not use functions associated with these pins. UART6 and UART7 are not included.

23.1 Introduction

Each UARTi has a dedicated timer to generate a transmit/receive clock, so it operates independently of the others.

Table 23.1 lists Specifications of UARTi (i = 0 to 2, 5 to 7), Table 23.2 lists Specification Difference in UART0 to UART2 and UART5 to UART7, Figure 23.1 to Figure 23.3 show UARTi Block Diagram, and Figure 23.4 shows UARTi Transmit/Receive Unit Block Diagram.

Table 23.1 Specifications of UARTi (i = 0 to 2, 5 to 7)

Item	Specification
Operational mode	Clock synchronous serial I/O mode
	Clock asynchronous serial I/O mode (UART mode)
	• Special mode 1 (I ² C mode)
	• Special mode 2
	The simplified I ² C-bus interface is supported.
	• Special mode 3 (bus collision detection function, IE mode)
	A 1-byte wave of the UART mode approximates 1-bit of the IEBus.
	• Special mode 4 (SIM mode)
	UART2 is available. The SIM interface is supported.

Table 23.2 Specification Difference in UART0 to UART2 and UART5 to UART7

Mode	UARTO UART1	UART2	UART5	UART6 UART7
Clock synchronous serial I/O mode	Available	Available	Available	Available
Clock asynchronous serial I/O mode (UART mode)	Available	Available	Available	Available
Special mode 1 (I ² C mode)	Available	Available	Available	Available
Special mode 2	Available	Available	Available	Available
Special mode 3 (IE mode)	Available	Available	Available	Available
Special mode 4 (SIM mode)	Not available	Available	Not available	Not available
Memory expansion mode or microprocessor mode	Can be used			Do not use.

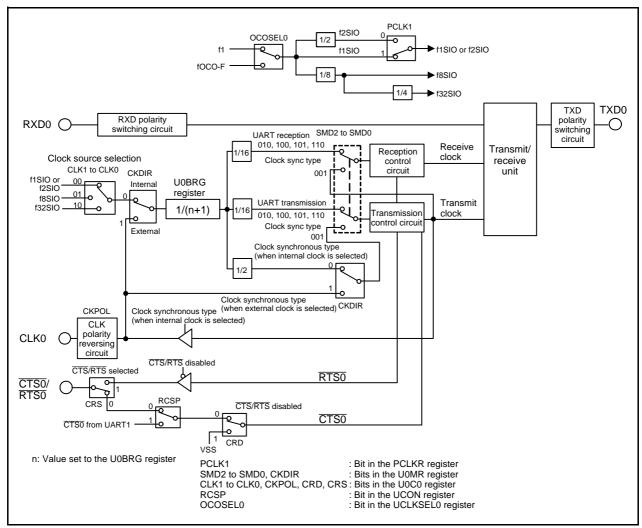


Figure 23.1 **UARTO Block Diagram**

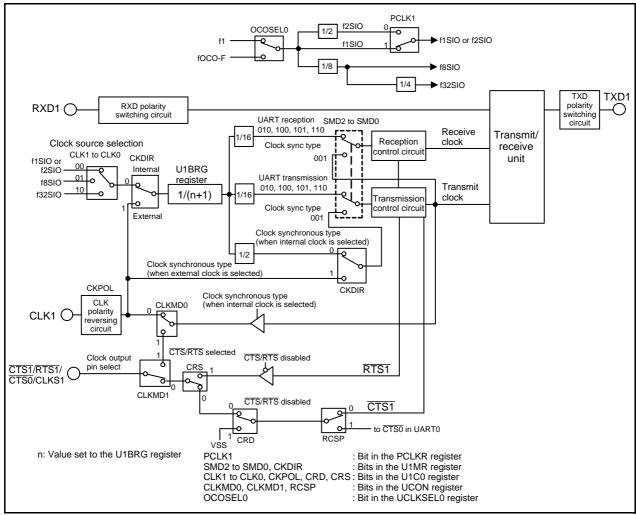
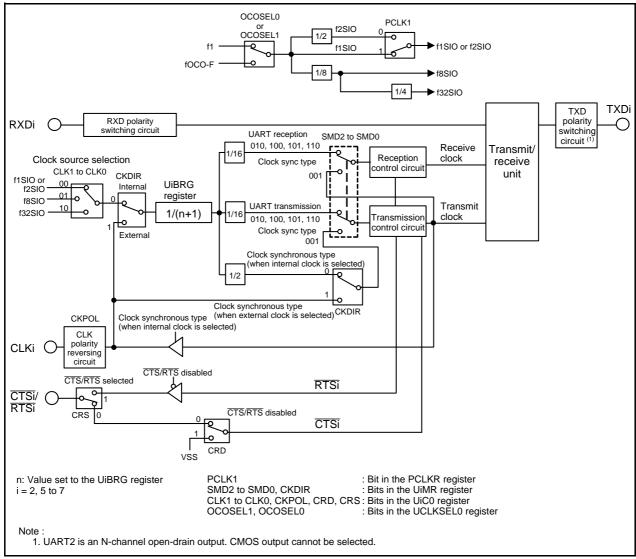



Figure 23.2 **UART1 Block Diagram**

Block Diagram of UART2, and UART5 to UART7

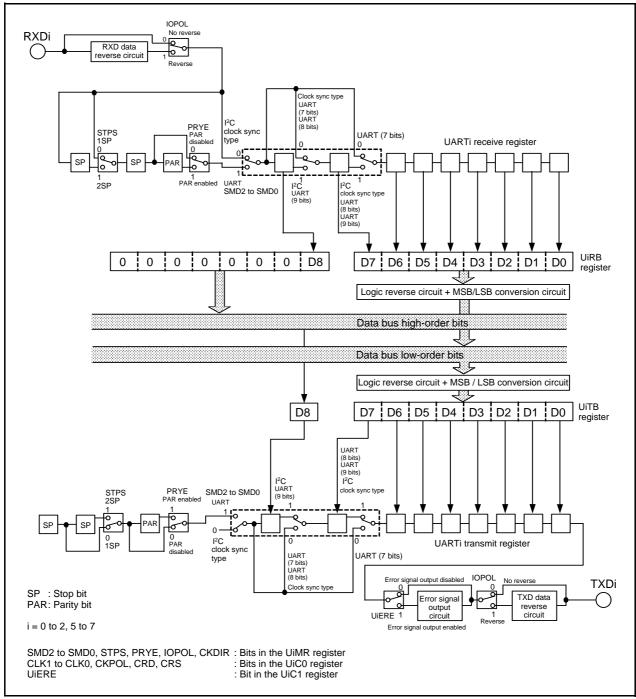


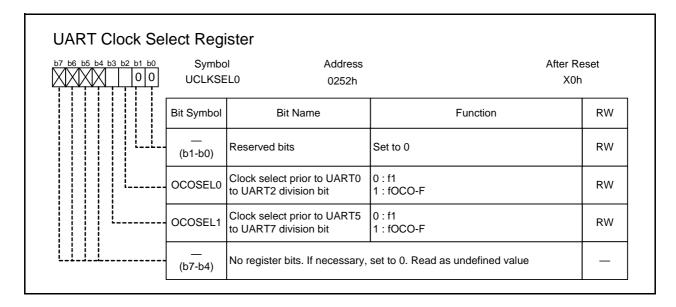
Figure 23.4 **UARTi Transmit/Receive Unit Block Diagram**

23.2 Registers

Table 23.3 and Table 23.4 list registers associated with UART0 to UART2 and UART5 to UART7. Set the OCOSEL0 or OCOSEL1 bit in the UCLKSEL0 register before setting other registers associated with UART0 to UART2 and UART5 to UART7. After changing the OCOSEL0 or OCOSEL1 bit, set other registers associated with UART0 to UART2 and UART5 to UART7 again.

Refer to "Registers Used and Settings" in each mode for the settings of registers and bits.

Table 23.3 Register Structure (1/2)


	D 14 N	15 :	A (1 D)
Address	Register Name	Register Symbol	After Reset
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
0244h	UART0 Special Mode Register 4	U0SMR4	00h
0245h	UART0 Special Mode Register 3	U0SMR3	000X 0X0Xb
0246h	UART0 Special Mode Register 2	U0SMR2	X000 0000b
0247h	UARTO Special Mode Register	U0SMR	X000 0000b
0248h	UART0 Transmit/Receive Mode Register	U0MR	00h
0249h	UART0 Bit Rate Register	U0BRG	XXh
024Ah	UART0 Transmit Buffer Register	U0TB	XXh
024Bh			XXh
024Ch	UART0 Transmit/Receive Control Register 0	U0C0	0000 1000b
024Dh	UART0 Transmit/Receive Control Register 1	U0C1	00XX 0010b
024Eh	UART0 Receive Buffer Register	U0RB	XXh
024Fh			XXh
0250h	UART Transmit/Receive Control Register 2	UCON	X000 0000b
0252h	UART Clock Select Register	UCLKSEL0	X0h
0254h	UART1 Special Mode Register 4	U1SMR4	00h
0255h	UART1 Special Mode Register 3	U1SMR3	000X 0X0Xb
0256h	UART1 Special Mode Register 2	U1SMR2	X000 0000b
0257h	UART1 Special Mode Register	U1SMR	X000 0000b
0258h	UART1 Transmit/Receive Mode Register	U1MR	00h
0259h	UART1 Bit Rate Register	U1BRG	XXh
025Ah	UART1 Transmit Buffer Register	U1TB	XXh
025Bh			XXh
025Ch	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
025Dh	UART1 Transmit/Receive Control Register 1	U1C1	00XX 0010b
025Eh	UART1 Receive Buffer Register	U1RB	XXh
025Fh			XXh
0264h	UART2 Special Mode Register 4	U2SMR4	00h
0265h	UART2 Special Mode Register 3	U2SMR3	000X 0X0Xb
0266h	UART2 Special Mode Register 2	U2SMR2	X000 0000b
0267h	UART2 Special Mode Register	U2SMR	X000 0000b
0268h	UART2 Transmit/Receive Mode Register	U2MR	00h
0269h	UART2 Bit Rate Register	U2BRG	XXh
026Ah	UART2 Transmit Buffer Register	U2TB	XXh
026Bh	Ĭ		XXh
026Ch	UART2 Transmit/Receive Control Register 0	U2C0	0000 1000b
026Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000 0010b
026Eh	UART2 Receive Buffer Register	U2RB	XXh
026Fh	The state of the s	<u> </u>	XXh
0284h	UART5 Special Mode Register 4	U5SMR4	00h
0285h	UART5 Special Mode Register 3	U5SMR3	000X 0X0Xb
020011	Office Openial Mode Register 5	OOOWING	OUUN UNUNU

Register Structure (2/2) **Table 23.4**

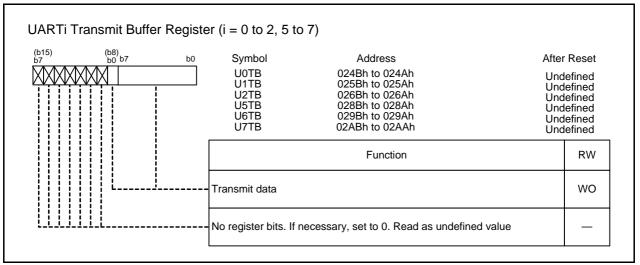
Address	Register Name	Register Symbol	After Reset
0286h	UART5 Special Mode Register 2	U5SMR2	X000 0000b
0287h	UART5 Special Mode Register	U5SMR	X000 0000b
0288h	UART5 Transmit/Receive Mode Register	U5MR	00h
0289h	UART5 Bit Rate Register	U5BRG	XXh
028Ah	UART5 Transmit Buffer Register	U5TB	XXh
028Bh			XXh
028Ch	UART5 Transmit/Receive Control Register 0	U5C0	0000 1000b
028Dh	UART5 Transmit/Receive Control Register 1	U5C1	0000 0010b
028Eh	UART5 Receive Buffer Register	U5RB	XXh
028Fh			XXh
0294h	UART6 Special Mode Register 4	U6SMR4	00h
0295h	UART6 Special Mode Register 3	U6SMR3	000X 0X0Xb
0296h	UART6 Special Mode Register 2	U6SMR2	X000 0000b
0297h	UART6 Special Mode Register	U6SMR	X000 0000b
0298h	UART6 Transmit/Receive Mode Register	U6MR	00h
0299h	UART6 Bit Rate Register	U6BRG	XXh
029Ah	UART6 Transmit Buffer Register	U6TB	XXh
029Bh			XXh
029Ch	UART6 Transmit/Receive Control Register 0	U6C0	0000 1000b
029Dh	UART6 Transmit/Receive Control Register 1	U6C1	0000 0010b
029Eh	UART6 Receive Buffer Register	U6RB	XXh
029Fh			XXh
02A4h	UART7 Special Mode Register 4	U7SMR4	00h
02A5h	UART7 Special Mode Register 3	U7SMR3	000X 0X0Xb
02A6h	UART7 Special Mode Register 2	U7SMR2	X000 0000b
02A7h	UART7 Special Mode Register	U7SMR	X000 0000b
02A8h	UART7 Transmit/Receive Mode Register	U7MR	00h
02A9h	UART7 Bit Rate Register	U7BRG	XXh
02AAh	UART7 Transmit Buffer Register	U7TB	XXh
02ABh			XXh
02ACh	UART7 Transmit/Receive Control Register 0	U7C0	0000 1000b
02ADh	UART7 Transmit/Receive Control Register 1	U7C1	0000 0010b
02AEh	UART7 Receive Buffer Register	U7RB	XXh
02AFh			XXh

Under development

UART Clock Select Register (UCLKSEL0) 23.2.1

OCOSEL0 (Clock Select Prior to UART0 to UART2 Division Bit) (b2) OCOSEL1 (Clock Select Prior to UART5 to UART 7 Division Bit) (b3)

Set bits OCOSEL0 and OCOSEL1 while transmission/reception of UART0 to UART2 and UART5 to UART7 stops.

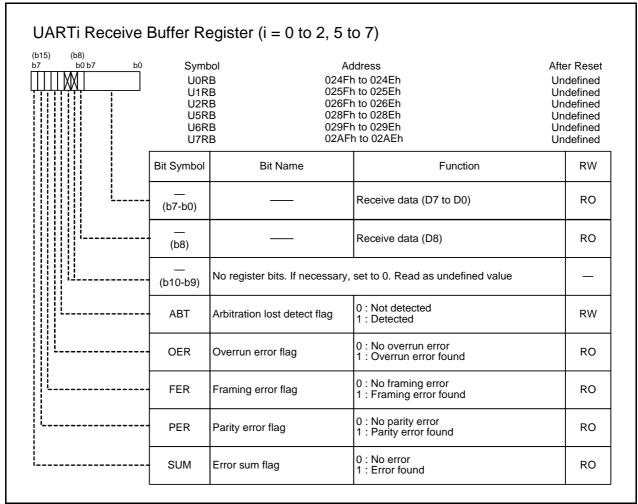

Set the OCOSEL0 or OCOSEL1 bit before setting other registers associated with UART0 to UART2 and UART5 to UART7. After changing the OCOSEL0 or OCOSEL1 bit, set other registers associated with UART0 to UART2 and UART5 to UART7 again.

23.2.2 Peripheral Clock Select Register (PCLKR)

b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0	Symbol PCLKR	Addre 0012l		After Reset 0000 0011b
	Bit Symbol	Bit Name	Function	RW
	PCLK0	Timers A and B clock select bit (clock source for timers A and B, the dead time timer, and muliti-master I ² C-bus interface)	0: f2TIMAB/f2IIC 1: f1TIMAB/f1IIC	RW
	PCLK1	SI/O clock select bit (clock source for UART0 to UART2, UART5 to UART7, SI/O3, and SI/O4)	0: f2SIO 1: f1SIO	RW
	(b4-b2)	Reserved bits	Set to 0	RW
	PCLK5	Clock output function extension bit (valid in single-chip mode)	Selected by bits CM01 to CM00 in the CM0 register Output f1	RW
	— (b7-b6)	Reserved bits	Set to 0	RW

Set the PRC0 bit in the PRCR register to 1 (write enabled) before the PCLKR register is rewritten.

UARTi Transmit Buffer Register (UiTB) (i = 0 to 2, 5 to 7) 23.2.3



Use MOV instruction to write to this register.

When character bit is 9 bits long, write in 16-bit units, or write in 8-bit units in the order of high-order bytes to low-order bytes.

Under development

23.2.4 UARTi Receive Buffer Register (UiRB) (i = 0 to 2, 5 to 7)

When bits SMD2 to SMD0 in the UiMR register is 100b, 101b or 110b, read in 16-bit units, or read in 8bit units in the order of high-order bytes to low-order bytes.

Bits FER and PER arranged in the high-order bytes become 0 when the lower bytes of the UiRB register are read.

If an overrun error occurs, the receive data of the UiRB register will be undefined.

ABT (Arbitration Lost Detect Flag) (b11)

The ABT bit is set to 0 by a program. (It remains unchanged even if 1 is written.)

OER (Overrun Error Flag) (b12)

Condition to become 0:

- Bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).
- The RE bit in the UiC1 register is 0 (reception disabled).

Condition to become 1:

 The RI bit in the UiC1 register is 1 (data present in UiRB register), and the last bit of the next data is received.

FER (Framing Error Flag) (b13)

The FER bit is disabled when bits SMD2 to SMD0 are set to 001b (clock synchronous serial I/O mode) or to 010b (I²C mode). Read as undefined value.

Condition to become 0:

- Bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).
- The RE bit in the UiC1 register is 0 (reception disabled).
- The lower bytes of the UiRB register are read.

Condition to become 1:

• The set number of stop bits is not detected. (detected when the received data is transferred from the UARTi receive register to the UiRB register.)

PER (Parity Error Flag) (b14)

The PER bit is disabled when bits SMD2 to SMD0 are set to 001b (clock synchronous serial I/O mode) or to 010b (I2C mode). Read as undefined value.

Condition to become 0:

- Bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).
- The RE bit in the UiC1 register is 0 (reception disabled).
- The lower bytes of the UiRB register are read.

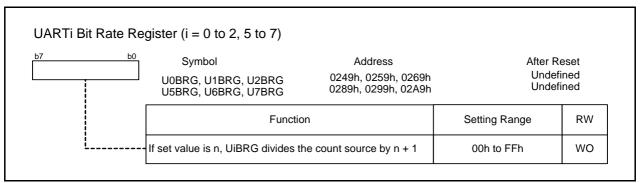
Condition to become 1:

 The number of 1s of the parity bit and character bit does not match the set value of the PRY bit in the UiMR register.

(detected when the received data is transferred from the UARTi receive register to the UiRB register.)

SUM (Error Sum Flag) (b15)

The SUM bit is disabled when bits SMD2 to SMD0 are set to 001b (clock synchronous serial I/O mode) or to 010b (I2C mode). Read as undefined value.


Condition to become 0:

- Bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).
- The RE bit in the UiC1 register is 0 (reception disabled).
- All of bits PER, FER and OER are 0 (no error).

Condition to become 1:

More than one of bits PER, FER or OER is 1 (error found).

23.2.5 UARTi Bit Rate Register (UiBRG) (i = 0 to 2, 5 to 7)

Write to the UiBRG register while serial interface is neither transmitting nor receiving. Use MOV instruction to write to the UiBRG register.

Write to the UiBRG register after setting bits CLK1 to CLK0 in the UiC0 register.

23.2.6 UARTi Transmit/Receive Mode Register (UiMR) (i = 0 to 2, 5 to 7)

b6 b5 b4 b3 b2 b1 b0	U0MR, Ú		248h, 0258h, 0268h	Reset 00h 00h
	Bit Symbol	Bit Name	Function	RW
	SMD0		b2 b1 b0 0 0 0 : Serial interface disabled 0 0 1 : Clock synchronous serial I/O mode	RW
	SMD1	Serial I/O mode select bit	0 1 0: I ² C mode 1 0 0: UART mode character bit length is 7 b 1 0 1: UART mode character bit length is 8 b	
	SMD2		1 1 0: UART mode character bit length is 9 b Do not set values other than the above	
	CKDIR	Internal/external clock select bit	0 : Internal clock 1 : External clock	RW
	STPS	Stop bit length select bit	0 : 1 stop bit 1 : 2 stop bits	RW
	PRY	Odd/even parity select bit	Valid when PRYE is 1 0 : Odd parity 1 : Even parity	RW
	PRYE	Parity enable bit	0 : Parity disabled 1 : Parity enabled	RW
	IOPOL	TXD, RXD I/O polarity	0 : No reverse 1 : Reverse	RW

Under development

UARTi Transmit/Receive Control Register 0 (UiC0) (i = 0 to 2, 5 to 7) 23.2.7

b6 b5 b4 b3 b2 b1 b0		C0, U2C0 024Ch	i, 025Ch, 026Ch 000	er Reset 0 1000b 0 1000b
	Bit Symbol	Bit Name	Function	RW
ļ	CLK0	UiBRG count source select	b1 b0 0 0:f1SIO or f2SIO selected	RW
	CLK1	bit	0 1 : f8SIO selected 1 0 : f32SIO selected 1 1 : Do not set	RW
	CRS	CTS/RTS function select bit	Valid when CRD is 0 0 : CTS function selected 1 : RTS function selected	RW
	TXEPT	Transmit register empty flag	Data present in transmit register (transmission in progress) No data present in transmit register (transmission completed)	RO
	CRD	CTS/RTS disable bit	0 : CTS/RTS function enabled 1 : CTS/RTS function disabled	RW
	NCH	Data output select bit	Pins TXDi/SDAi and SCLi are CMOS output Pins TXDi/SDAi and SCLi are N-char open-drain output	DW
	CKPOL	CLK polarity select bit	O: Transmit data is output at the falling edge of transmit/receive clock and receive data is input at the rising edg 1: Transmit data is output at the rising edge of transmit/receive clock and receive data is input at the falling edge.	RVV
	UFORM	Bit order select bit	0 : LSB first 1 : MSB first	RW

CLK1 to CLK0 (UiBRG Count Source Select Bit) (b1-b0)

When bits CLK1 to CLK0 are 00b (f1SIO or f2SIO selected), select f1SIO or f2SIO by the PCLK1 bit in the PCLKR register.

Set bits CLK1 to CLK0 after setting registers UCLKSEL0 and PCLKR.

If bits CLK1 to CLK0 are changed, set the UiBRG register.

CRS (CTS/RTS Function Select Bit) (b2)

CTS1/RTS1 can be used when the CLKMD1 bit in the UCON register is 0 (CLK output is only from CLK1) and the RCSP bit in the UCON register is 0 (CTS0/RTS0 not separated).

CRD (CTS/RTS Disable Bit) (b4)

When the CRD bit is 1 (CTS/RTS function disabled), the CTSi/RTSi pin can be used as an input/output port.

NCH (Data Output Select Bit) (b5)

TXD2/SDA2 and SCL2 are N-channel open-drain outputs. They cannot be set to CMOS output. Nothing is assigned in the NCH bit in the U2C0 register. If necessary, set to 0.

This function is used to set P-channel transistor of the COMS output buffer always off, but not to change pins TXDi/SDAi and SCLi to open-drain output completely.

Check electrical characteristics for the input voltage range.

UFORM (Bit Order Select Bit) (b7)

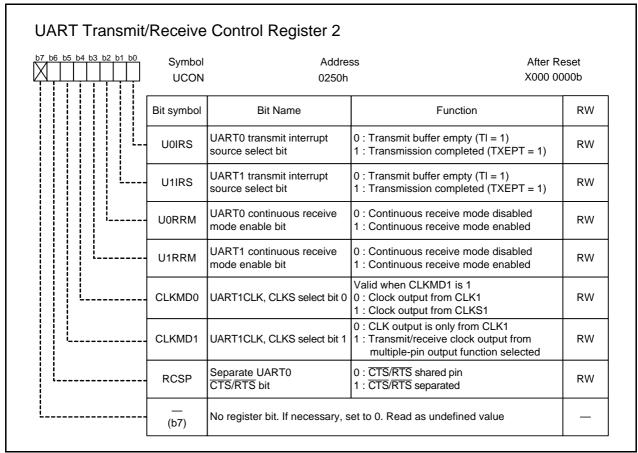
The UFORM bit is enabled when bits SMD2 to SMD0 in the UiMR register are 001b (clock synchronous serial I/O mode), or 101b (UART mode, 8-bit character data).

Set the UFORM bit to 1 when bits SMD2 to SMD0 are 010b (I2C mode), and to 0 when bits SMD2 to SMD0 are 100b (UART mode, 7-bit character data) or 110b (UART mode, 9-bit character data).

Under development

UARTi Transmit/Receive Control Register 1 (UiC1) (i = 0 to 2, 5 to 7) 23.2.8

b3 b2 b1 b0	Symbol U0C1, U1C	Addre 024Dh, 0		After Reset 00XX 0010b
	Bit Symbol	Bit Name	Function	RV
	TE	Transmit enable bit	0 : Transmission disabled 1 : Transmission enabled	RV
<u> </u>	TI	Transmit buffer empty flag	0 : Data present in UiTB register 1 : No data present in UiTB register	RC
 	RE	Receive enable bit	0 : Reception disabled 1 : Reception enabled	RV
	RI	Receive complete flag	0 : No data present in UiRB register 1 : Data present in UiRB register	RC
	 (b5-b4)	No register bits. If necessary,	set to 0. Read as undefined value	_
	UiLCH	Data logic select bit	0 : No reverse 1 : Reverse	RV
	UiERE	Error signal output enable bit	0 : Output disabled 1 : Output enabled	RV
Transmi	t/Receive	e Control Register 1		After Reset
	Symbol U2C1	Addre 026Dł	ss (After Reset 0000 0010b 0000 0010b
	Symbol U2C1	Addre 026Dr	ss (0000 0010b
	Symbol U2C1 U5C1, L	Addre 026Dh J6C1, U7C1 028Dh	ss (n., 029Dh, 02ADh (0000 0010b 0000 0010b
	Symbol U2C1 U5C1, L	Addre 026Dr 028Dr Bit Name	ss (n., 029Dh, 02ADh (n., 029Dh, 02ADh (n., 029Dh, 02ADh (n., 02AD	0000 0010b 0000 0010b
	Symbol U2C1 U5C1, L Bit symbol	Addre 026Dt 028Dt Bit Name Transmit enable bit	ss (n., 029Dh, 02ADh (n., 024Dh, 02ADh, 02ADh (n., 024Dh, 02ADh, 02ADh, 02ADh, 02ADh (n., 024Dh, 02ADh, 0	0000 0010b 0000 0010b RW RW
	Symbol U2C1 U5C1, U	Addre 026Dt 028Dt Bit Name Transmit enable bit Transmit buffer empty flag	Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in UiTB register 1 : No data present in UiTB register 0 : Reception disabled	0000 0010b 0000 0010b RW
	Symbol U2C1 U5C1, L Bit symbol TE TI RE	Addre 026Dt 028Dt Bit Name Transmit enable bit Transmit buffer empty flag Receive enable bit	Function 0: Transmission disabled 1: Transmission enabled 0: Data present in UiTB register 1: No data present in UiTB register 0: Reception disabled 1: Reception enabled 0: No data present in UiRB register	0000 0010b 0000 0010b RV RV RC
	Symbol U2C1 U5C1, L Bit symbol TE TI RE	Addre 026Dt 028Dt Bit Name Transmit enable bit Transmit buffer empty flag Receive enable bit Receive complete flag UARTi transmit interrupt	Function 0: Transmission disabled 1: Transmission enabled 0: Data present in UiTB register 1: No data present in UiTB register 0: Reception disabled 1: Reception enabled 0: No data present in UiRB register 1: Data present in UiRB register 0: UiTB register 0: UiTB register empty (TI = 1)	0000 0010b 0000 0010b RV RV RC RV
	Symbol U2C1 U5C1, U Bit symbol TE TI RE RI UilRS	Addre 026Dt 028Dt 028Dt Bit Name Transmit enable bit Transmit buffer empty flag Receive enable bit Receive complete flag UARTi transmit interrupt source select bit UARTi continuous receive	Function 0: Transmission disabled 1: Transmission enabled 0: Data present in UiTB register 1: No data present in UiTB register 0: Reception disabled 1: Reception enabled 0: No data present in UiRB register 1: Data present in UiRB register 0: UiTB register empty (TI = 1) 1: Transmit completed (TXEPT = 1) 0: Continuous receive mode disabled	0000 0010b 0000 0010b RV RV RC RV


Bits UiIRS and UiRRM of UART0 and UART1 are bits in the UCON register.

M16C/65 Group

UiLCH (Data Logic Select Bit) (b6)

The UiLCH bit enabled when bits SMD2 to SMD0 in the UiMR register are 001b (clock synchronous serial I/O mode), 100b (UART mode, 7-bit character data), or 101b (UART mode, 8-bit character data). Set this bit to 0 when bits SMD2 to SMD0 are set to 010b (I2C mode) or 110b (UART mode, 9-bit character data).

UART Transmit/Receive Control Register 2 (UCON) 23.2.9

Bits UiIRS and UiRRM of UART2 and UART5 to UART7 are bits in the UiC1 register.

CLKMD1 (UART1CLK, CLKS Select Bit 1) (b5)

When using multiple transmit/receive clock output pins, make sure the following condition is met: the CKDIR bit in the U1MR register = 0 (internal clock)

23.2.10 UARTi Special Mode Register (UiSMR) (i = 0 to 2, 5 to 7)

b6 b5 b4 b3 b2 b1 b0	U0SMR, U		0247h, 0257h, 0267h X00	er Reset 0 0000b 0 0000b
	Bit Symbol	Bit Name	Function	RW
	IICM	I ² C mode select bit	0 : Other than I ² C mode 1 : I ² C mode	RW
	ABC	Arbitration lost detect flag control bit	0 : Update per bit 1 : Update per byte	RW
	BBS	Bus busy flag	0 : Stop-condition detected 1 : Start-condition detected (busy)	RW
	— (b3)	Reserved bit	Set to 0	RW
<u> </u>	ABSCS	Bus collision detect sampling clock select bit	0 : Rising edge of transmit/receive clock 1 : Underflow signal of timer Aj	RW
	ACSE	Auto clear function select bit of transmit enable bit	0 : No auto clear function 1 : Auto clear at occurrence of bus collis	on RW
	SSS	Transmit start condition select bit	0 : Not synchronized to RXDi 1 : Synchronized to RXDi	RW
	— (b7)	No register bit. If necessary, s	et to 0. Read as undefined value	

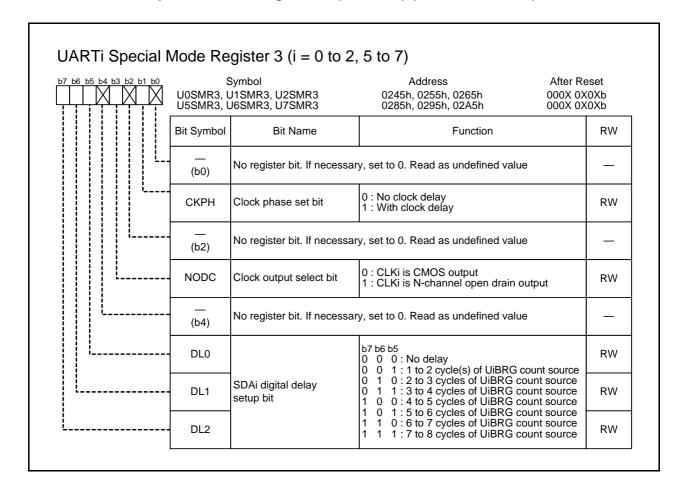
BBS (Bus Busy Flag) (b2)

The BBS bit is set to 0 by a program. (It remains unchanged even if 1 is written.)

ABSCS (Bus Collision Detect Sampling Clock Select Bit) (b4)

When the ABSCS bit is 1, the combinations of UARTi and timer Aj are as follows:

UART0, UART6: Underflow signal of timer A3 UART1, UART7: Underflow signal of timer A4 UART2, UART5: Underflow signal of timer A0


SSS (Transmit Start Condition Select Bit) (b6)

When a transmit starts, the SSS bit is set to 0 (not synchronized to RXDi).

23.2.11 UARTi Special Mode Register 2 (UiSMR2) (i = 0 to 2, 5 to 7)

07 b6 b5 b4 b3 b2 b1 b0	U0SMR2, L	Symbol J1SMR2, U2SMR2 J6SMR2, U7SMR2	Address 0246h, 0256h, 0266h 0286h, 0296h, 02A6h	After Reset X000 0000b X000 0000b
	Bit Symbol	Bit Name	Function	RW
	IICM2	I ² C mode select bit 2	See table 23.18 "I ² C Mode Fund	tions" RW
	csc	Clock synchronization bit	0 : Disabled 1 : Enabled	RW
	SWC	SCL wait output bit	0 : Disabled 1 : Enabled	RW
	ALS	SDA output stop bit	0 : Disabled 1 : Enabled	RW
	STAC	UARTi initialization bit	0 : Disabled 1 : Enabled	RW
	SWC2	SCL wait output bit 2	0: Transmit/receive clock 1: Low-level output	RW
	SDHI	SDA output disable bit	0: Enabled 1: Disabled (high-impedance)	RW

23.2.12 UARTi Special Mode Register 3 (UiSMR3) (i = 0 to 2, 5 to 7)

NODC (Clock Output Select Bit) (b3)

This function is used to set P-channel transistor of the COMS output buffer always off, but not to change the CLKi pin to open-drain output completely.

Check electrical characteristics for the input voltage range.

DL2-DL0 (SDAi Digital Delay Setup Bit) (b7-b5)

Bits DL2 to DL0 are used to generate a delay in SDAi output by digital means in I2C mode. Except for I²C mode, set these bits to 000b (no delay).

The amount of delay varies with the load on pins SCLi and SDAi. Also, when using an external clock, the amount of delay increases by about 100 ns.

23.2.13 UARTi Special Mode Register 4 (UiSMR4) (i = 0 to 2, 5 to 7)

6 b5 b4 b3 b2 b1 b0	U0SMR4, U	Symbol I1SMR4, U2SMR4 I6SMR4, U7SMR4	0244h, 0254h, 0264h	r Reset 00h 00h
	Bit Symbol	Bit Name	Function	RW
<u> </u>	STAREQ	Start condition generate bit	0 : Clear 1 : Start	RW
	RSTAREQ	Restart condition generate bit	0 : Clear 1 : Start	RW
	STPREQ	Stop condition generate bit	0 : Clear 1 : Start	RW
	STSPSEL	SCL, SDA output select bit	0 : Start and stop conditions not output 1 : Start and stop conditions output	RW
	ACKD	ACK data bit	0 : ACK 1 : NACK	RW
	ACKC	ACK data output enable bit	0 : Serial interface data output 1 : ACK data output	RW
	SCLHI	SCL output stop enable bit	0 : Disabled 1 : Enabled	RW
	SWC9	SCL wait bit 3	0 : SCL low hold disabled 1 : SCL low hold enabled	RW

STAREQ (Start Condition Generate Bit) (b0)

The STAREQ bit becomes 0 when the start condition is generated.

RSTAREQ (Restart Condition Generate Bit) (b1)

The RSTAREQ bit becomes 0 when the restart condition is generated.

STPREQ (Stop Condition Generate Bit) (b2)

The STPREQ bit becomes 0 when the stop condition is generated.

23.3 **Operations**

23.3.1 Clock Synchronous Serial I/O Mode

The clock synchronous serial I/O mode uses a transmit/receive clock to transmit/receive data. Table 23.5 lists the Clock Synchronous Serial I/O Mode Specifications.

Table 23.5 Clock Synchronous Serial I/O Mode Specifications

Item	Specification
Data format	Character bit length: 8 bits
Transmit/receive clock	CKDIR bit in the UiMR register = 0 (internal clock):
Transmission and reception control	Selectable from CTS function, RTS function or CTS/RTS function disabled
Transmission start conditions	To start transmission, satisfy the following requirements ⁽¹⁾ • The TE bit in the UiC1 register = 1 (transmission enabled) • The TI bit in the UiC1 register = 0 (data present in UiTB register) • If CTS function is selected, input on the CTSi pin is low.
Reception start conditions	To start reception, satisfy the following requirements (1) • The RE bit in the UiC1 register = 1 (reception enabled) • The TE bit in the UiC1 register = 1 (transmission enabled) • The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Interrupt request generation timing	Transmit interrupt: One of the following can be selected. The UiIRS bit = 0 (transmit buffer empty): When transferring data from the UiTB register to the UARTi transmit register (at start of transmission) The UiIRS bit =1 (transmission completed): When the serial interface completed sending data from the UARTi transmit register Receive interrupt: When transferring data from the UARTi receive register to the UiRB register (at completion of reception)
Error detection	Overrun error (2) This error occurs if the serial interface started receiving the next unit of data before reading the UiRB register and received the 7th bit of the next unit of data
Selectable functions	 CLK polarity selection Data input/output can be selected to occur synchronously with the rising or the falling edge of the transmit/receive clock LSB first, MSB first selection Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can be selected Continuous receive mode selection Reception is enabled immediately by reading the UiRB register Switching serial data logic This function reverses the logic value of the transmit/receive data Transmit/receive clock output from multiple pins selection (UART1) The output pin can be selected by a program by setting two UART1 transmit/receive clock pins. Separate CTS/RTS pins (UART0) CTS0 and RTS0 are input/output from separate pins

i = 0 to 2, 5 to 7

- When an external clock is selected, either of the following conditions must be met: If the CKPOL bit in the UiC0 register is 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transmit/receive clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register is 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transmit/ receive clock), the external clock is in the low state.
- If an overrun error occurs, the receive data of the UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.

Table 23.6 lists Pin Functions in Clock Synchronous Serial I/O Mode (Multiple Transmit/Receive Clock Output Pin Function Not Selected). Table 23.7 lists P6_4 Pin Functions in Clock Synchronous Serial I/O Mode.

Note that for a period from when UARTi operating mode is selected to when transmission starts, the TXDi pin outputs a high-level signal. (If N-channel open-drain output is selected, this pin is in high-impedance state.)

Table 23.6 Pin Functions in Clock Synchronous Serial I/O Mode (Multiple Transmit/Receive Clock **Output Pin Function Not Selected)**

Pin Name	I/O	Function	Method of Selection
TXDi	Output	Serial data output	(Outputs dummy data when performing reception only.)
RXDi	Input	Serial data input	Set the port direction bits sharing pins to 0.
	Input	Input port	Set the port direction bits to 0. (can be used as an input port
			when performing transmission only)
CLKi	Output	Transmit/receive	The CKDIR bit in the UiMR register = 0
		clock output	
	Input	Transmit/receive	The CKDIR bit in the UiMR register = 1
		clock input	Set the port direction bits sharing pins to 0.
CTSi/RTSi	Input	CTS input	The CRD bit in the UiC0 register = 0
			The CRS bit in the UiC0 register = 0
			Set the port direction bits sharing pins to 0.
	Output	RTS output	The CRD bit in the UiC0 register = 0
			The CRS bit in the UiC0 register = 1
	Input/	I/O port	The CRD bit in the UiC0 register = 1
	output		

i = 0 to 2, 5 to 7

Table 23.7 P6_4 Pin Functions in Clock Synchronous Serial I/O Mode

	Bit Set Value					
Pin Function	U1C0 Register		UCON Register			PD6 Register
	CRD	CRS	RCSP	CLKMD1	CLKMD0	PD6_4
P6_4	1	-	0	0	-	Input: 0, Output: 1
CTS1	0	0	0	0	-	0
RTS1	0	1	0	0	-	-
CTS0 (1)	0	0	1	0	-	0
CLKS1	-	-	-	1 (2)	1	-

⁻ indicates either 0 or 1

- 1. In addition to this, set the CRD bit in the U0C0 register to 0 (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to 1 (RTS0 selected).
- 2. When the CLKMD1 bit is 1 and the CLKMD0 bit is 0, the following logic levels are output.
 - •High if the CLKPOL bit in the U1C0 register is 0
 - •Low if the CLKPOL bit in the U1C0 register is 1

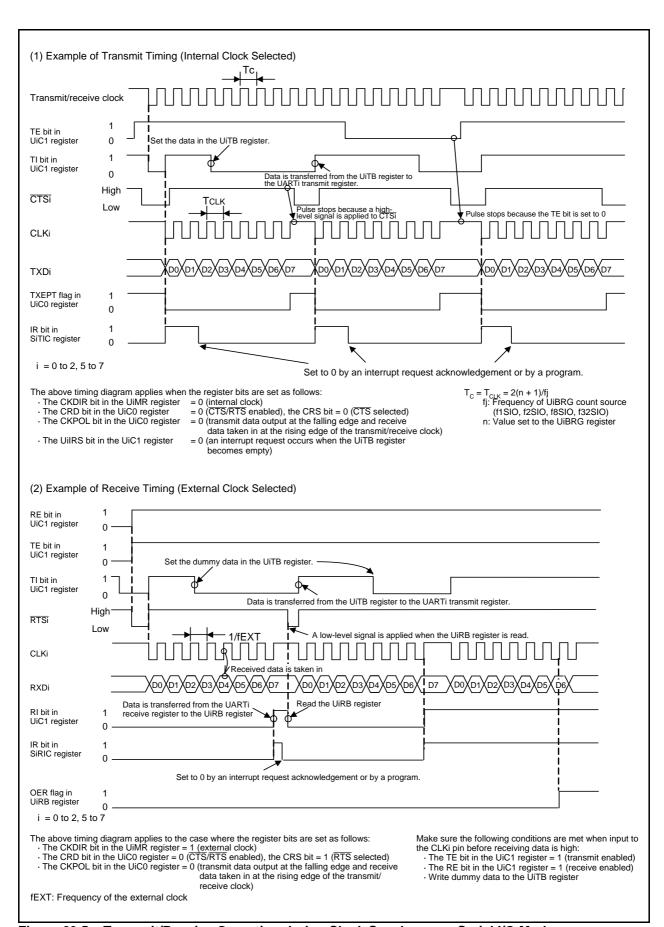

Table 23.8 lists Registers Used and Settings in Clock Synchronous Serial I/O Mode.

Table 23.8 Registers Used and Settings in Clock Synchronous Serial I/O Mode

Register	Bits	Function			
UiTB (2)	0 to 7	Set transmission data			
UiRB (2)	0 to 7	Reception data can be read.			
	OER	Overrun error flag			
UiBRG	0 to 7	Set bit rate.			
UiMR (2)	SMD2 to SMD0	Set to 001b.			
	CKDIR	Select the internal clock or external clock.			
	IOPOL	Set to 0.			
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register.			
	CRS	If CTS or RTS is used, select which function to use.			
	TXEPT	Fransmit register empty flag			
	CRD	Enable or disable the CTS or RTS function.			
	NCH	Select TXDi pin output mode. (1)			
	CKPOL	Select the transmit/receive clock polarity.			
	UFORM	Select LSB first or MSB first.			
UiC1	TE	Set to 1 to enable transmission/reception.			
	TI	Transmit buffer empty flag			
	RE	Set to 1 to enable reception.			
	RI	Reception complete flag			
	UjIRS	Select source of UARTj transmit interrupt.			
	UjRRM	Set to 1 to use continuous receive mode.			
	UiLCH	Set to 1 to use inverted data logic.			
	UiERE	Set to 0.			
UiSMR	0 to 7	Set to 0.			
UiSMR2	0 to 7	Set to 0.			
UiSMR3	0 to 2	Set to 0.			
	NODC	Select clock output mode.			
	4 to 7	Set to 0.			
UiSMR4	0 to 7	Set to 0.			
UCON	U0IRS	Select source of UART0 transmit interrupt.			
	U1IRS	Select source of UART1 transmit interrupt.			
	U0RRM	Set to 1 to use continuous receive mode.			
	U1RRM	Set to 1 to use continuous receive mode.			
	CLKMD0	Select the transmit/receive clock output pin when CLKMD1 is 1.			
	CLKMD1	Set to 1 to output UART1 transmit/receive clock from two pins.			
	RCSP	Set to 1 to separate the CTS0/RTS signal of UART0.			
	7	Set to 0.			
IFSR3A	IFSR34	Set to 0 to use UART5 transmit interrupt.			
	IFSR36	Set to 0 to use UART6 transmit interrupt.			
IFSR2A	IFSR25	Set to 0 to use UART7 transmit interrupt.			
	1	L			

i = 0 to 2, 5 to 7j = 2, 5 to 7

- The TXD2 pin is N channel open-drain output. Nothing is assigned in the NCH bit in the U2C0 1. register. If necessary, set to 0.
- 2. Set bits not listed above to 0 when writing to the registers in clock synchronous serial I/O mode.

Transmit/Receive Operation during Clock Synchronous Serial I/O Mode

23.3.1.1 Transmit/Receive Register Initialization

When the transmit/receive register needs to be initialized due to an interrupted transmission/ reception, follow the procedures below.

- Initializing the UiRB register (i = 0 to 2, 5 to 7)
 - (1) Set the RE bit in the UiC1 register to 0 (reception disabled).
 - (2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
 - (3) Set bits SMD2 to SMD0 in the UiMR register to 001b (clock synchronous serial I/O mode).
 - (4) Set the RE bit in the UiC1 register to 1 (reception enabled).
- Initializing the UiTB register (i = 0 to 2, 5 to 7)
 - (1) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
 - (2) Set bits SMD2 to SMD0 in the UiMR register to 001b (clock synchronous serial I/O mode).
 - (3) Write a 1 to the RE bit in the UiC1 register (transmission enabled), regardless of the value of the TE bit in the UiCi register.

23.3.1.2 **CLK Polarity Select Function**

Use the CKPOL bit in the UiC0 register (i = 0 to 2, 5 to 7) to select the transmit/receive clock polarity. Figure 23.6 shows the Transmit/Receive Clock Polarity.

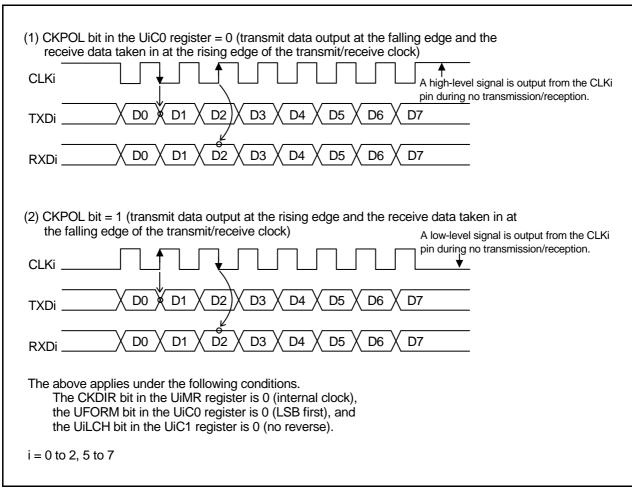


Figure 23.6 Transmit/Receive Clock Polarity

23.3.1.3 LSB First/MSB First Select Function

Use the UFORM bit in the UiC0 register (i = 0 to 2, 5 to 7) to select the bit order. Figure 23.7 shows the Bit Order.

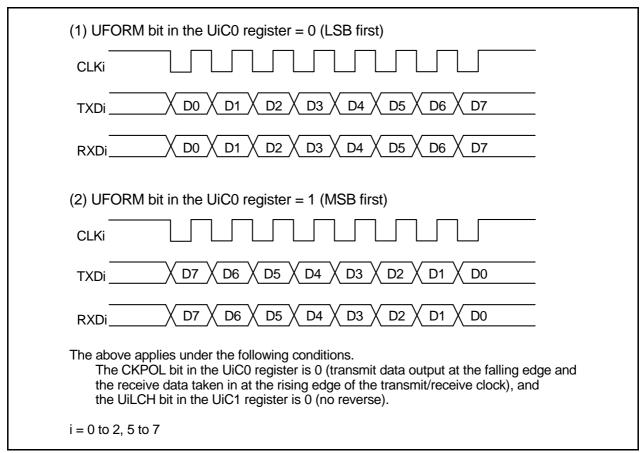
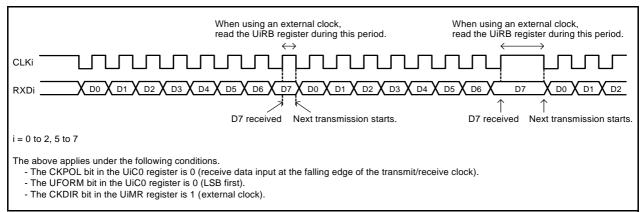


Figure 23.7 **Bit Order**


Continuous Receive Mode 23.3.1.4

In continuous receive mode, receive operation is enabled when the receive buffer register is read. It is not necessary to write dummy data to the transmit buffer register to enable receive operation in this mode. However, a dummy read of the receive buffer register is required when starting the operating mode.

When the UiRRM bit (i = 0 to 2, 5 to 7) is 1 (continuous receive mode), the TI bit in the UiC1 register is set to 0 (data present in the UiTB register) by reading the UiRB register. In this case (UiRRM bit = 1), do not write dummy data to the UiTB register by a program.

When using an external clock, read the UiRB register between the eighth bit of data is received and the next transmission starts.

Figure 23.8 shows Operation Example in Continuous Receive Mode.

Operation Example in Continuous Receive Mode

23.3.1.5 Serial Data Logic Switching Function

When the UiLCH bit in the UiC1 register (i = 0 to 2, 5 to 7) is 1 (reverse), the data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 23.9 shows Serial Data Logic.

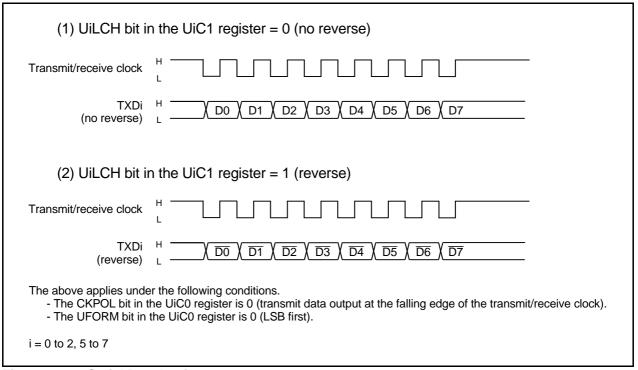


Figure 23.9 **Serial Data Logic**

23.3.1.6 Transmit/Receive Clock Output from Multiple Pins (UART1)

Use bits CLKMD1 to CLKMD0 in the UCON register to select one of the two transmit/receive clock output pins (see Figure 23.10). This function can be used when the selected transmit/receive clock for UART1 is an internal clock.

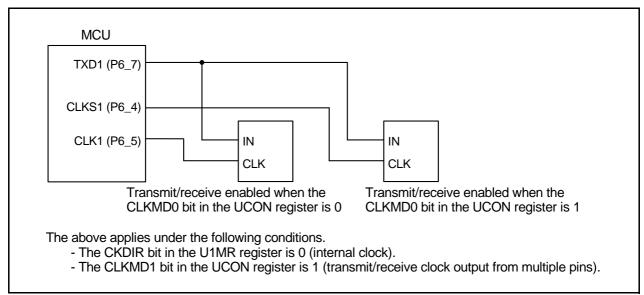


Figure 23.10 Transmit/Receive Clock Output from Multiple Pins

CTS/RTS Function 23.3.1.7

The CTS function is used to start transmit/receive operation when a low-level signal is applied to the CTSi/RTSi (i = 0 to 2, 5 to 7) pin. Transmit/receive operation begins when input to the CTSi/RTSi pin becomes low. If the low-level signal is switched to high during a transmit or receive operation, the operation stops before the next data.

For the RTS function, the CTSi/RTSi pin outputs a low-level signal when the MCU is ready to receive. The output level goes high on the first falling edge of the CLKi pin.

Refer to Table 23.6 "Pin Functions in Clock Synchronous Serial I/O Mode (Multiple Transmit/Receive Clock Output Pin Function Not Selected)".

CTS/RTS Separate Function (UART0) 23.3.1.8

This function separates CTS0/RTS0, outputs RTS0 from the P6 0 pin, and inputs CTS0 from the P6_4 pin. To use this function, set the register bits as shown below.

- The CRD bit in the U0C0 register= 0 (enable CTS/RTS of UART0)
- The CRS bit in the U0C0 register= 1 (output RTS of UART0)
- The CRD bit in the U1C0 register= 0 (enable CTS/RTS of UART1)
- The CRS bit in the U1C0 register= 0 (input CTS of UART1)
- The RCSP bit in the UCON register= 1 (inputs CTS0 from the P6_4 pin)
- The CLKMD1 bit in the UCON register= 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, CTS/RTS of UART1 function cannot be used.

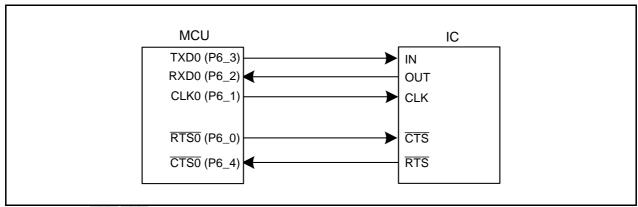


Figure 23.11 CTS/RTS Separate Function

Clock Asynchronous Serial I/O (UART) Mode 23.3.2

The UART mode allows transmitting and receiving data after setting the desired bit rate and bit order. Table 23.9 lists the UART Mode Specifications.

Table 23.9 UART Mode Specifications

Item	Specification			
Data format	• Character bits : Selectable from 7, 8, or 9 bits			
	• Start bit : 1 bit			
	Parity bit : Selectable from odd, even, or none			
	• Stop bit : Selectable from 1 bit or 2 bits			
Transmit/receive	• The CKDIR bit in the UiMR register = 0 (internal clock):			
clock	$\frac{fj}{16(n+1)}$ fj = f1SIO, f2SIO, f8SIO, f32SIO n: Setting value of UiBRG register 00h to FFh			
	CKDIR bit = 1 (external clock):			
	$\frac{\text{fEXT}}{16(n+1)}$ fEXT: Input from CLKi pin n: Setting value of UiBRG register 00h to FFh			
Transmission and reception control	Selectable from CTS function, RTS function or CTS/RTS function disabled			
Transmission	To start transmission, satisfy the following requirements.			
start conditions	• The TE bit in the UiC1 register = 1 (transmission enabled)			
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)			
	• If CTS function is selected, input on the CTSi pin is low.			
Reception start	To start reception, satisfy the following requirements.			
conditions	• The RE bit in the UiC1 register = 1 (reception enabled)			
	Start bit detection			
Interrupt request	Transmit interrupt: One of the following can be selected.			
generation timing	• The UilRS bit = 0 (transmit buffer empty): When transferring data from the UiTB register to the UARTi transmit register (at start of transmission)			
	• The UilRS bit =1 (transmission completed): When the serial interface completes sending data from the UARTi transmit register			
	Receive interrupt:			
	 When transferring data from the UARTi receive register to the UiRB register (at completion of reception) 			
Error detection	Overrun error (1)			
	This error occurs if the serial interface starts receiving the next unit of data before reading the UiRB register and receives the bit one before the last stop bit of the next unit of data.			
	• Framing error			
	This error occurs when the number of stop bits set is not detected			
	 Parity error This error occurs when the number of 1s of the parity bit and character bit does not match the set value of the PRY bit in the UiMR register. 			
	• Error sum flag			
	This flag is set to 1 when an overrun, framing, or parity error occurs.			
Selectable	• LSB first, MSB first selection			
functions	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can be selected			
	Serial data logic switch			
	This function reverses the logic of the transmit/receive data. The start and stop bits are not reversed.			
	• TXD, RXD I/O polarity switch			
	This function reverses the polarities of the TXD pin output and RXD pin input. The logic levels of all I/O			
	data are reversed.			
	Separate CTS/RTS pins (UART0) CTS0 and DTS0 are input (autout from concrete pins)			
	CTS0 and RTS0 are input/output from separate pins.			

i = 0 to 2, 5 to 7

Note:

If an overrun error occurs, the receive data of the UiRB register will be undefined. The IR bit in the SiRIC register 1. remains unchanged.

Table 23.10 lists I/O Pin Functions in UART Mode. Table 23.11 lists the P6_4 Pin Functions in UART Mode. Note that for a period from when the UARTi operating mode is selected to when transmission starts, the TXDi pin outputs a high-level signal. (If N-channel open-drain output is selected, this pin is in high-impedance state.)

Table 23.10 I/O Pin Functions in UART Mode

Pin Name	I/O	Function	Method of Selection
TXDi	Output	Serial data output	(High-level output when performing reception only.)
RXDi	Input	Serial data input	Set the port direction bits sharing pins to 0.
	Input	Input port	Set the port direction bits sharing pins to 0. (can be used as
			an input port when performing transmission only)
CLKi	Input/	Input/output port	The CKDIR bit in the UiMR register = 0
	output		
	Input	Transmit/receive	The CKDIR bit in the UiMR register = 1
		clock input	Set the port direction bits sharing pins to 0.
CTSi/RTSi	Input	CTS input	The CRD bit in the UiC0 register = 0
			The CRS bit in the UiC0 register = 0
			Set the port direction bits sharing pins to 0.
	Output	RTS output	The CRD bit in the UiC0 register = 0
			The CRS bit in the UiC0 register = 1
	Input/	I/O port	The CRD bit in the UiC0 register = 1
	output		

i = 0 to 2, 5 to 7

Table 23.11 P6_4 Pin Functions in UART Mode

	Bit Set Value					
Pin Function	U1C0 Register		UCON Register		PD6 Register	
	CRD	CRS	RCSP	CLKMD1	PD6_4	
P6_4	1	-	0	0	Input: 0, Output: 1	
CTS1	0	0	0	0	0	
RTS1	0	1	0	0	-	
CTS0 (1)	0	0	1	0	0	

⁻ indicates either 0 or1.

Note:

In addition to this, set the CRD bit in the U0C0 register to 0 (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to 1 (RTS0 selected).

Table 23.12 lists Registers Used and Settings in UART Mode.

Table 23.12 Registers Used and Settings in UART Mode

Register	Bits	Function
UiTB	0 to 8	Set transmission data. (1), (3)
UiRB	0 to 8	Reception data can be read. (1)
	OER, FER, PER, SUM	Error flag
UiBRG	0 to 7	Set bit rate.
UiMR	SMD2 to SMD0	Set to 100b when character bit length is 7 bits.
		Set to 101b when character bit length is 8 bits.
		Set to 110b when character bit length is 9 bits.
	CKDIR	Select the internal clock or external clock.
	STPS	Select number of stop bits.
	PRY, PRYE	Select whether parity is included and whether odd or even.
	IOPOL	Select the TXD/RXD input/output polarity.
UiC0	CLK0, CLK1	Select the count source for the UiBRG register.
	CRS	If CTS or RTS is used, select which function to use.
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function.
	NCH	Select TXDi pin output mode. (2)
	CKPOL	Set to 0.
	UFORM	LSB first or MSB first can be selected when character bit length is 8 bits. Set to 0
0.0		when character bit length is 7 or 9 bits.
UiC1	TE	Set to 1 to enable transmission.
	TI	Transmit buffer empty flag
	RE	Set to 1 to enable reception.
	RI	Reception complete flag
	UjIRS	Select source of UARTj transmit interrupt.
	UjRRM	Set to 0.
	UiLCH	Set to 1 to use reversed data logic.
	UiERE	Set to 0.
UiSMR	0 to 7	Set to 0.
UiSMR2	0 to 7	Set to 0.
UiSMR3	0 to 7	Set to 0.
UiSMR4	0 to 7	Set to 0.
UCON	U0IRS	Select source of UART0 transmit interrupt.
	U1IRS	Select source of UART1 transmit interrupt.
	U0RRM	Set to 0.
	U1RRM	Set to 0.
	CLKMD0	Invalid because CLKMD1 is 0
	CLKMD1	Set to 0.
	RCSP	Set to 1 to input CTSO signal of UARTO from the P6_4 pin.
	7	Set to 0.
IFSR3A	IFSR34	Set to 0 to use UART5 transmit interrupt.
	IFSR36	Set to 0 to use UART6 transmit interrupt.
ŀ		

i = 0 to 2, 5 to 7j = 2, 5 to 7

- The bits used for transmit/receive data are as follows: Bits 0 to 6 when character bit length is 7 bits; bits 0 to 1. 7 when character bit length is 8 bits; bits 0 to 8 when character bit length is 9 bits.
- 2. TXD2 pin is N channel open-drain output. Nothing is assigned in the NCH bit in the U2C0 register. If necessary, set to 0.
- The contents of bits 7 and 8 are undefined when character bit length is 7 bits. The contents of bit 8 is undefined when character bit length is 8 bits.

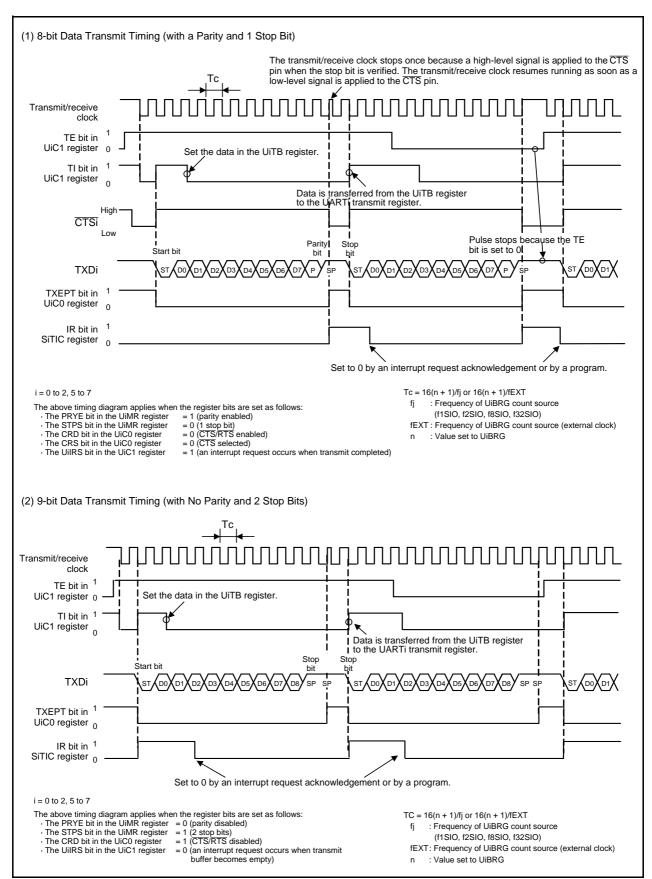


Figure 23.12 Transmit Timing in UART Mode

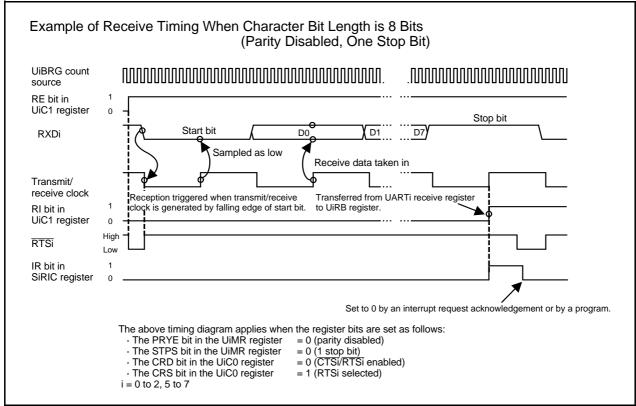


Figure 23.13 Receive Timing in UART Mode

23.3.2.1 **Bit Rate**

In UART mode, the frequency set by the UiBRG register (i = 0 to 2, 5 to 7) divided by 16 become the bit rate.

The setting value (n) of the UiBRG register is calculated by the following formula.

$$n = \frac{fj}{bitrate(bps) \times 16} - 1$$

fj = f1SIO, f2SIO, f8SIO, f32SIO

n = 00h to FFh

Table 23.13 lists Example Bit Rates and Settings.

Table 23.13 Example Bit Rates and Settings

Rit Pata	Bit Rate Count Source	Peripheral Function	Clock f1: 16 MHz	Peripheral Function	Clock f1: 24 MHz
(bps)	of UiBRG	Set Value of UiBRG: n	Bit Rate (bps)	Set value of UiBRG: n	Bit Rate (bps)
1200	f8SIO	103 (67h)	1202	155 (9Bh)	1202
2400	f8SIO	51 (33h)	2404	77 (4Dh)	2404
4800	f8SIO	25 (19h)	4808	38 (26h)	4808
9600	f1SIO	103 (67h)	9615	155 (9Bh)	9615
14400	f1SIO	68 (44h)	14493	103 (67h)	14423
19200	f1SIO	51 (33h)	19231	77 (4Dh)	19231
28800	f1SIO	34 (22h)	28571	51 (33h)	28846
31250	f1SIO	31 (1Fh)	31250	47 (2Fh)	31250
38400	f1SIO	25 (19h)	38462	38 (26h)	38462
51200	f1SIO	19 (13h)	50000	28 (1Ch)	51724

Note:

This applies when the OCOSEL0 bit or OCOSEL1 bit in the UCLKSEL0 register is 0 (f1). 1.

23.3.2.2 Transmit/Receive Register Initialization

When the transmit/receive register needs to be initialized due to an interrupted transmission/ reception, follow the procedures below.

- Initializing the UiRB register (i = 0 to 2, 5 to 7)
- (1) Set the RE bit in the UiC1 register to 0 (reception disabled).
- (2) Set the RE bit in the UiC1 register to 1 (reception enabled).
- Initializing the UiTB register
 - (1) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
 - (2) Reset bits SMD2 to SMD0 in the UiMR register to 001b, 101b, and 110b.
 - (3) Set 1 (transmission enabled), regardless of the set value of the TE bit in the UiC1 register.

23.3.2.3 LSB First/MSB First Select Function

As shown in Figure 23.14, the bit order can be selected by using the UFORM bit in the UiC0 register. This function is valid when the character bit length is 8 bits.

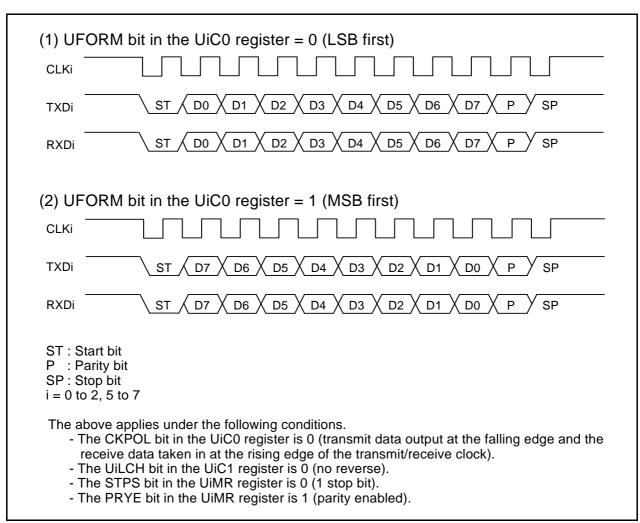


Figure 23.14 Bit Order

Serial Data Logic Switching Function 23.3.2.4

The logic of the data written to the UiTB register is reversed and then transmitted. Similarly, the reversed logic of the received data is read when the UiRB register is read. Figure 23.15 shows Serial Data Logic.

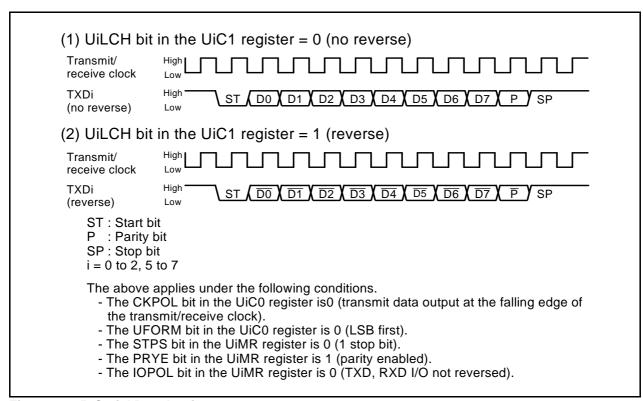


Figure 23.15 Serial Data Logic

TXD and RXD I/O Polarity Reverse Function 23.3.2.5

This function reverses the polarities of the TXDi pin output and RXDi pin input. The logic levels of all input/output data (including bits for start, stop, and parity) are reversed. Figure 23.16 shows TXD and RXD I/O Polarity Reversal.

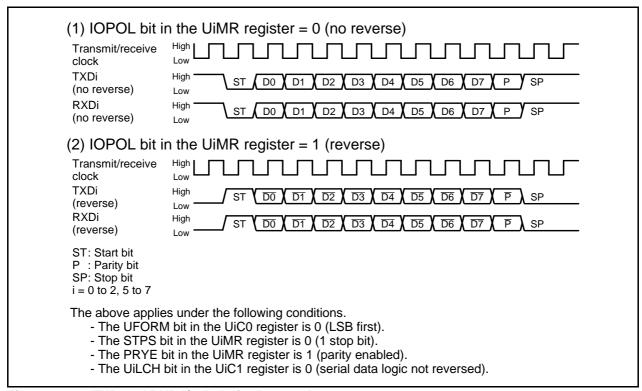


Figure 23.16 TXD and RXD I/O Polarity Reversal

CTS/RTS Function 23.3.2.6

The CTS function is used to start transmit operation when a low-level signal is applied to the CTSi/ RTSi (i = 0 to 2, 5 to 7) pin. Transmit operation begins when input to the CTSi/RTSi pin becomes low. If the low-level signal is switched to high during a transmit operation, the operation stops after the ongoing transmit/receive operation is completed.

When the RTS function is used, the CTSI/RTSi pin outputs a low-level signal when the MCU is ready to receive. The output level goes high when a start bit is detected.

Refer to Table 23.10 "I/O Pin Functions in UART Mode".

CTS/RTS Separate Function (UART0) 23.3.2.7

This function separates $\overline{\text{CTS0}}$ and $\overline{\text{RTS0}}$, outputs $\overline{\text{RTS0}}$ from the P6_0 pin, and inputs $\overline{\text{CTS0}}$ from the P6_4 pin. To use this function, set the register bits as shown below.

- The CRD bit in the U0C0 register= 0 (enable CTS/RTS of UART0)
- The CRS bit in the U0C0 register= 1 (output RTS of UART0)
- The CRD bit in the U1C0 register= 0 (enable CTS/RTS of UART1)
- The CRS bit in the U1C0 register= 0 (input CTS of UART1)
- The RCSP bit in the UCON register= 1 (inputs CTS0 from the P6_4 pin)
- The CLKMD1 bit in the UCON register= 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, CTS/RTS of UART1 function cannot be used.

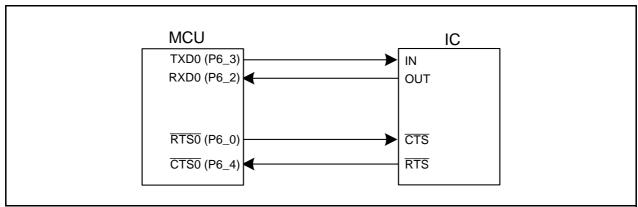


Figure 23.17 CTS/RTS Separate Function

23.3.3 Special Mode 1 (I²C mode)

I²C mode supports the simplified I²C interface. Table 23.14 lists the specifications of I²C mode. Table 23.16 and Table 23.17 list the registers used in I²C mode and the register settings. Table 23.18 lists the I²C Mode Specifications. Figure 23.18 shows I²C Mode Block Diagram. Figure 23.19 shows Transfer to **UiRB** Register and Interrupt Timing.

As shown in Table 23.18, the MCU is placed in I²C mode by setting bits SMD2 to SMD0 to 010b and the IICM bit to 1. Because SDAi transmit output has a delay circuit attached, SDAi output changes its state after SCLi goes low and remains stably low.

Table 23.14 I²C Mode Specifications

Item	Specification			
Data format	Character bit length: 8 bits			
Transmit/receive clock	Master mode CKDIR bit in the UiMR register = 0 (internal clock):			
	$\frac{fj}{2(n+1)}$ fj = f1SIO, f2SIO, f8SIO, f32SIO			
	n = setting value of the UiBRG register 00h to FFh • Slave mode			
	CKDIR bit = 1 (external clock): Input from the SCLi pin			
Transmission start	To start transmission, satisfy the following requirements. (1)			
conditions	• The TE bit in the UiC1 register = 1 (transmission enabled)			
	• The TI bit in the UiC1 register = 0 (data present in UiTB register)			
Reception start conditions	To start reception, satisfy the following requirements. (1)			
	• The RE bit in the UiC1 register = 1 (reception enabled)			
	• The TE bit in the UiC1 register = 1 (transmission enabled)			
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)			
Interrupt request	Transmission interrupt			
generation timing	Acknowledge undetected or transmit			
	Reception interrupt			
	Acknowledge undetected or receive			
	Start/stop condition detection interrupt			
	Start or stop condition detected			
Error detection	Overrun error (2)			
	This error occurs if the serial interface starts receiving the next unit of data			
	before reading the UiRB register and receives the 8th bit of the unit of next			
	data.			
Selectable functions	• Arbitration lost			
	Timing that the ABT bit in the UiRB register is updated can be selected.			
	SDAi digital delay			
	No digital delay or a delay of 2 to 8 UiBRG count source clock cycles can			
	be selected.			
	Clock phase setting With an without clock delay can be selected.			
	With or without clock delay can be selected.			

i = 0 to 2, 5 to 7

- When an external clock is selected, the conditions must be met while the external clock is in the 1. high state.
- If an overrun error occurs, the received data of the UiRB register will be undefined.

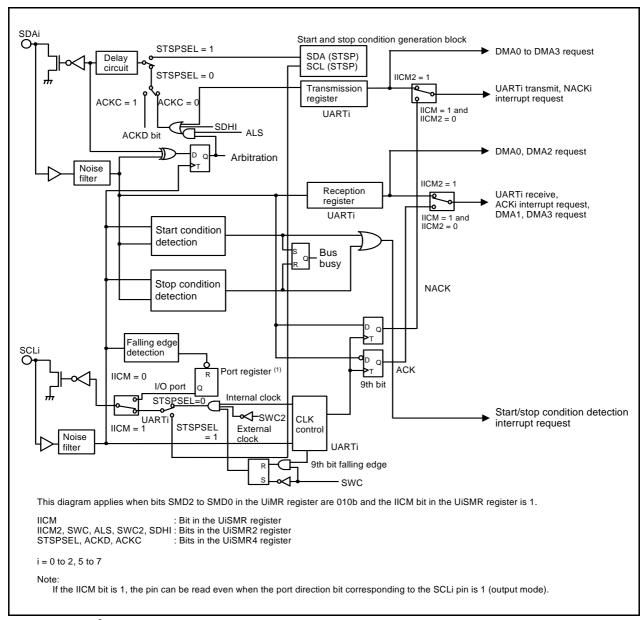


Figure 23.18 I²C Mode Block Diagram

Table 23.15 I/O Pin Functions in I²C Mode

Pin Name	I/O	Function
SCLi	Input/output	Clock Input or output
SDAi	Input/output	Data Input or output

i = 0 to 2, 5 to 7

Note:

Pins CLKi and CTSi/RTSi are not used. (They can be used as I/O ports.)

Table 23.16 Registers Used and Settings in I²C Mode (1/2)

<u> </u>	Bits	Function		
Register		Master	Slave	
UiTB	0 to 7	Set transmission data. Set transmission data.		
UiRB (2)	0 to 7	Reception data can be read.	Reception data can be read.	
	8	ACK or NACK is set in this bit.	ACK or NACK is set in this bit.	
	ABT	Arbitration lost detection flag	Invalid	
	OER	Overrun error flag	Overrun error flag	
UiBRG	0 to 7	Set a bit rate.	Invalid	
UiMR (2)	SMD2 to SMD0	Set to 010b.	Set to 010b.	
	CKDIR	Set to 0.	Set to 1.	
	IOPOL	Set to 0.	Set to 0.	
UiC0	CLK1, CLK0	Select the count source for the UiBRG register.	Invalid	
	CRS	Invalid because CRD is 1	Invalid because CRD is 1	
	TXEPT	Transmit register empty flag	Transmit register empty flag	
	CRD (3)	Set to 1.	Set to 1.	
	NCH	Set to 1. (1)	Set to 1. ⁽¹⁾	
	CKPOL	Set to 0.	Set to 0.	
	UFORM	Set to 1.	Set to 1.	
UiC1	TE	Set to 1 to enable transmission.	Set to 1 to enable transmission.	
	TI	Transmit buffer empty flag	Transmit buffer empty flag	
	RE	Set to 1 to enable reception.	Set to 1 to enable reception.	
	RI	Reception complete flag	Reception complete flag	
	UjIRS	Set to 1.	Set to 1.	
	UjRRM, UiLCH, UiERE	Set to 0.	Set to 0.	
UiSMR	IICM	Set to 1.	Set to 1.	
	ABC	Select the timing that arbitration lost is detected.	Invalid	
	BBS	Bus busy flag	Bus busy flag	
	3 to 7	Set to 0.	Set to 0.	
UiSMR2	IICM2	See Table 23.18 "I ² C Mode Functions".	See Table 23.18 "I ² C Mode Functions".	
	CSC	Set to 1 to enable clock synchronization.	Set to 0.	
	SWC	Set to 1 to fix SCLi output to low at the falling edge of the 9th bit of clock.	Set to 1 to fix SCLi output to low at the falling edge of the 9th bit of clock.	
	ALS	Set to 1 to stop SDAi output when arbitration lost is detected.	Set to 0.	
	STAC	Set to 0.	Set to 1 to initialize UARTi at start condition detection.	
	SWC2	Set to 1 to forcibly pull SCLi output low.	Set to 1 to forcibly pull SCLi output low.	
	SDHI	Set to 1 to disable SDAi output.	Set to 1 to disable SDAi output.	
	7	Set to 0.	Set to 0.	

i = 0 to 2, 5 to 7j = 2, 5 to 7

- The TXD2 pin is N channel open-drain output. Nothing is assigned in the NCH bit in the U2C0 register. If 1. necessary, set to 0.
- 2. Set the bits not listed above to 0 when writing in I²C mode.
- 3. when using UART1 in I²C mode, to enable the CTS/RTS separate function of UART0, set the CRD bit in the U1C0 register to 0 (CTS/RTS enabled) and the CRS bit to 0 (CTS input).

Registers Used and Settings in I²C Mode (2/2)

UISMR3	Б	Bits	Function			
NODC	Register		Master	Slave		
DL2 to DL0 Set the amount of SDAi digital delay. UISMR4 STAREQ Set to 1 to generate start condition. RSTAREQ Set to 1 to generate restart condition. STPREQ Set to 1 to generate restart condition. STPREQ Set to 1 to generate stop condition. STPSEL Set to 1 to generate stop condition. STSPSEL Set to 1 to output each condition. STSPSEL Set to 1 to output ack double set to 0. ACKD Select ACK or NACK. ACKC Set to 1 to output ACK data. SCLHI Set to 1 to stop SCLi output when stop condition is detected. SWC9 Set to 0. Set to 0. SWC9 Set to 1. UINRS Set to 1. Set to 1. Set to 1. UIRS Set to 1. UIRS Set to 0. CLKMD0 Set to 0. CLKMD0 Set to 0. Set to 0. CLKMD1 Set to 0. CLKMD1 Set to 0. RCSP Set to 0. Set to 0	UiSMR3		Set to 0.	Set to 0.		
UISMR4 RSTAREQ Set to 1 to generate start condition. Set to 0. STPREQ Set to 1 to generate restart condition. Set to 0. STPREQ Set to 1 to generate stop condition. Set to 0. STSPSEL Set to 1 to output each condition. Set to 0. ACKD Select ACK or NACK. ACKD Select ACK or NACK. Select ACK or NACK. ACKC Set to 1 to stop SCLi output when stop condition is detected. SWC9 Set to 0. Set to 1. UIRS Set to 1. UIRRM Set to 0. CLKMD0 Set to 0. Set to 0. Set to 0. CLKMD0 Set to 0. IFSR33 Set to 0. IFSR34 Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR37 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR38 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR37 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR38 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR39 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR39 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR39 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR30 Set to 0 when UART7 start and stop condition detection interrupts are used. Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR21 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR30 Set to 0 when UART7 start and stop condition detecti		СКРН	See Table 23.18 "I ² C Mode Functions".	See Table 23.18 "I ² C Mode Functions".		
RSTAREQ Set to 1 to generate restart condition. STPREQ Set to 1 to generate stop condition. STPREQ Set to 1 to output each condition. SET to 0. STSPSEL Set to 1 to output each condition. ACKD Select ACK or NACK. ACKC Set to 1 to output ACK data. SCLHI Set to 1 to stop SCLi output when stop condition is detected. SWC9 Set to 0. UCON UOIRS Set to 1. U1IRS Set to 1. U1IRS Set to 1. U0RRM Set to 0. Set to 0. Set to 0. U1RRM Set to 0. CLKMDD Set to 0. SET		DL2 to DL0	Set the amount of SDAi digital delay.	Set the amount of SDAi digital delay.		
STPREQ Set to 1 to generate stop condition. STSPSEL Set to 1 to output each condition. STSPSEL Set to 1 to output each condition. SET to 0. STSPSEL Set to 1 to output each condition. SET to 0. SEL to 0. SEL to 1 to output ACK data. SEL to 0. SEL to 0. SEL to 0. SEL to 1 to set the SCL to remain low at the falling edge of the 9th bit of clock. SWC9 Set to 1. UOIRS Set to 1. UIRS Set to 1. SEL TO 1. UORRM SEL TO 0. SE	UiSMR4	STAREQ	Set to 1 to generate start condition.	Set to 0.		
STSPSEL Set to 1 to output each condition. Set to 0. ACKD Select ACK or NACK. Select ACK or NACK. ACKC Set to 1 to output ACK data. Set to 1 to output ACK data. SCLHI Set to 1 to stop SCLi output when stop condition is detected. SWC9 Set to 0. Set to 1 to set the SCLi to remain low a the falling edge of the 9th bit of clock. UCON UIRS Set to 1. Set to 1. UIRS Set to 0. Set to 0. UIRRM Set to 0. Set to 0. CLKMD0 Set to 0. Set to 0. CLKMD1 Set to 0. Set to 0. CLKMD1 Set to 0. Set to 0. CLKMD1 Set to 0. Set to 0. RCSP Set to 0. Set to 0. IFSR3A Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR35 Set to 0 when UART6 NACK interrupt is used. IFSR26 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used.		RSTAREQ	Set to 1 to generate restart condition.	Set to 0.		
ACKD Select ACK or NACK. ACKC Set to 1 to output ACK data. SCLHI Set to 1 to stop SCLi output when stop condition is detected. SWC9 Set to 0. Set to 1 to set the SCLi to remain low a the falling edge of the 9th bit of clock. UCON UOIRS Set to 1. UORRM Set to 0. Set to 1. Set to 1. Set to 1. Set to 0. U1RRM Set to 0. Set to 0. CLKMD0 Set to 0. CLKMD1 Set to 0. RCSP Set to 0. T Set to 0. IFSR34 Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR35 Set to 0 when UART6 NACK interrupt is used. IFSR36 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR24 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR25 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR26 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART7 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART7 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are u		STPREQ	Set to 1 to generate stop condition.	Set to 0.		
ACKC Set to 1 to output ACK data. Set to 1 to output ACK data. SCLHI Set to 1 to stop SCLi output when stop condition is detected. SWC9 Set to 0. Set to 1 to set the SCLi to remain low a the falling edge of the 9th bit of clock. UCON U0IRS Set to 1. Set to 1. U1IRS Set to 1. U0RRM Set to 0. Set to 0. U1RRM Set to 0. Set to 0. Set to 0. CLKMDO Set to 0. CLKMDO Set to 0. Set to 0. CLKMDO Set to 0. Set to 0. Set to 0. Set to 0. CLKMD1 Set to 0. Set to 0. Set to 0. RCSP Set to 0. Set to 0. Set to 0. IFSR34 IFSR33 Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR34 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR37 Set to 0 when UART7 start and stop condition detection interrupts are used. Set to 0 when UART6 NACK interrupt is used. IFSR37 Set to 0 when UART7 NACK interrupt is used. IFSR38 Set to 0 when UART7 Start and stop condition detection interrupts are used. Set to 0 when UART6 NACK interrupt is used. IFSR39 Set to 0 when UART7 Start and stop condition detection interrupts are used. Set to 0 when UART7 NACK interrupt is used. IFSR26 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR25 Set to 0 when UART7 Start and stop condition detection interrupts are used. IFSR26 Set to 1 when UART7 Start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used.		STSPSEL	Set to 1 to output each condition.	Set to 0.		
SCLHI Set to 1 to stop SCLi output when stop condition is detected. SWC9 Set to 0. Set to 1 to set the SCLi to remain low a the falling edge of the 9th bit of clock. UCON UIRS Set to 1. Set to 1. Set to 1. UIRS Set to 0. Set to 0. UIRRM Set to 0. Set to 0. Set to 0. CLKMDO Set to 0. Set to 0. CLKMDO Set to 0. Set to 0. CLKMDI Set to 0. Set to 0. Set to 0. To Set to 0. Set to 0. Set to 0. To		ACKD	Select ACK or NACK.	Select ACK or NACK.		
Condition is detected.		ACKC	Set to 1 to output ACK data.	Set to 1 to output ACK data.		
UCON UIRS Set to 1. UIRS Set to 1. UIRS Set to 0. UIRRM Set to 0. UIRRM Set to 0. Set to 0. CLKMD0 Set to 0. CLKMD1 Set to 0. RCSP Set to 0. IFSR34 IFSR34 Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupt is used. IFSR36 IFSR36 Set to 0 when UART7 start and stop condition detection interrupt is used. IFSR24 IFSR25 Set to 0 when UART7 start and stop condition detection interrupt is used. IFSR26 Set to 0 when UART7 start and stop condition detection interrupt is used. IFSR26 Set to 0 when UART7 start and stop condition detection interrupt is used. IFSR27 Set to 1 when UART7 start and stop condition detection interrupt is used. Set to 0 when UART7 start and stop condition detection interrupt is used. Set to 0 when UART7 start and stop condition detection interrupt is used. Set to 0 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 NACK interrupt is used. IFSR26 Set to 1 when UART7 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART7 start and stop condition detection interrupts are used. Set to 1 when UART3 start and stop condition detection interrupts are used. Set to 1 when UART3 start and stop condition detection interrupts are used. Set to 1 when UART3 start and stop condition detection interrupts are used.		SCLHI		Set to 0.		
U1IRS Set to 1. U0RRM Set to 0. U1RRM Set to 0. CLKMD0 Set to 0. CLKMD1 Set to 0. RCSP Set to 0. Set to 0. Set to 0. RCSP Set to 0. Set to 0. IFSR3A IFSR33 Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR34 Set to 0 when UART5 NACK interrupt is used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR37 Set to 0 when UART6 NACK interrupt is used. IFSR38 Set to 0 when UART6 NACK interrupt is used. IFSR39 Set to 0 when UART6 NACK interrupt is used. IFSR39 Set to 0 when UART6 NACK interrupt is used. IFSR40 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR50 Set to 0 when UART7 NACK interrupt is used. IFSR60 Set to 1 when UART7 NACK interrupt is used. IFSR60 Set to 1 when UART7 start and stop condition detection interrupts are used. IFSR79 Set to 1 when UART7 start and stop condition detection interrupts are used. IFSR70 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR71 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop condition detection interrupts are used.		SWC9	Set to 0.	Set to 1 to set the SCLi to remain low at the falling edge of the 9th bit of clock.		
U0RRM Set to 0. U1RRM Set to 0. Set to 0. CLKMD0 Set to 0. CLKMD1 Set to 0. RCSP Set to 0. 7 Set to 0. Set to 0. IFSR3A IFSR33 Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR34 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR37 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR24 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR25 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR26 Set to 0 when UART7 NACK interrupt is used. IFSR27 Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop Condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop Condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop Condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop Condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop Condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop Condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop Condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop Condition detection interrupts are used. IFSR28 Set to 1 when UART1 start and stop Condition detection interrupts are used. IFSR29 Set to	UCON	U0IRS	Set to 1.	Set to 1.		
U1RRM Set to 0. CLKMD0 Set to 0. CLKMD1 Set to 0. RCSP Set to 0. 7 Set to 0. Set to 0. Set to 0. 7 Set to 0. Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR34 Set to 0 when UART5 NACK interrupt is used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR37 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR24 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR25 Set to 0 when UART7 NACK interrupt is used. IFSR26 Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART0 start and stop condition detection interrupt is used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used.		U1IRS	Set to 1.	Set to 1.		
CLKMD0 Set to 0. CLKMD1 Set to 0. RCSP Set to 0. 7 Set to 0. IFSR3A IFSR33 Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR34 Set to 0 when UART5 NACK interrupt is used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR24 Set to 0 when UART6 NACK interrupt is used. IFSR25 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR26 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR26 Set to 1 when UART7 NACK interrupt is used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART0 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used.		U0RRM	Set to 0.	Set to 0.		
CLKMD1 Set to 0. RCSP Set to 0. 7 Set to 0. IFSR3A IFSR33 Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR34 Set to 0 when UART5 NACK interrupt is used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR28 IFSR24 Set to 0 when UART6 NACK interrupt is used. IFSR29 Set to 0 when UART6 NACK interrupt is used. IFSR20 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR21 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR22 Set to 0 when UART7 NACK interrupt is used. IFSR25 Set to 0 when UART7 NACK interrupt is used. IFSR26 Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop condition detection interrupts are used.		U1RRM	Set to 0.	Set to 0.		
RCSP Set to 0. 7 Set to 0. Set to 0. Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR34 Set to 0 when UART5 NACK interrupt is used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR24 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR25 Set to 0 when UART7 start and stop condition detection interrupt is used. IFSR26 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART0 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used.		CLKMD0	Set to 0.	Set to 0.		
To Set to 0. Set to 0.		CLKMD1	Set to 0.	Set to 0.		
IFSR3A Set to 0 when UART5 start and stop condition detection interrupts are used. IFSR34 Set to 0 when UART5 NACK interrupt is used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR24 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR25 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR26 Set to 0 when UART7 NACK interrupt is used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop Set to 1 when UART		RCSP	Set to 0.	Set to 0.		
Condition detection interrupts are used. IFSR34 Set to 0 when UART5 NACK interrupt is used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR37 Set to 0 when UART6 NACK interrupt is used. IFSR38 IFSR24 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR25 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR26 Set to 0 when UART7 NACK interrupt is used. IFSR27 Set to 1 when UART0 start and stop condition detection interrupts are used. Set to 1 when UART0 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop Set to 1 when UART1		7	Set to 0.	Set to 0.		
IFSR34 Set to 0 when UART5 NACK interrupt is used. IFSR35 Set to 0 when UART6 start and stop condition detection interrupts are used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR24 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR25 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR26 Set to 0 when UART7 NACK interrupt is used. IFSR26 Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop condition detection interrupts are used.	IFSR3A	IFSR33	•	1		
condition detection interrupts are used. IFSR36 Set to 0 when UART6 NACK interrupt is used. IFSR2A IFSR24 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR25 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR26 Set to 0 when UART7 NACK interrupt is used. IFSR27 Set to 1 when UART0 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop Set		IFSR34	Set to 0 when UART5 NACK interrupt is	Set to 0 when UART5 NACK interrupt		
IFSR2A IFSR24 Set to 0 when UART6 NACK interrupt is used. Set to 0 when UART6 NACK interrupt is used. IFSR2A IFSR24 Set to 0 when UART7 start and stop condition detection interrupts are used. IFSR25 Set to 0 when UART7 NACK interrupt is used. IFSR26 Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR26 Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 0 when UART7 NACK interrupt is used. Set to 0 when UART7 NACK interrupt is used. Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop		IFSR35	·	•		
condition detection interrupts are used. IFSR25 Set to 0 when UART7 NACK interrupt is used. IFSR26 Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop condition detection interrupts are used. Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop		IFSR36	Set to 0 when UART6 NACK interrupt is	Set to 0 when UART6 NACK interrupt		
IFSR25 Set to 0 when UART7 NACK interrupt is used. IFSR26 Set to 1 when UART0 start and stop condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop	IFSR2A	IFSR24	•	·		
condition detection interrupts are used. condition detection interrupts are used. IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop		IFSR25	Set to 0 when UART7 NACK interrupt is	Set to 0 when UART7 NACK interrupt		
IFSR27 Set to 1 when UART1 start and stop Set to 1 when UART1 start and stop		IFSR26	·	Set to 1 when UART0 start and stop condition detection interrupts are used.		
		IFSR27	·	-		

i = 0 to 2, 5 to 7

In I2C mode, the functions and timings vary depending on the combination of the IICM2 bit in the UiSMR2 register and CKPH bit in the UiSMR3 register. Figure 23.19 shows Transfer to UiRB Register and Interrupt Timing. Refer to Figure 23.19 for the timing of transferring to the UiRB register, the bit position of the data stored in the UiRB register, types of interrupts, interrupt requests and DMA request generation timing.

Table 23.18 "I²C Mode Functions" lists comparison of other functions in clock synchronous serial I/O mode with I²C mode.

Table 23.18 I²C Mode Functions

Function	Clock Synchronous Serial	I ² C Mode (SMD2 to S	MD0 = 010b, IICM = 1)	
	I/O Mode (SMD2 to SMD0 = 001b, IICM = 0)	IICM2 = 0 (NACK/ACK Interrupt))	IICM2 = 1 (UART Transmit/Rece	eive Interrupt)
		CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)
Start and stop condition detection interrupts	-		on or stop condition de		
Transmission, NACK interrupt (2)	UARTi transmission Transmission started or completed (selected by UiIRS)	No acknowledgment detection (NACK) Rising edge of SCLi 9	oth bit	UARTi transmission Rising edge of SCLi 9th bit	UARTi transmission Falling edge of SCLi next to the 9th bit
Reception, ACK interrupt (2)	UARTi reception When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Acknowledgment detection (ACK) Rising edge of SCLi 9th bit		UARTi reception Falling edge of SCLi 9th bit	
Timing for transferring data from UART reception shift register to UiRB register	CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Rising edge of SCLi 9	oth bit	Falling edge of SCLi 9th bit	Falling and rising edges of SCLi 9th bit
UARTi transmission output delay	Not delayed	Delayed			
Noise filter width	15 ns	200 ns			
Read RXDi and SCLi pin levels	Possible when the corresponding port direction bit = 0	Always possible no m	atter how the correspo	onding port direction bit	is set
Initial value of TXDi and SDAi outputs	CKPOL = 0 (high) CKPOL = 1 (low)	The value set in the p	ort register before sett	ing I ² C mode ⁽¹⁾	
Initial and end values of SCLi	-	High	Low	High	Low
DMA1, DMA3 Factor (2)	UARTi reception	Acknowledgment dete	ection (ACK)	UARTi reception Falling edge of SCLi	9th bit
Read received data	1st to 8th bits of the received data are stored in bits 0 to 7 in the UiRB register.	1st to 8th bits of the restored in bits 7 to 0 in		1st to 7th bits of the received data are stored in bits 6 to 0 in the UiRB register. 8th bit is stored into bit 8 in the UiRB register.	When reading by reception interrupt, 1st to 7th bits of the received data are stored in bits 6 to 0 in the UiRB register. 8th bit is stored into bit 8 in the UiRB register. When reading by transmission interrupt, 1st to 8th bits are stored into bits 7 to 0 in the UiRB register.

i = 0 to 2, 5 to 7

- Set the initial value of SDAi output while bits SMD2 to SMD0 in the UiMR register are 000b (serial interface
- See Figure 23.19 "Transfer to UiRB Register and Interrupt Timing".

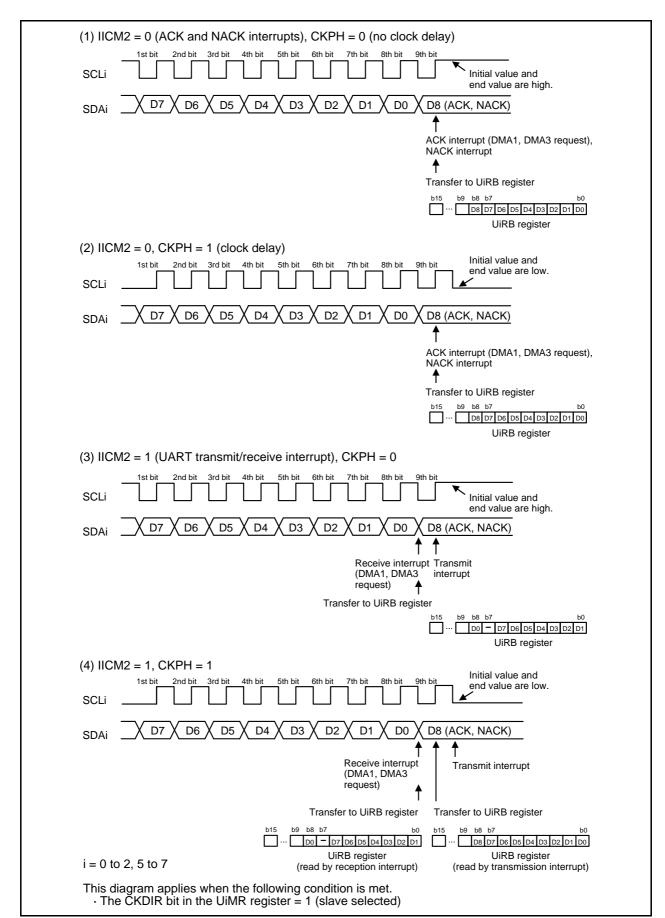


Figure 23.19 Transfer to UiRB Register and Interrupt Timing

23.3.3.1 **Detection of Start and Stop Conditions**

Whether a start or a stop condition has been detected is determined.

A start condition detect interrupt request is generated when the SDAi pin changes state from high to low while the SCLi pin is in the high state. A stop condition detect interrupt request is generated when the SDAi pin changes state from low to high while the SCLi pin is in the high state.

Because the start and stop condition detect interrupts share an interrupt control register and vector, check the BBS bit in the UiSMR register to determine which interrupt source is requesting the interrupt.

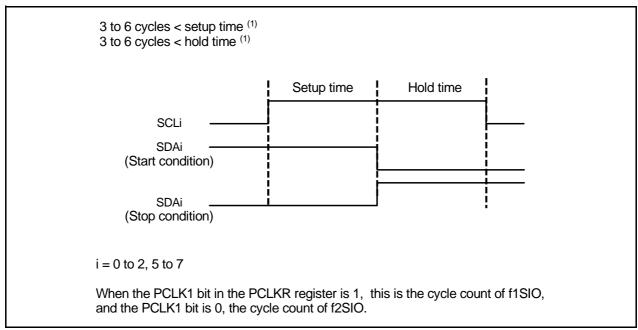


Figure 23.20 Detection of Start and Stop Conditions

23.3.3.2 **Output of Start and Stop Conditions**

A start condition is generated by setting the STAREQ bit in the UiSMR4 register (i = 0 to 2, 5 to 7) to

A restart condition is generated by setting the RSTAREQ bit in the UiSMR4 register to 1 (start).

A stop condition is generated by setting the STPREQ bit in the UiSMR4 register to 1 (start).

The output procedure is as follows.

- (1) Set the STAREQ bit, RSTAREQ bit, or STPREQ bit to 1 (start).
- (2) Set the STSPSEL bit in the UiSMR4 register to 1 (output).

The functions of the STSPSEL bit are shown in Table 23.19 and Figure 23.21.

Table 23.19 STSPSEL Bit Functions

Function	STSPSEL = 0	STSPSEL = 1
Output of pins SCLi and SDAi	Output of transmit/receive clock and data Output of start/stop condition is accomplished by a program using ports (not automatically generated in hardware).	Output of a start/stop condition according to bits STAREQ, RSTAREQ, and STPREQ
Start/stop condition interrupt request generation timing	Detection of start/stop condition	Completion of start/stop condition generation

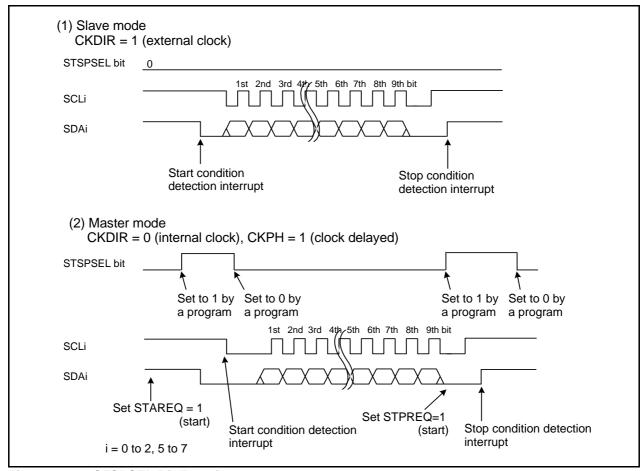


Figure 23.21 STSPSEL Bit Functions

23.3.3.3 **Arbitration**

Unmatching of the transmit data and SDAi pin input data is checked in synchronization with the rising edge of SCLi. Use the ABC bit in the UiSMR register to select the point at which the ABT bit in the UiRB register is updated. If the ABC bit is 0 (update per bit), the ABT bit is set to 1 at the same time unmatching is detected during check, and is set to 0 when not detected. If the ABC bit is set to 1, if unmatching is ever detected, the ABT bit is set to 1 (unmatching detected) at the falling edge of the clock pulse of the 9th bit. If the ABT bit needs to be updated per byte, set the ABT bit to 0 (undetected) after detecting acknowledge for the first byte, before transmitting/receiving the next byte.

Setting the ALS bit in the UiSMR2 register to 1 (SDA output stop enabled) causes an arbitration-lost to occur, in which case the SDAi pin is placed in the high-impedance state at the same time the ABT bit is set to 1 (unmatching detected).

Transmit/Receive Clock 23.3.3.4

The transmit/receive clock is used to transmit/receive data as is shown in Figure 23.19.

The CSC bit in the UiSMR2 register is used to synchronize an internally generated clock (internal SCLi) and an external clock supplied to the SCLi pin. If the CSC bit is set to 1 (clock synchronization enabled), if a falling edge on the SCLi pin is detected while the internal SCLi is high, the internal SCLi goes low, at which time the value of the UiBRG register is reloaded with and starts counting the lowlevel intervals. If the internal SCLi changes state from low to high while the SCLi pin is low, counting stops, and when the SCLi pin goes high, counting restarts.

In this way, the UARTi transmit/receive clock is equivalent to AND of the internal SCLi and the clock signal applied to the SCLi pin. The transmit/receive clock works from a half cycle before the falling edge of the internal SCLi 1st bit to the rising edge of the 9th bit. To use this function, select an internal clock for the transmit/receive clock.

The SWC bit in the UiSMR2 register determines whether the SCLi pin is fixed low or freed from lowlevel output at the falling edge of the 9th clock pulse.

If the SCLHI bit in the UiSMR4 register is set to 1 (enabled), SCLi output is turned off (placed in the high-impedance state) when a stop condition is detected.

When the SWC2 bit in the UiSMR2 register is set to 1 (0 output), a low-level signal can be forcibly output from the SCLi pin even while transmitting or receiving data. When the SWC2 bit is set to 0 (transmit/receive clock), a low-level signal output from the SCLi pin is cancelled, and the transmit/ receive clock is input and output.

If the SWC9 bit in the UiSMR4 register is set to 1 (SCL hold low enabled) when the CKPH bit in the UiSMR3 register is 1, the SCLi pin is fixed low at the falling edge of the clock pulse next to the 9th. Setting the SWC9 bit to 0 (SCL hold low disabled) frees the SCLi pin from low-level output.

23.3.3.5 SDA Output

The data written to bits 7 to 0 (D7 to D0) in the UiTB register is output in descending order from D7. The 9th bit (D8) is ACK or NACK.

Set the initial value of SDAi transmit output when IICM is 1 (I2C mode) and bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).

Bits DL2 to DL0 in the UiSMR3 register allow addition of no delays or a delay of 2 to 8 UiBRG count source clock cycles to the SDAi output.

Setting the SDHI bit in the UiSMR2 register to 1 (SDA output disabled) forcibly places the SDAi pin in the high-impedance state. Do not write to the SDHI bit at the rising edge of the UARTi transmit/ receive clock. This is because the ABT bit may inadvertently be set to 1 (detected).

23.3.3.6 SDA Input

When the IICM2 bit is 0, the 1st to 8th bits (D7 to D0) of received data are stored in bits 7 to 0 in the UiRB register. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit is 1, the 1st to 7th bits (D7 to D1) of received data are stored in bits 6 to 0 in the UiRB register and the 8th bit (D0) is stored in bit 8 in the UiRB register. Even when the IICM2 bit is 1, the same data as when the IICM2 bit is 0 can be read, provided the CKPH bit is 1. To read the data, read the UiRB register after the rising edge of 9th bit of the clock.

ACK and NACK 23.3.3.7

If the STSPSEL bit in the UiSMR4 register is set to 0 (start and stop conditions not generated) and the ACKC bit in the UiSMR4 register is set to 1 (ACK data output), the value of the ACKD bit in the UiSMR4 register is output from the SDAi pin.

If the IICM2 bit is 0, a NACK interrupt request is generated if the SDAi pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDAi pin is low at the rising edge of the 9th bit of the transmit clock.

If ACKi is selected to generate a DMA1 or DMA3 request source, a DMA transfer can be activated by detection of an acknowledge.

23.3.3.8 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit is 1 (UARTi initialization enabled), the serial interface operates as described below.

- The transmit shift register is initialized, and the contents of the UiTB register are transferred to the transmit shift register. In this way, the serial interface starts sending data when the next clock pulse is applied. However, the UARTi output value does not change state and remains the same as when a start condition was detected until the first bit of data is output in synchronization with the input clock.
- The receive shift register is initialized, and the serial interface starts receiving data when the next clock pulse is applied.
- The SWC bit is set to 1 (SCL wait output enabled). Consequently, the SCLi pin is pulled low at the falling edge of the 9th clock pulse.

Note that when UARTi transmission/reception is started using this function, the TI bit does not change state. Select the external clock as the transmit/receive clock to start UARTi transmission/ reception with this setting.

23.3.4 **Special Mode 2**

Special mode 2 supports serial communication between one or multiple master devices and multiple slaves devices. The transmit/receive clock polarity and phase are selectable. Table 23.20 lists the Special Mode 2 Specifications.

Table 23.20 Special Mode 2 Specifications

Item	Specification	
Data format	Character data length: 8 bits	
Transmit/receive clock	Master mode The CKDIR bit in the UiMR register = 0 (internal clock): fj 2(n+1) fj = f1SIO, f2SIO, f8SIO, f32SIO n: Setting value of UiBRG register 00h to FFh	
	Slave mode The CKDIR bit = 1 (external clock selected): Input from the CLKi pin	
Transmit/receive control	Controlled by input/output ports	
Transmission start Conditions	To start transmission, satisfy the following requirements. (1) • The TE bit in the UiC1 register = 1 (transmission enabled) • The TI bit in the UiC1 register = 0 (data present in UiTB register)	
Reception start Conditions	To start reception, satisfy the following requirements. (1) • The RE bit in the UiC1 register = 1 (reception enabled) • The TE bit = 1 (transmission enabled) • The TI bit = 0 (data present in the UiTB register)	
Interrupt request generation timing	Transmit interrupt: One of the following can be selected. • The UiIRS bit in the UiC1 register= 0 (transmit buffer empty): When transferring data from the UiTB register to the UARTi transmit register (at start of transmission) • The UiIRS bit =1 (transmission completed): When the serial interface completed sending data from the UARTi transmit register Receive interrupt: • When transferring data from the UARTi receive register to the UiRB register (at completion of reception)	
Error detection	Overrun error (2) This error occurs if the serial interface starts receiving the next unit of data before reading the UiRB register and receives the 7th bit of the next unit of data.	
Selectable functions	 CLK polarity selection Data input/output can be chosen to occur synchronously with the rising or the falling edge of the transmit/receive clock. LSB first, MSB first selection Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can be selected. Continuous receive mode selection 	
i - 0 to 2 5 to 7	Reception is enabled immediately by reading the UiRB register. • Switching serial data logic This function reverses the logic value of the transmit/receive data. • Clock phase setting Selectable from four combinations of transmit/receive clock polarities and phases	

i = 0 to 2, 5 to 7

- When an external clock is selected, either of the following conditions must be met. If the CKPOL bit in the UiC0 register is 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transmit/receive clock), the external clock is in high state; if the CKPOL bit is 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transmit/receive clock), the external clock is in low state.
- If an overrun error occurs, the received data of the UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.

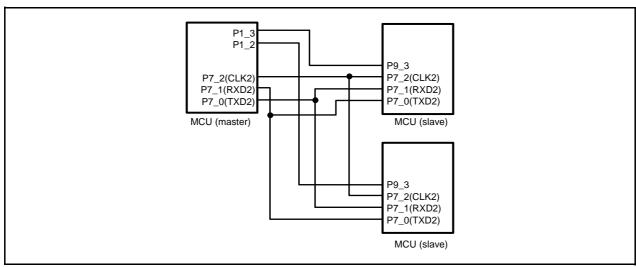


Figure 23.22 Serial Bus Communication Control Example (UART2)

Table 23.21 I/O Pin Functions in Special Mode 2

Pin Name	I/O	Function	Method of Selection
CLKi	Output	Clock output	The CKDIR bit in the UiMR register = 0
	Input	Clock input	The CKDIR bit in the UiMR register = 1
			Set the port direction bits sharing pins to 0.
TXDi	Output	Serial data output	(Dummy data output when performing reception only.)
RXDi	Input	Serial data input	Set the port direction bits sharing pins to 0.
	Input	Input port	Set the port direction bits sharing pins to 0. (can be used as
			an input port when performing transmission only)

i = 0 to 2, 5 to 7

Pins CLKi and CTSi/RTSi are not used. (They can be used as I/O ports.)

Table 23.22 Registers Used and Settings in Special Mode 2

Register	Bits	Function
UiTB (1)	0 to 7	Set transmission data.
UiRB (2)	0 to 7	Reception data can be read.
	OER	Overrun error flag
UiBRG	0 to 7	Set bit rate.
UiMR (2)	SMD2 to SMD0	Set to 001b.
	CKDIR	Set to 0 in master mode or 1 in slave mode.
	IOPOL	Set to 0.
UiC0	CLK0, CLK1	Select the count source for the UiBRG register.
	CRS	Invalid because CRD is 1
	TXEPT	Transmit register empty flag
	CRD	Set to 1.
	NCH	Select TXDi pin output format. (1)
	CKPOL	Clock phases can be set in combination with the CKPH bit in the UiSMR3 register.
	UFORM	Select the LSB first or MSB first.
UiC1	TE	Set to 1 to enable transmission/reception.
	TI	Transmit buffer empty flag
	RE	Set to 1 to enable reception.
	RI	Reception complete flag
	UjIRS	Select UARTj transmit interrupt source.
	UjRRM	Set to 1 to use continuous receive mode.
	UiLCH	Set to 1 to use inverted data logic.
	UiERE	Set to 0.
UiSMR	0 to 7	Set to 0.
UiSMR2	0 to 7	Set to 0.
UiSMR3	СКРН	Clock phases can be set in combination with the CKPOL bit in the UiC0 register.
	NODC	Set to 0.
	0, 2, 4 to 7	Set to 0.
UiSMR4	0 to 7	Set to 0.
UCON	U0IRS	Select UART0 transmit interrupt source.
	U1IRS	Select UART1 transmit interrupt source.
	U0RRM	Set to 1 to use continuous receive mode.
	U1RRM	Set to 1 to use continuous receive mode.
	CLKMD0	Invalid because CLKMD1 is 0
	CLKMD1, RCSP, 7	Set to 0.
IFSR3A	IFSR34	Set to 0 to use UART5 transmit interrupt.
	IFSR36	Set to 0 to use UART6 transmit interrupt.
IFSR2A	IFSR25	Set to 0 to use UART7 transmit interrupt.
	$\frac{1}{5}$ to 7 $i = 2.5$ to 7	

i = 0 to 2, 5 to 7j = 2, 5 to 7

- 1. The TXD2 pin is N channel open-drain output. No NCH bit in the U2C0 register is assigned. Only write 0 to this bit.
- 2. Set the bits not listed above to 0 when writing to the registers in special mode 2.

Clock Phase Setting Function 23.3.4.1

One of four combinations of transmit/receive clock phases and polarities can be selected using the CKPH bit in the UiSMR3 register and the CKPOL bit in the UiC0 register.

Make sure the transmit/receive clock polarity and phase are the same for the master and salve devices to be used for communication.

Figure 23.23 shows the Transmission and Reception Timing in Master Mode (Internal Clock).

Figure 23.24 shows the Transmission and Reception Timing (CKPH = 0) in Slave Mode (External Clock) while Figure 23.25 shows the Transmission and Reception Timing (CKPH = 1) in Slave Mode (External Clock).

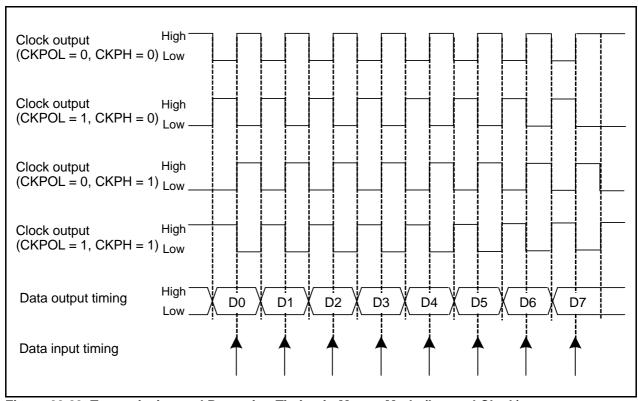


Figure 23.23 Transmission and Reception Timing in Master Mode (Internal Clock)

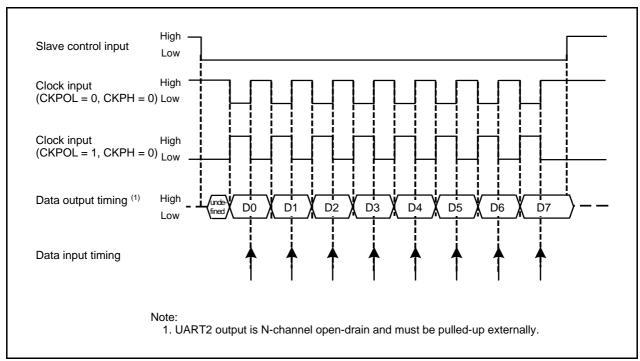


Figure 23.24 Transmission and Reception Timing (CKPH = 0) in Slave Mode (External Clock)

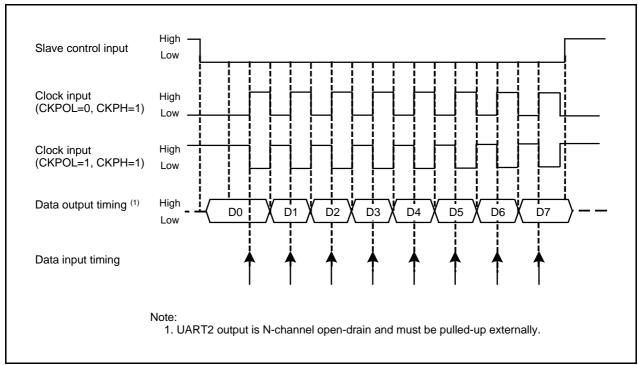


Figure 23.25 Transmission and Reception Timing (CKPH = 1) in Slave Mode (External Clock)

Special Mode 3 (IE mode) 23.3.5

In this mode, one bit of IEBus is approximated by one byte of UART mode waveform.

Table 23.23 lists the Registers Used and Settings in IE Mode. Figure 23.26 shows the Bus Collision Detect Function-Related Bits.

If the TXDi pin (i = 0 to 2, 5 to 7) output level and RXDi pin input level do not match, a UARTi bus collision detect interrupt request is generated.

Use bits IFSR26 and IFSR27 in the IFSR2A register to enable the UART0/UART1 bus collision detect function.

Table 23.23 Registers Used and Settings in IE Mode

Register	Bits	Function
UiTB	0 to 8	Set transmission data.
UiRB (3)	0 to 8	Reception data can be read.
	OER, FER, PER, SUM	Error flag
UiBRG	0 to 7	Set bit rate.
UiMR	SMD2 to SMD0	Set to 110b.
	CKDIR	Select internal clock or external clock.
	STPS	Set to 0.
	PRY	Invalid because PRYE is 0
	PRYE	Set to 0.
	IOPOL	Select the TXD and RXD input/output polarity.
UiC0	CLK1, CLK0	Select the count source for the UiBRG register.
	CRS	Invalid because CRD is 1
	TXEPT	Transmit register empty flag
	CRD	Set to 1.
	NCH	Select TXDi pin output format. (2)
	CKPOL	Set to 0.
	UFORM	Set to 0.
UiC1	TE	Set to 1 to enable transmission.
	TI	Transmit buffer empty flag
	RE	Set to 1 to enable reception.
	RI	Reception complete flag
	UjIRS (1)	Select the source of UARTj transmit interrupt.
	UjRRM (1), UiLCH, UiERE	Set to 0.
UiSMR	0 to 3, 7	Set to 0.
	ABSCS	Select the sampling timing to detect a bus collision.
	ACSE	Set to 1 to use the auto clear function of transmit enable bit.
	SSS	Select the transmit start condition.
UiSMR2	0 to 7	Set to 0.
UiSMR3	0 to 7	Set to 0.
UiSMR4	0 to 7	Set to 0.
IFSR2A	IFSR26, IFSR27	Set to 1.
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt.
	U0RRM, U1RRM	Set to 0.
	CLKMD0	Invalid because CLKMD1 is 0
	CLKMD1, RCSP, 7	Set to 0.

i = 0 to 2, 5 to 7

Notes:

- Set bits 4 and 5 in registers U0C0 and U1C1 to 0. Bits U0IRS, U1IRS, U0RRM, and U1RRM are in the UCON register. 1.
- The TXD2 pin is N channel open-drain output. Nothing is assigned in the NCH bit in the U2C0 register. If necessary, set to 2.
- 3. Set the bits not listed above to 0 when writing to the registers in IE mode.

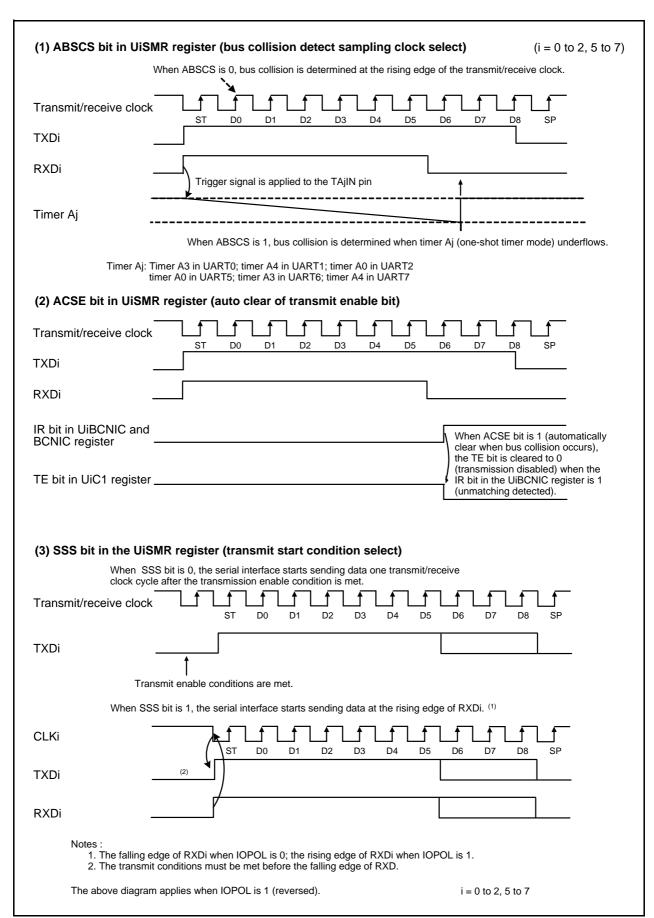


Figure 23.26 Bus Collision Detect Function-Related Bits

Special Mode 4 (SIM Mode) (UART2) 23.3.6

SIM interface devices can communicate in UART mode. Both direct and inverse formats are available. The TXD2 pin outputs a low-level signal when a parity error is detected.

Table 23.24 lists the SIM Mode Specifications. Table 23.25 lists the Registers Used and Settings in SIM Mode.

Table 23.24 SIM Mode Specifications

Item	Specification
Data formats	Direct format
	• Inverse format
Transmit/receive clock	• The CKDIR bit in the U2MR register = 0 (internal clock): fi/(16(n + 1))
	fi = f1SIO, f2SIO, f8SIO, f32SIO
	n = Setting value of the U2BRG register 00h to FFh
	•The CKDIR bit = 1 (external clock): fEXT/(16(n + 1))
	fEXT = input from the CLK2 pin
	n = Setting value of the U2BRG register 00h to FFh
Transmission start	To start transmission, satisfy the following requirements.
conditions	• The TE bit in the U2C1 register = 1 (transmission enabled)
	• The TI bit in the U2C1 register = 0 (data present in the U2TB register)
Reception start	To start reception, satisfy the following requirements.
conditions	• The RE bit in the U2C1 register = 1 (reception enabled)
	Start bit detection
Interrupt request	Transmission
generation timing (2)	When the serial interface completed sending data from the UART2 transmit
	register (the U2IRS bit =1)
	• Reception
	When transferring data from the UART2 receive register to the U2RB register
Emma data da a	(at completion of reception)
Error detection	• Overrun error ⁽¹⁾
	This error occurs if the serial interface starts receiving the next unit of data
	before reading the U2RB register and receives the bit one before the last stop bit of the next unit of data.
	• Framing error (3)
	This error occurs when the number of stop bits set is not detected.
	Parity error (3)
	During reception, if a parity error is detected, parity error signal is output from
	the TXD2 pin.
	During transmission, a parity error is detected by the level of input to the RXD2
	pin when a transmission interrupt occurs.
	Error sum flag
	This flag is set to 1 when an overrun, framing, or parity error occurs.

Notes:

- 1. If an overrun error occurs, the received data of the U2RB register will be undefined. The IR bit in the S2RIC register remains unchanged.
- 2. After reset, a transmit interrupt request is generated by setting the U2IRS bit to 1 (transmission completed) and the U2ERE bit to 1 (error signal output) in the U2C1 register. Therefore, when using SIM mode, set the IR bit to 0 (interrupt not requested) after setting the bits.
- 3. The timing that the framing error flag and the parity error flag are set is detected when data is transferred from the UART2 receive register to the U2RB register.

Table 23.25 Registers Used and Settings in SIM Mode

Register	Bits	Function
U2TB (1)	0 to 7	Set transmission data.
U2RB (1)	0 to 7	Reception data can be read.
	OER,FER,PER,SUM	Error flag
U2BRG	0 to 7	Set bit rate.
U2MR	SMD2 to SMD0	Set to 101b.
	CKDIR	Select the internal clock or external clock.
	STPS	Set to 0.
	PRY	Set to 1 in direct format or 0 in inverse format.
	PRYE	Set to 1.
	IOPOL	Set to 0.
U2C0	CLK0,CLK1	Select the count source for the U2BRG register.
	CRS	Invalid because CRD is 1
	TXEPT	Transmit register empty flag
	CRD	Set to 1.
	NCH	Set to 0.
	CKPOL	Set to 0.
	UFORM	Set to 0 in direct format or 1 in inverse format.
U2C1	TE	Set to 1 to enable transmission.
	TI	Transmit buffer empty flag
	RE	Set to 1 to enable reception.
	RI	Reception complete flag
	U2IRS	Set to 1.
	U2RRM	Set to 0.
	U2LCH	Set to 0 in direct format or 1 in inverse format.
	U2ERE	Set to 1.
U2SMR (1)	0 to 3	Set to 0.
U2SMR2	0 to 7	Set to 0.
U2SMR3	0 to 7	Set to 0.
U2SMR4	0 to 7	Set to 0.
Note.	•	

Note:

1. Set the bits not listed above to 0 when writing to the registers in SIM mode.

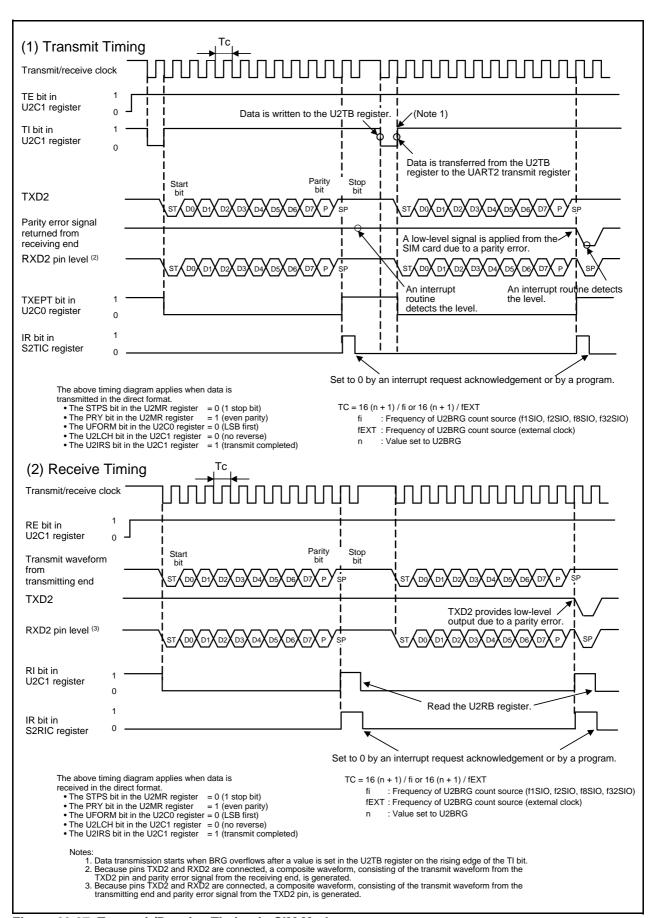


Figure 23.27 Transmit/Receive Timing in SIM Mode

Figure 23.28 shows an Example of SIM Interface Connection. Connect TXD2 and RXD2, and then connect a pull-up resistor.

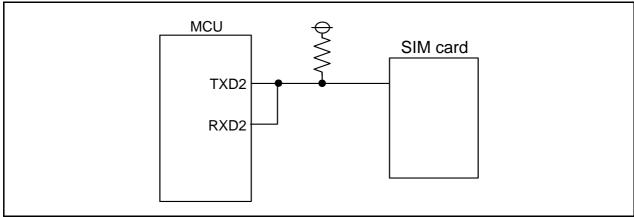


Figure 23.28 Example of SIM Interface Connection

23.3.6.1 **Parity Error Signal Output**

The parity error signal is enabled by setting the U2ERE bit in the U2C1 register to 1 (error signal output).

The parity error signal is output when a parity error is detected while receiving data. A low-level signal is output from the TXD2 pin in the timing shown in Figure 23.29. If the U2RB register is read while outputting a parity error signal, the PER bit is cleared to 0 (no parity error) and at the same time the TXD2 output again goes high.

When transmitting, a transmission complete interrupt request is generated at the falling edge of the transmit/receive pulse that immediately follows the stop bit. Therefore, whether or not a parity error signal has been returned can be determined by reading the port that shares the RXD2 pin in a transmission complete interrupt routine.

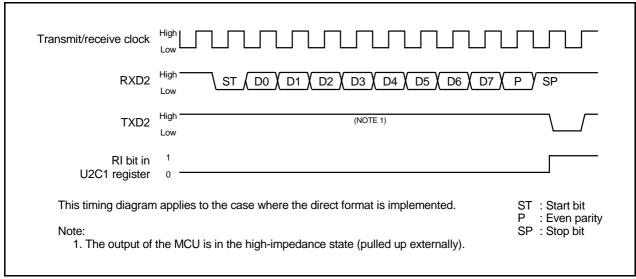


Figure 23.29 Parity Error Signal Output Timing

23.3.6.2 **Format**

Two formats are available: direct format and inverse format.

For direct format, set the PRYE bit in the U2MR register to 1 (parity enabled), the PRY bit to 1 (even parity), the UFORM bit in the U2C0 register to 0 (LSB first) and the U2LCH bit in the U2C1 register to 0 (not inverted). When data is transmitted, the contents of the U2TB register are transmitted with the even-numbered parity, starting from D0. When data is received, the receive data are stored in the U2RB register, starting from D0. The even-numbered parity is used to determine when a parity error occurs.

For inverse format, set the PRYE bit to 1, the PRY bit to 0 (odd parity), the UFORM bit to 1 (MSB first), and the U2LCH bit to 1 (inverted). When data is transmitted, the contents of the U2TB register are logically inverted and are transmitted with odd-numbered parity, starting from D7. When data is received, the receive data is logically inverted and stored in the U2RB register, starting from D7. The odd-numbered parity is used to determine when a parity error occurs.

Figure 23.30 shows SIM Interface Format.

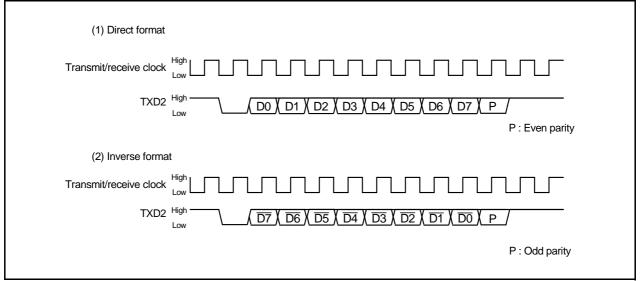


Figure 23.30 SIM Interface Format

23.4 Interrupts

UART0 to UART2 and UART5 to UART7 include interrupts by transmission, reception, ACK, NACK, start/ stop condition detection, and bus collision detection.

23.4.1 **Interrupt Related Registers**

Refer to operation examples in each mode for interrupt sources and interrupt request generation timing. For the details of interrupt control, refer to 14.7 "Interrupt Control". Table 23.26 lists UART0 to UART2, UART5 to UART7 Interrupt Related Registers.

Table 23.26 UART0 to UART2, UART5 to UART7 Interrupt Related Registers

Address	Register Name	Register Symbol	After Reset
0046h	UART1 Bus Collision Detection Interrupt Control Register	U1BCNIC	XXXX X000b
0047h	UARTO Bus Collision Detection Interrupt Control Register	U0BCNIC	XXXX X000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	XXXX X000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXX X000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXX X000b
0051h	UART0 Transmit Interrupt Control Register	S0TIC	XXXX X000b
0052h	UART0 Receive Interrupt Control Register	S0RIC	XXXX X000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXX X000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXX X000b
006Bh	UART5 Bus Collision Detection Interrupt Control Register	U5BCNIC	XXXX X000b
006Ch	UART5 Transmit Interrupt Control Register	S5TIC	XXXX X000b
006Dh	UART5 Receive Interrupt Control Register	S5RIC	XXXX X000b
006Eh	UART6 Bus Collision Detection Interrupt Control Register	U6BCNIC	XXXX X000b
006Fh	UART6 Transmit Interrupt Control Register	S6TIC	XXXX X000b
0070h	UART6 Receive Interrupt Control Register	S6RIC	XXXX X000b
0071h	UART7 Bus Collision Detection Interrupt Control Register	U7BCNIC	XXXX X000b
0072h	UART7 Transmit Interrupt Control Register	S7TIC	XXXX X000b
0073h	UART7 Receive Interrupt Control Register	S7RIC	XXXX X000b
0205h	Interrupt Source Select Register 3	IFSR3A	00h
0206h	Interrupt Source Select Register 2	IFSR2A	00h

Some interrupts of UART0 to UART2 and UART5 to UART7 share interrupt vectors and interrupt control registers with other peripheral functions. When using these interrupts, select them by interrupt source select registers. Table 23.27 lists Interrupt Select in UART0 to UART2 and UART5 to UART7.

Table 23.27 Interrupt Select in UART0 to UART2 and UART5 to UART7

Interrupt Source	Interrupt Source Select Register Settings		
interrupt Source	Register	Bit	Setting Value
UART0 start/stop condition detection, bus collision detection	IFSR2A	IFSR26	1
UART1 start/stop condition detection, bus collision detection	IFSR2A	IFSR27	1
UART5 start/stop condition detection, bus collision detection	IFSR3A	IFSR33	0
UART5 transmission, NACK	IFSR3A	IFSR34	0
UART6 start/stop condition detection, bus collision detection	IFSR3A	IFSR35	0
UART6 transmission, NACK	IFSR3A	IFSR36	0
UART7 start/stop condition detection, bus collision detection	IFSR2A	IFSR24	0
UART7 transmission, NACK	IFSR2A	IFSR25	0

An interrupt request may be generated by bit contents change in the following modes.

• Special mode 1 (I²C mode)

Set the IR bit in the interrupt control register of UARTi to 0 (interrupt not requested), when the following bits are changed:

Bits SMD2 to SMD0 in the UiMR register, the IICM bit in the UiSMR register, the IICM2 bit in the UiSMR2 register, the CKPH bit in the UiSMR3 register

Special mode 4 (SIM mode)

After reset, when bits U2IRS and U2ERE in the U2C1 register are set to 1 (transmission completed) and 1 (interrupt not requested) respectively, a transmission interrupt request is generated. In SIM mode, set these bits first, and then set the IR bit in the S2TIC register to 0 (interrupt not requested).

23.4.2 **Reception Interrupt**

• The case that bits SMD2 to SMD0 in the UiMR register are not set to 010b (I2C mode) When the RI bit in the UiC1 register is changed from 0 (no data in the UiRB register) to 1 (data present in the UiRB register), the IR bit in the SiRIC register is automatically set to 1 (interrupt requested).

If an overrun error occurs (when the RI bit is 1, the next data is received), the RI bit remains 1, and therefore, the IR bit in the SiRIC register remains unchanged.

• The case that bits SMD2 to SMD0 in the UiMR register are set to 010b (I2C mode) When the RI bit in the UiC1 register is changed from 0 (no data in the UiRB register) to 1 (data present in the UiRB register), the IR bit in the SiRIC register is automatically set to 1 (interrupt

When an overrun error occurs, the IR bit in the SiRIC register also becomes 1.

23.5 Notes on Serial Interface UARTi (i = 0 to 2, 5 to 7)

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on SD pin enabled), the following pins go to high-impedance state:

P7_2/CLK2/TA1OUT/V, P7_3/CTS2/RTS2/TA1IN/V, P7_4/TA2OUT/W, P7_5/TA2IN/W, P8_0/ TA4OUT/RXD5/SCL5/U, P8_1/TA4IN/CTS5/RTS5/U

23.5.1 Clock Synchronous Serial I/O

23.5.1.1 Transmission/Reception

When the RTS function is used with an external clock, RTSi pin (i = 0 to 2, 5 to 7) outputs a low-level signal, which informs the transmitting side that the MCU is ready for a receive operation. The RTSi pin outputs a high-level signal when a receive operation starts. Therefore, a transmit timing and receive timing can be synchronized by connecting the RTSi pin to the CTSi pin of the transmitting side. The RTS function is disabled when an internal clock is selected.

23.5.1.2 **Transmission**

If an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the UiC0 register (i = 0 to 2, 5 to 7) is set to 0 (transmit data output at the falling edge and receive data input at the rising edge of the transmit and receive clock), or while the external clock is held low when the CKPOL bit is set to 1 (transmit data output at the rising edge and receive data input at the falling edge of the transmit and receive clock).

- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).
- When CTS function is selected, input on the CTSi pin is low.

23.5.1.3 Reception

In clock synchronous serial I/O mode, the shift clock is generated by activating a transmitter. Set the UARTi-associated registers for a transmit operation even if the MCU is used for receive operation only. Dummy data is output from the TXDi pin (i = 0 to 2, 5 to 7) while receiving.

When an internal clock is selected, the shift clock is generated by setting the TE bit in the UiC1 register to 1 (transmission enabled) and placing dummy data in the UiTB register. When an external clock is selected, set the TE bit to 1 (transmission enabled), place dummy data in the UiTB register, and input an external clock to the CLKi pin to generate the shift clock.

If data is received consecutively, an overrun error occurs when the RI bit in the UiC1 register is set to 1 (data present in the UiRB register) and the next receive data is received in the UARTi receive register. And then, the OER bit in the UiRB register is set to 1 (overrun error occurred). At this time, the UiRB register is undefined. When an overrun error occurs, program the transmitting and receiving sides to retransmit the previous data. If an overrun error occurs, the IR bit in the SiRIC register remains unchanged.

To receive data consecutively, set dummy data in the low-order byte in the UiTB register per each receive operation.

When an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit is 0 (transmit data output at the falling edge and receive data input at the rising edge of the serial clock), or while the external clock is held low when the CKPOL bit is 1 (transmit data output at the rising edge and receive data input at the falling edge of the serial clock).

- The RE bit in the UiC1 register is 1 (reception enabled).
- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).

23.5.2 **UART (Clock Asynchronous Serial I/O) Mode**

23.5.2.1 **Transmission/Reception**

When the \overline{RTS} function is used with an external clock, the \overline{RTSi} pin (i = 0 to 2, 5 to 7) outputs a lowlevel signal, which informs the transmitting side that the MCU is ready for a receive operation. The RTSi pin outputs a high-level signal when a receive operation starts. Therefore, a transmit timing and receive timing can be synchronized by connecting the RTSi pin to the CTSi pin of the transmitting side. The RTS function is disabled when an internal clock is selected.

23.5.2.2 **Transmission**

When an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the UiC0 register (i = 0 to 2, 5 to 7) is 0 (transmit data output at the falling edge and receive data input at the rising edge of the transmit and receive clock), or while the external clock is held low when the CKPOL bit is 1 (transmit data output at the rising edge and receive data input at the falling edge of the transmit and receive clock).

- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).
- When CTS function is selected, input on the CTSi pin is low.

23.5.3 Special Mode 1 (I²C Mode)

23.5.3.1 **Generation of Start and Stop Conditions**

When generating start, stop and restart conditions, set the STSPSEL bit in the UiSMR4 register (i = 0 to 2, 5 to 7) to 0 and wait for more than half cycle of the transmit and receive clock. Then set each condition generation bit (STAREQ, RSTAREQ and STPREQ) from 0 to 1.

23.5.3.2 IR Bit

Set the following bits first, and then set the IR bit in the UARTi interrupt control registers to 0 (interrupt not requested).

Bits SMD2 to SMD0 in the UiMR register, the IICM bit in the UiSMR register, the IICM2 bit in the UiSMR2 register, the CKPH bit in the UiSMR3 register

23.5.4 Special Mode 4 (SIM Mode)

After reset, a transmit interrupt request is generated by setting bits U2IRS and U2ERE in the U2C1 register to 1 (transmission completed) and 1 (error signal output), respectively. Therefore, when using SIM mode, make sure to set the IR bit to 0 (interrupt not requested) after setting these bits.

24. Serial Interface SI/O3 and SI/O4

Note •

The 80-pin package does not have the SIN3 pin for SI/O3. SI/O3 is used for transmission only. No reception is possible.

24.1 Introduction

SI/O3 and SI/O4 are dedicated clock-synchronous serial I/O ports.

Table 24.1 lists SI/O3 and SI/O4 Specifications.

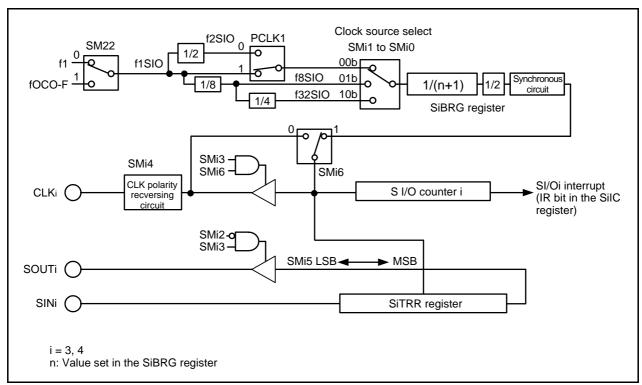

Figure 24.1 shows SI/O3 and SI/O4 Block Diagram, and Table 24.2 lists the Input/Output Pins.

Table 24.1 SI/O3 and SI/O4 Specifications

Item	Specification		
Data format	Character length: 8 bits		
Transmit/Receive clocks	• The SMi6 bit in the SiC register = 1 (internal clock):		
	$\frac{fj}{2(n+1)}$		
	fj = f1SIO, f8SIO, f32SIO		
	n = setting value of the SiBRG register 00h to FFh		
	The SMi6 bit = 0 (external clock): Input from the CLKi pin (1)		
Transmission/reception start condition	Before transmission/reception starts, satisfy the following requirements. Write transmit data into the SiTRR register. (2)		
Interrupt request generation	• SMi4 bit in the SiC register = 0		
timing	The rising edge of the last transmit/receive clock		
	• the SMi4 bit = 1		
	The falling edge of the last transmit/receive clock		
Selectable functions	CLK polarity selection		
	Whether data is output/input at the rising or falling edge of the transmit/ receive clock can be selected.		
	LSB first or MSB first selection		
	Whether to start transmitting/receiving data from bit 0 or from bit 7 can be selected.		
	SOUTi initial value setting function		
	When the SMi6 bit in the SiC register = 0 (external clock), the SOUTi pin output level while not transmitting can be selected.		
	SOUTi state selection after transmission		
	Whether to set to high-impedance or retain the last bit level can be selected when the SMi6 bit in the SiC register is 1 (internal clock).		

i = 3, 4Notes:

- The data is shifted every time the external clock is input. When completing data transmission/ reception of the 8th bit, read or write into the SiTRR register before inputting the clock for the next data transmission/reception.
- 2. When the SMi6 bit in the SiC register is 0 (external clock), follow the procedure described below.
 - If the SMi4 bit in the SiC register is 0, write transmit data into the SiTRR register while input to the CLKi pin is high.
 - If the SMi4 bit is 1, write transmit data into the SiTRR register while input to the CLKi pin is low.

SI/O3 and SI/O4 Block Diagram Figure 24.1

Table 24.2 Input/Output Pins

Pin Name	Input/Output	Function	Selecting Method
CLKi	Output	Transmit/receive clock output	SMi3 bit in the SiC register = 1
			SMi6 bit in the SiC register = 1
	Input	Transmit/receive clock input	SMi3 bit in the SiC register = 1
			SMi6 bit in the SiC register = 0
			Port direction bits sharing pins = 0
SOUTi	Output	Serial data output	SMi3 bit in the SiC register = 1
			SMi2 bit in the SiC register = 0
SINi	Input	Serial data input	SMi3 bit in the SiC register = 1
			Port direction bits sharing pins = 0
			(Dummy data is input only when transmitting.)

24.2 Registers

Table 24.3 lists registers associated with SI/O3 and SI/O4.

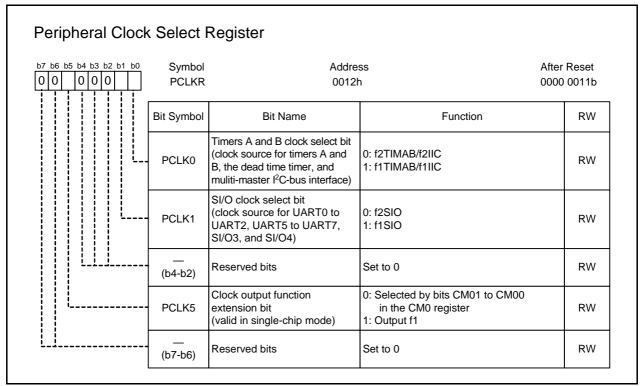
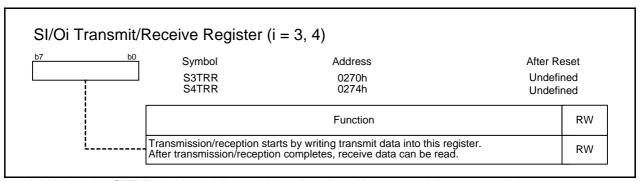

Set the SM22 bit in the S34C2 register before setting other registers associated with SI/O3 and SI/O4. After changing the SM22 bit, set other registers associated with SI/O3 and SI/O4 again.

Table 24.3 Register Structure

Address	Register Name	Register Symbol	After Reset
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
0270h	SI/O3 Transmit/Receive Register	S3TRR	XXh
0272h	SI/O3 Control Register	S3C	0100 0000b
0273h	SI/O3 Bit Rate Register	S3BRG	XXh
0274h	SI/O4 Transmit/Receive Register	S4TRR	XXh
0276h	SI/O4 Control Register	S4C	0100 0000b
0277h	SI/O4 Bit Rate Register	S4BRG	XXh
0278h	SI/O3, 4 Control Register 2	S34C2	00XX X0X0b


Under development

24.2.1 Peripheral Clock Select Register (PCLKR)

Rewrite the PCLKR register after setting the PRC0 bit in the PRCR register to 1 (write enabled).

24.2.2 SI/O Transmit/Receive Register (SiTRR) (i = 3, 4)

Write into the SiTRR register while serial interface is neither transmitting nor receiving.

Write the value into the SiTRR register every time one byte data is received even when data is only received.

24.2.3 SI/Oi Control Register (SiC) (i = 3, 4)

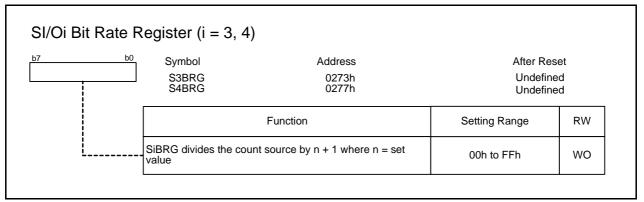
7 b6 b5 b4 b3 b2 b1 b0	S:	nbol 3C 4C	Address After 0272h 0100 00000000000000000000000000000000	0000b
	Bit symbol	Bit Name	Function	RW
	SMi0	Internal synchronous	b1 b0 0 0 : Selecting f1SIO or f2SIO 0 1 : Selecting f8SIO	RW
	SMi1	clock select bit	1 0 : Selecting f32SIO 1 1 : Do not set	
	SMi2	SOUTi output disable bit	0 : SOUTi output enabled 1 : SOUTi output disabled (high-impedance)	RW
	SMi3	SI/Oi port select bit	1 : Input/output port serial interface disabled 1 : SOUTi output, CLKi function serial interface enabled	RW
	SMi4	CLK polarity select bit	Transmit data is output at falling edge of transmit/receive clock and receive data is input at rising edge Transmit data is output at rising edge of transmit/receive clock and receive data is input at falling edge	RW
	SMi5	Bit order select bit	0 : LSB first 1 : MSB first	RW
	SMi6	Synchronous clock select bit	0 : External clock 1 : Internal clock	RW
	SMi7	SOUTi initial output set bit	Valid when SMi6 = 0 0 : Low output 1 : High output	RW

Write into the SiC register by the next instruction after setting the PRC2 bit in the PRCR register to 1 (write enabled).

SMi1-SMi0 (Internal Synchronous Clock Select Bit) (b1-b0)

Select f1SIO or f2SIO by the PCLK1 bit in the PCLKR register.

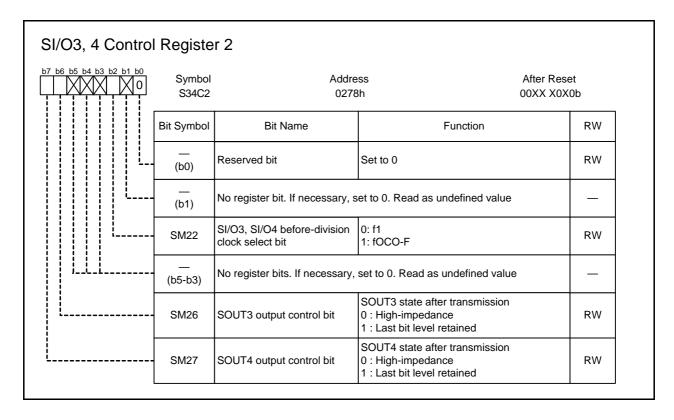
Set the SiBRG register when changing bits SMi1 to SMi0.


SMi2 (SOUTi Output Disable Bit) (b2)

When the SMi2 bit is set to 1 (SOUTi output disabled), the target pin goes to high-impedance state regardless of which function of the pin is being used.

SMi7 (SOUTi Initial Value Set Bit) (b7)

Set the SMi7 bit when the SMi3 bit is 0 (input/output port, serial interface disabled). The level selected by the SMi7 bit is output from the SOUTi pin by setting the SMi3 bit to 1 and SMi2 bit to 0 (SOUTi output).


SI/Oi Bit Rate Register (SiBRG) (i = 3, 4) 24.2.4

Use MOV instruction to write into the SiBRG register.

Write into the SiBRG register after setting bits SMi1 to SMi0 in the SiC register and while serial interface is neither transmitting nor receiving.

SI/O3, 4 Control Register 2 (S34C2) 24.2.5

SM22 (SI/O3, SI/O4 Before-division Clock Select Bit) (b2)

Set the SM22 bit while transmission/reception of SI/O3 and SI/O4 stops.

Set the SM22 bit before setting other registers associated with SI/O3 and SI/O4. After changing the SM22 bit, set other registers associated with SI/O3 and SI/O4 again.

SM26 (SOUT3 Output Control Bit) (b6)

SM27 (SOUT4 Output Control Bit) (b7)

Bits SM26 and SM27 are valid when the SMi6 bit in the SiC register is set to 1 (internal clock). Set the SMi3 bit in the SiC register to 1 (serial interface enabled) after setting bits SM26 and SM27.

24.3 **Operations**

24.3.1 **Basic Operations**

SI/Oi transmits and receive data simultaneously. The SiTRR register is not divided into the register for transmission/reception and buffer. Write transmit data into the SiTRR register while transmission/ reception stops. Read receive data from the SiTRR register while transmission/reception stops.

24.3.2 **CLK Polarity Selection**

The SMi4 bit in the SiC register allows selection of the polarity of the transmit/receive clock. Figure 24.2 shows Polarity of Transmit/Receive Clock.

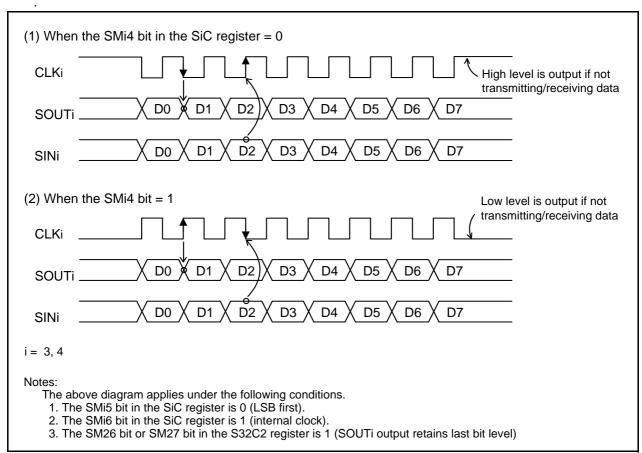
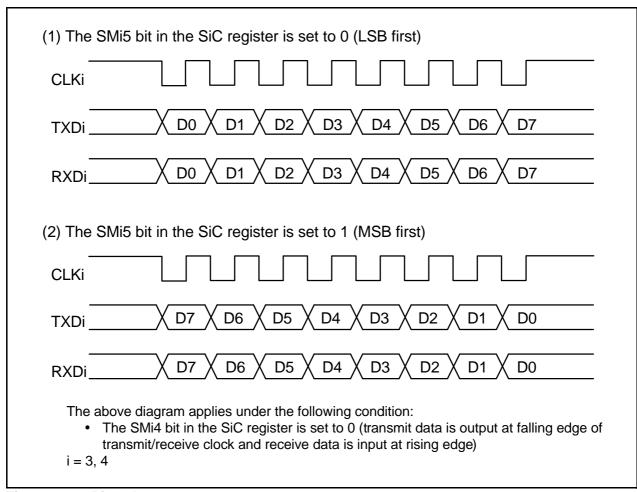
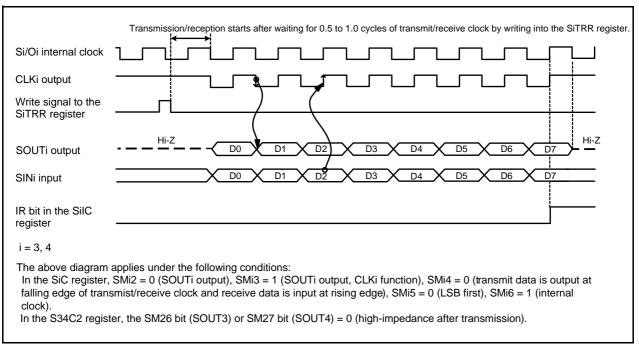


Figure 24.2 Polarity of Transmit/Receive Clock

24.3.3 **LSB First or MSB First Selection**

Bit order is selected by the SMi5 bit in the SiC register (i = 3, 4). Figure 24.3 shows Bit Order.




Figure 24.3 Bit Order

24.3.4 **Internal Clock**

When the SMi6 bit in the SiC register is 1, data is transmitted/received using internal clock. The internal clock is selected by the SM22 bit in the S32C2 register, the PCLK1 bit in the PLCKR register, and bits SMi1 to SMi0 in the SiC register. When the internal clock is used as transmit/receive clock, the SOUTi pin becomes high-impedance from when the SMi3 bit in the SiC register is set to 1 (SI/Oi enabled) and the SMi2 bit is set to 0 (SOUTi output enabled) to when the first data is output.

When writing the transmit data into the SiTRR register, data transmission/reception starts by outputting the transmit/receive clock from the CLKi pin after waiting for 0.5 to 1.0 cycles of the transmit/receive clock. When completing the transmission/reception of 8 bits data, the transmit/receive clock from the CLKi pin stops.

Figure 24.4 shows SI/Oi Operation Timing (Internal Clock).

SI/Oi Operation Timing (Internal Clock) Figure 24.4

Function for Selecting SOUTi State after Transmission 24.3.5

The SOUTi pin state after transmission is selected when the SMi6 bit in the SiC register is set to 1 (internal clock). If bits SM26 and SM27 in the S34C2 register are set to 1 (last bit level retained), output from the SOUTi pin retains the last bit level after transmission. Figure 24.5 shows Level of SOUT3 Pin after Transmission.

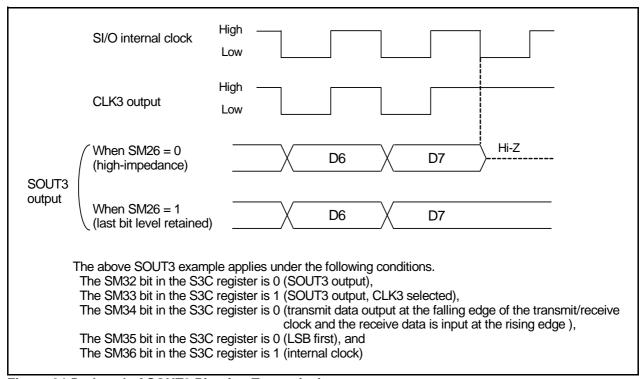


Figure 24.5 Level of SOUT3 Pin after Transmission

Page 563 of 791

24.3.6 **External Clock**

When the SMi6 bit in the SiC register is set to 0, data is transmitted/received using external clock.

The external clock is used as transmit/receive clock, the SOUTi output level from when the SMi3 bit in the SiC register is set to 1 (SI/Oi enabled) and SMi2 bit is set to 0 (SOUTi output enabled) to when the first data is output can be selected by the SMi7 bit in the SiC register. Refer to 24.3.8 "Function for Setting SOUTi Initial Value".

Transmission/reception starts with the external clock after writing the transmit data into the SiTRR register.

The data written into the SiTRR register is shifted every time the external clock is input. When completing data transmission/reception of the 8th bit, read or write into the SiTRR register before inputting the clock for the next data transmission/reception.

Figure 24.6 shows SI/Oi Operation Timing (External Clock).

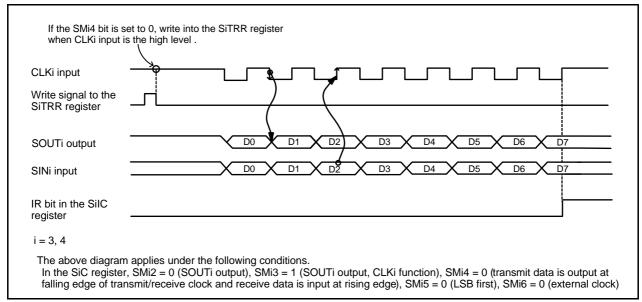


Figure 24.6 SI/Oi Operation Timing (External Clock)

When the SMi6 bit in the SiC register is set to 0 (external clock), write into the SiTRR register and SMi7 bit in the SiC register under the following conditions:

- When the SMi4 bit in the SiC register is set to 0 (transmit data is output at falling edge of transmit/ receive clock and receive data is input at rising edge): CLKi input is high level.
- When the SMi4 bit is set to 1 (transmit data is output at rising edge of transmit/receive clock and receive data is input at falling edge): CLKi input is low level.

24.3.7 **SOUTI Pin**

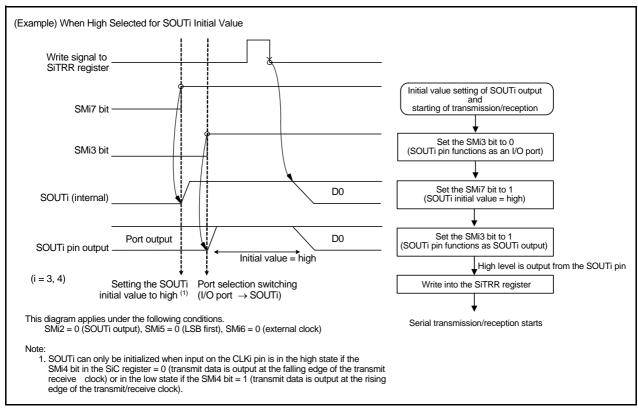

The SOUTi pin state can be selected by bits SMi2 and SMi3 in the SiC register. Table 24.4 lists SOUTi Pin State.

Table 24.4 SOUTI Pin State

Bit S	etting	
SiC re	egister	SOUTi Pin State
SMi2	SMi3	
0	0	I/O port or another peripheral function
U	1	SOUTi output
1 0/1		High-impedance

24.3.8 **Function for Setting SOUTi Initial Value**

If the SMi6 bit in the SiC register is set to 0 (external clock), the SOUTi pin output can be fixed high or low when not transmitting/receiving data. High or low can be selected by the SMi7 bit in the SiC register. However, the last bit value of the previous unit of data is retained between adjacent units of data when using external clock. Figure 24.7 shows Timing Chart for Setting SOUTi Initial Value and How to Set It.

Timing Chart for Setting SOUTi Initial Value and How to Set It

24.4 Interrupt

Refer to the operation example for interrupt source or interrupt request generation timing. Refer to 14.7 "Interrupt Control" for interrupt control. Table 24.5 lists Registers Associated with SI/O3 and SI/O4.

Table 24.5 Registers Associated with SI/O3 and SI/O4

Address	Register Name	Register Symbol	After Reset
0048h	SI/O4 Interrupt Control Register	S4IC	XX00 X000b
0049h	SI/O3 Interrupt Control Register	S3IC	XX00 X000b
0207h	Interrupt Source Select Register	IFSR	00h

The following interrupts share the interrupt vector and interrupt control register with other peripheral functions. To use the following interrupts, set bits as follows.

- SI/O3: Set the IFSR6 bit in the IFSR register to 0 (SI/O3).
- SI/O4: Set the IFSR7 bit in the IFSR register to 0 (SI/O4).

Set the POL bit in the SilC register to 0 (falling edge).

Notes on Serial Interface SI/O3 and SI/O4 24.5

24.5.1 SOUTI Pin Level When SOUTI Output Disabled

When the SMi2 bit in the SiC register is set to 1 (SOUTi output disabled), the target pin goes to highimpedance state regardless of which function of the pin is being used.

24.5.2 **External Clock Control**

The data written into the SiTRR register is shifted every time the external clock is input. When completing data transmission/reception of the 8th bit, read or write into the SiTRR register before inputting the clock for the next data transmission/reception.

24.5.3 Register Access When Using External Clock

When the SMi6 bit in the SiC register is set to 0 (external clock), write into the SMi7 bit in the SiC register and the SiTRR register under the following conditions:

- When the SMi4 bit in the SiC register is set to 0 (transmit data is output at falling edge of transmit/ receive clock and receive data is input at rising edge): CLKi input is high level.
- When the SMi4 bit in the SiC register is set to 1 (transmit data is output at rising edge of transmit/ receive clock and receive data is input at falling edge): CLKi input is low level.

24.5.4 **SiTRR Register Access**

Write transmit data into the SiTRR register while transmission/reception stops. Read receive data from the SiTRR register while transmission/reception stops.

The IR bit in the SiIC register becomes 1 (interrupt request) during output of the 8th bit.

If the SM26 bit (SOUT3) or SM27 bit (SOUT4) in the S32C2 register is set to 0 (high-impedance after transmission), SOUTi pin becomes high-impedance when the transmit data is written into the SiTRR register immediately after an interrupt request is generated, and hold time of the transmit data becomes shorter.

24.5.5 Pin Function Switch When Using Internal Clock

If the SMi3 bit in the SiC register (i = 3, 4) changes from 0 (I/O port) to 1 (SOUTi output, CLK function) when setting the SMi2 bit to 0 (SOUTi output) and the SMi6 bit to 1 (internal clock), SOUTi initial value set to the SOUTi pin by the SMi7 bit may be output about for 10 ns. After that, the SOUTi pin becomes high-impedance.

If the output level from the SOUTi pin when the SMi3 bit changes from 0 to 1 becomes a problem, set the SOUTi initial value by the SMi7 bit.

24.5.6 Operation After Reset When Selecting External Clock

When the SMi6 bit in the SiC register is set to 0 (external clock) after reset, the IR bit in the SiIC register becomes 1 (interrupt request) by inputting the external clock for 8 bits to the CLKi pin. This will also happen even when the SMi3 bit in the SiC register is 0 (serial interface disabled) or before the value is written into the SiTRR register.

25. Multi-Master I²C-bus Interface

25.1 Introduction

The multi-master I²C-bus interface (I²C interface) is a serial communication circuit based on I²C-bus data transmit/receive format, equipped with arbitration lost detection and clock synchronous functions. Table 25.1 lists Multi-master I²C-bus Interface Specification, Table 25.2 lists Detections of I²C Interface, Figure 25.1 shows Multi-master I²C-bus Interface Block Diagram, and Table 25.3 lists I/O Ports.

Table 25.1 Multi-master I²C-bus Interface Specification

Item	Function
Format	Based on I ² C-bus standard:
	7-bit addressing format
	High-speed clock mode
	Standard clock mode
Communication mode	Based on I ² C-bus standard:
	Master-transmitter
	Master-receiver
	Slave-transmitter
	Slave-receiver
Bit rate	16.1 kbps to 400 kbps (fVIIC = 4 MHz)
I/O pin	Serial data line SDAMM (SDA)
	Serial clock line SCLMM (SCL)
Interrupt request generating	I ² C-bus interrupt
source	Completion of transmission
	Completion of reception
	Slave address match detection
	General call detection
	Stop condition detection
	Timeout detection
	SDA/SCL interrupt
	Rising or falling edge of the SDAMM/SCLMM line
Selectable functions	• I ² C-bus interface pin input level select
	Selectable input level with I ² C-bus input level or SMBus input level
	SDA/port, SCL/port selection
	A function to change pins SDAMM and SCLMM to output ports
	respectively.
	Timeout detection
	A function to detect that SCLMM pin is driven high for over a certain period
	of time when the bus is busy.
	Free format select
	A function to generate an interrupt request when receiving the 1st byte
	data, regardless of the slave address value.

fVIIC: I2C-bus system clock

Table 25.2 Detections of I²C Interface

Item	Function		
Slave address match	A function to detect a slave address match as a slave-transmitter or receiver. When own slave address is matched with the calling address sent from a master, ACK is generated automatically. When an address match is not found, no ACK is generated and no more data is transmitted or received. One slave can have up to three slave addresses.		
General call	A function to detect a general call as a slave-receiver.		
Arbitration lost	A function to detect arbitration lost to stop the SDAMM clock output immediately.		
Bus busy	A function to detect a bus busy state and set/reset the BB bit.		

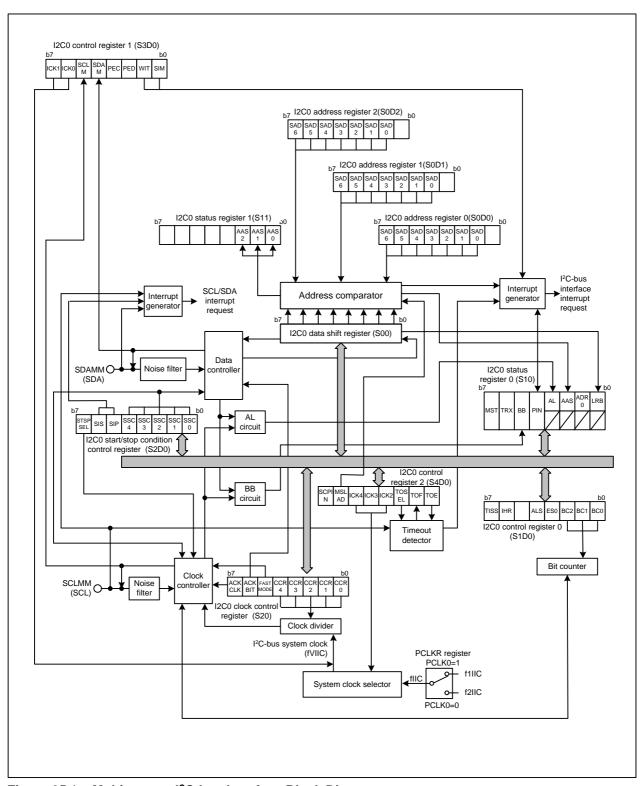


Figure 25.1 Multi-master I²C-bus Interface Block Diagram

Table 25.3 I/O Ports

Pin Name	I/O Type	Function	
SDAMM	I/O	I/O pin for SDA (N channel open drain output)	
SCLMM	I/O	I/O pin for SCL (N channel open drain output)	

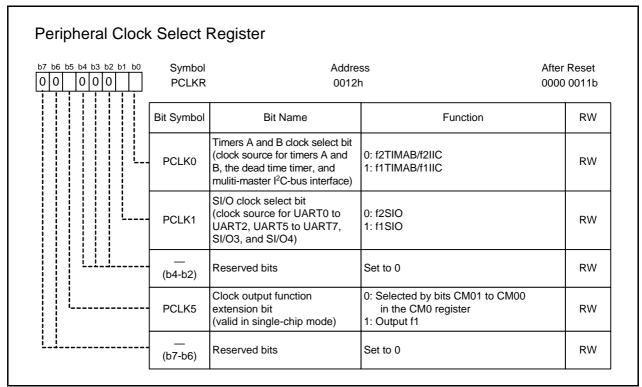
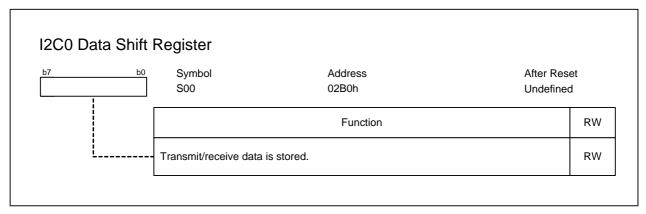

25.2 **Registers Descriptions**

Table 25.4 lists registers associated with multi-master I²C-bus interface. When the CM07 bit in the CM0 register is set to 1 (sub clock is CPU clock), registers listed in Table 25.4 should not be accessed. Set them after the CM07 bit is set to 0 (main clock, PLL clock, or on-chip oscillator clock).

Table 25.4 Register Configuration


Address	Register Name	Symbol	After Reset
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
02B0h	I2C0 Data Shift Register	S00	XXh
02B2h	I2C0 Address Register 0	S0D0	0000 000Xb
02B3h	I2C0 Control Register	S1D0	00h
02B4h	I2C0 Clock Control Register	S20	00h
02B5h	I2C0 Start/Stop Condition Control Register	S2D0	0001 1010b
02B6h	I2C0 Control Register 1	S3D0	0011 0000b
02B7h	I2C0 Control Register 2	S4D0	00h
02B8h	I2C0 Status Register 0	S10	0001 000Xb
02B9h	I2C0 Status Register 1	S11	00h
02BAh	I2C0 Address Register 1	S0D1	0000 000Xb
02BBh	I2C0 Address Register 2	S0D2	0000 000Xb

25.2.1 Peripheral Clock Select Register (PCLKR)

Write to the PCLKR register after setting the PRC0 bit in the PRCR register to 1 (write enabled).

25.2.2 I2C0 Data Shift Register (S00)

When the I²C interface is a transmitter, write a transmit data to the S00 register. When the I²C interface is a receiver, a received data can be read from the S00 register. In master mode, this register is used to generate a start condition or stop condition on a bus. (Refer to 25.3.2 "Generation of Start Condition" and 25.3.3 "Generation of Stop Condition".)

Write to the S00 register when the ES0 bit in the S1D0 register is set to 1 (I²C interface enabled).

The S00 register should not be written when data transmission/reception is in progress.

When the I²C interface is a transmitter, the data written in the S00 register is transmitted to other devices. The MSB (bit 7) is transmitted first, synchronizing with the SCLMM clock. Every time one-bit data is output, the content of the S00 register is one-bit shifted to the left.

When the I²C interface is a receiver, a data is transferred to the S00 register from other devices. The LSB (bit 0) is input first, synchronizing with the SCLMM clock. Every time one-bit data is output, the content of the S00 register is one-bit shifted to the left. Figure 25.2 shows Timing to Store The Received Data into The S00 Register.

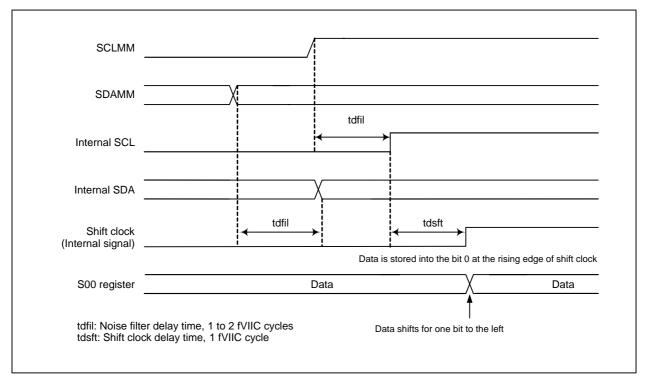
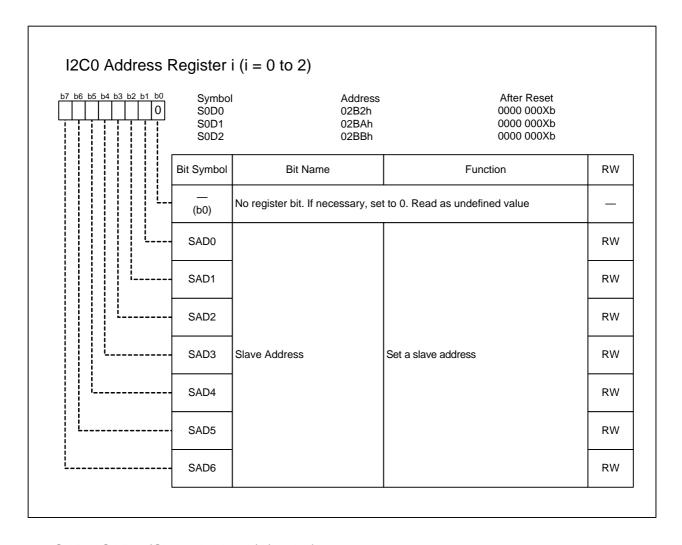
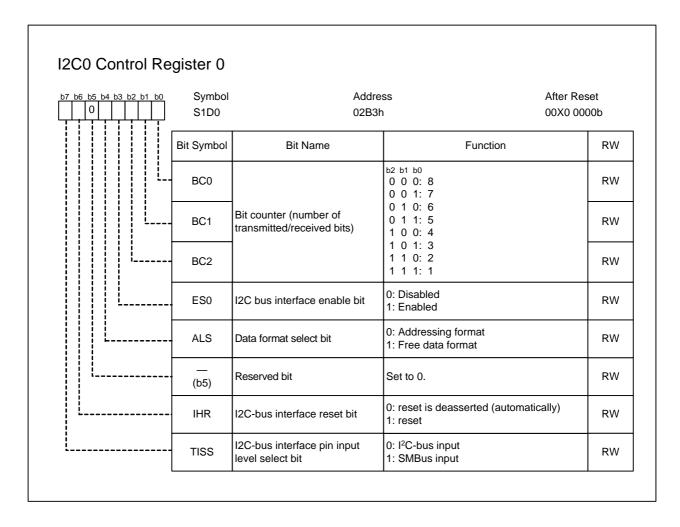



Figure 25.2 Timing to Store The Received Data into The S00 Register

25.2.3 I2C0 Address Register i (S0Di) (i = 0 to 2)



SAD6-SAD0 (Slave Address) (b7-b1)

Bits SAD6 to SAD0 indicate a slave address to be compared for a slave address match detection in slave mode. An I²C interface can have maximum of three slave addresses. Set bits SAD6 to SAD0 in the S0Di register to 0000000b when not setting the slave address.

However, when the MSLAD bit in the S4D0 register is 0, registers S0D1 and S0D2 are disabled. Only the slave address set to the S0D0 register is compared with address data received.

25.2.4 I2C0 Control Register (S1D0)

BC2-BC0 (Bit Counter) (b2-b0)

Bits BC2 to BC0 become 000b (8 bits) when start or stop condition is detected.

When the ACKCLK bit in the S20 register is 0 (no ACK clock), and data for the number of bits selected by bits BC2 to BC0 is transmitted or received, bits BC2 to BC0 become 000b again.

When the ACKCLK bit in the S20 register is 1 (ACK clock), data for the number of bits selected and an ACK is transmitted or received, bits BC2 to BC0 become 000b again.

ES0 (I2C bus Interface Enable Bit) (b3)

The ES0 bit enables the I²C interface.

When the ES0 bit is set to 0, the I²C interface status becomes as follows.

- Pins SDAMM and SCLMM: I/O port or other peripheral pins
- Write disable to the S00 register
- I2C-bus system clock (hereinafter called fVIIC) stops
- S10 register

ADR0 bit: 0 (general call not detected) AAS bit: 0 (slave address not matched) AL bit: 0 (arbitration lost not detected) PIN bit: 1 (no I²C-bus interrupt request)

BB bit: 0 (bus free)

TRX bit: 0 (receive mode) MST bit: 0 (slave mode)

- Bits AAS2 to AAS0 in the S11 register: 0 (slave address not matches)
- TOF bit in the S4D0 register: 0 (timeout not detected)

ALS (Data Format Select Bit) (b4)

The ALS bit is enabled in slave mode. When the ALS bit is 0 (addressing format), the slave address match detection is performed.

When any of the slave address stored into bits SAD6 to SAD0 in the S0Di register (i = 0 to 2) is compared and matched with the calling address by a master, or when a general call address is received, the IR bit in the IICIC register becomes 1 (interrupt requested).

When the ALS bit is 1 (free format), the slave address match detection is not performed. Therefore, the IR bit in the IICIC register becomes 1 (interrupt requested), regardless of the calling address by a master.

IHR (I2C bus Interface Reset Bit) (b6)

The IHR bit resets the I²C interface if a difficulty in transmission/reception is encountered. When the ES0 bit in the S1D0 register is 1 (I2C interface enabled) and then the IHR bit is set to 1 (reset), the I2C interface becomes as follows.

S10 register

ADR0 bit: 0 (general call not detected) AAS bit: 0 (slave address not matched) AL bit: 0 (arbitration lost not detected) PIN bit: 1 (No I²C-bus interrupt request)

BB bit: 0 (bus free)

TRX bit: 0 (receive mode) MST bit: 0 (slave mode)

- Bits AAS2 to AAS0 in the S11 register: 0 (slave address not matches)
- TOF bit in the S4D0 register: 0 (timeout not detected)

When the IHR bit is set to 1, the I²C interface is reset and the IHR bit becomes 0 automatically. It takes maximum of 2.5 fVIIC cycles to complete reset sequence.

Figure 25.3 shows Reset Timing of I²C Interface.

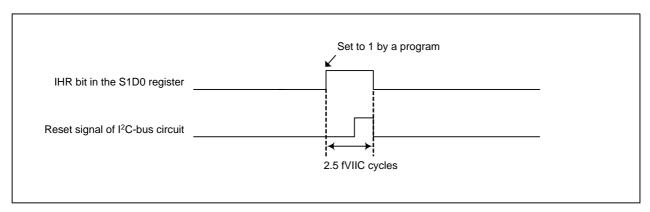
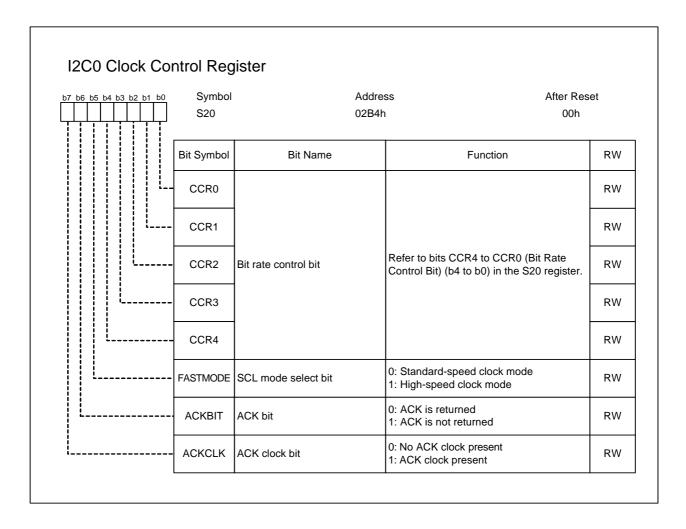



Figure 25.3 Reset Timing of I²C Interface

TISS (I2C bus Interface Pin Input Level Select Bit) (b7)

The TISS bit selects the input level of the SCLMM pin and SDAMM pin for the I²C interface.

25.2.5 **I2C0 Clock Control Register (S20)**

CCR4-CCR0 (Bit Rate Control Bit) (b4-b0)

The setting range of bits CCR4 to CCR0 (CCR value) is 0 to 31. If the setting values of bits CCR4 to CCR0 are the CCR value (CCR value: 3 to 31), the bit rate can be determined by the following

Refer to 25.3.1.2 "Bit Rate and Duty Cycle" for more details.

In standard speed clock mode,

Bit rate=
$$\frac{\text{fVIIC}}{8 \times \text{CCR value}} \le 100 \text{ kbps}$$

When the CCR value is other than 5 in high-speed clock mode,

Bit rate=
$$\frac{\text{fVIIC}}{4 \times \text{CCR value}} \le 400 \text{ kbps}$$

When the CCR value is 5 in high-speed clock mode, the bit rate is assumed to reach 400 kbps, the maximum bit rate in high-speed clock mode.

Bit rate=
$$\frac{\text{fVIIC}}{2 \times \text{CCR value}} = \frac{\text{fVIIC}}{10} \le 400 \text{ kbps}$$

The CCR value should not be set to 0 to 2 regardless of the fVIIC frequency. Bits CCR4 to CCR0 should not be rewritten during transmission/reception.

FASTMODE (SCL Mode Select Bit) (b5)

When using the high-speed clock mode I²C-bus standard (400 kbps at maximum), set the FASTMODE bit to 1 (high-speed clock mode) and set fVIIC at 4 MHz or more.

The FASTMODE bit should not be rewritten during transmission/reception.

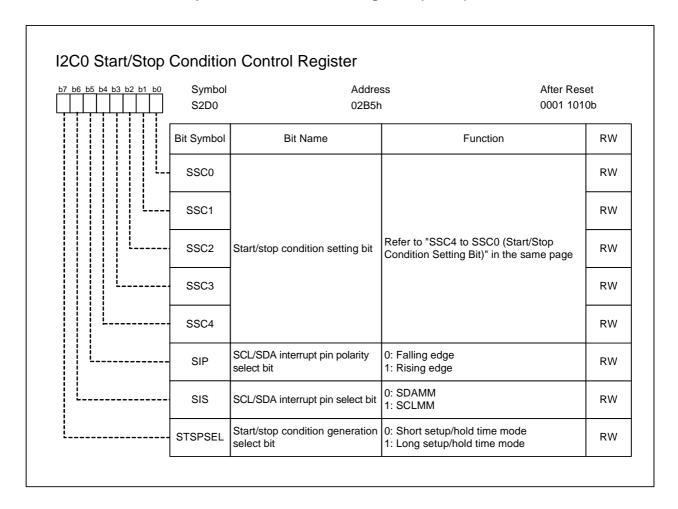
ACKBIT (ACK bit) (b6)

The ACK bit is enabled when the I²C interface is a master-receiver or slave-receiver. It is also enabled when receiving a slave address. When receiving a slave address, the SDAMM pin level during the ACK clock pulse is determined by the combination of bits ALS and ACKBIT in the S1D0 register and the received slave address.

When receiving data, the SDAMM pin level during the ACK clock pulse is determined by the ACKBIT bit. Table 25.5 lists the SDAMM Pin Level during the ACK Clock Pulse.

Table 25.5 SDAMM Pin Level during the ACK Clock Pulse

Received Content	ALS Bit in the S1D0 Register	ACKBIT Bit in the S20 Register	Slave Address Content	SDAMM Pin Level at ACK Clock
Slave Address	0	0	Matched with bits SAD6 to SAD0 in any of registers S0D0 to S0D2	L (ACK)
			0000000b	L (ACK)
			Others	H (NACK)
		1	_	H (NACK)
	1	0	_	L (ACK)
		1	_	H (NACK)
Data	_	0	_	L (ACK)
		1	_	H (NACK)


ACKCLK (ACK Clock Bit) (b7)

When the ACKCLK bit is 1 (ACK clock presents), an ACK clock is generated immediately after one-byte data is transmitted or received (8 clocks).

When the ACKCLK bit is 0 (no ACK clock), no ACK clock is generated after one-byte data is transmitted or received (8 clocks). At the falling edge of the data transmission/reception (the falling edge of the 8th clock), the IR bit in the IICIC register becomes 1 (interrupt requested).

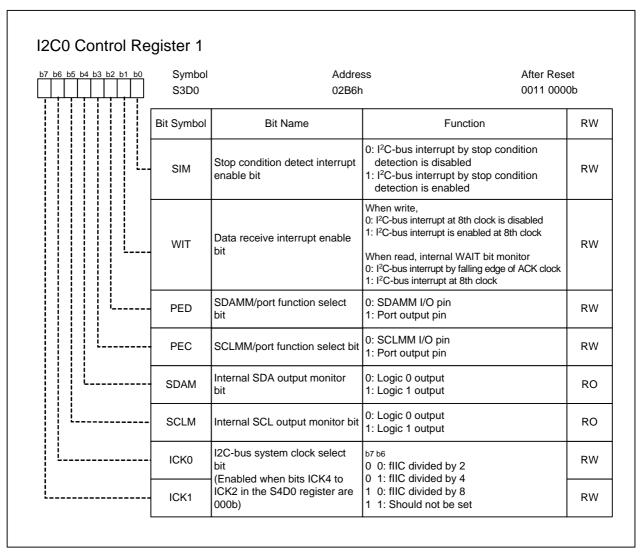
The ACKCLK bit should not be rewritten during transmission/reception.

25.2.6 I2C0 Start/Stop Condition Control Register (S2D0)

SSC4-SSC0 (Start/Stop Condition Setting Bit) (b4-b0)

Bits SSC4 to SSC0 select the start/stop condition detect condition (SCL open time, setup time, hold time) in standard clock mode. Refer to 25.3.7 "Start Condition and Stop Condition Detection". Do not set odd values or 00000b to bits SSC4 to SSC0.

SIP (SCL/SDA Interrupt Pin Polarity Select Bit) (b5)


SIS (SCL/SDA Interrupt Pin Select Bit) (b6)

The IR bit in the SCLDAIC register is set to 1 (interrupt requested) when the I2C interface detects the edge selected by the SIP bit for the pin signal selected by the SIS bit. Refer to 25.4 "Interrupts".

STSPSEL (Start/Stop Condition Generation Select Bit) (b7)

Refer to Table 25.13 "Setup/Hold Time for Start/Stop Condition Generation". If the fVIIC frequency is more than 4 MHz, set the STSPSEL bit to 1 (long mode).

25.2.7 I2C0 Control Register 1 (S3D0)

Do not use the bit managing instruction (read-modify-write instruction) to access the S3D0 register. Use MOV instruction to write to the S3D0 register.

SIM (Stop Condition Detect Interrupt Enable Bit) (b0)

When the SIM bit is 1 (I2C-bus interrupt by stop condition detection enabled) and a stop condition is detected, the SCPIN bit in the S4D0 register becomes 1 (stop condition detect interrupt requested) and the IR bit in the IICIC register becomes 1 (interrupt requested).

WIT (Data Receive Interrupt Enable Bit) (b1)

The WIT bit is enabled when the I²C interface is a master-receiver or slave-receiver.

The WIT bit has two functions.

- Select the I²C-bus interrupt timing when data is received. (write)
- Monitor the state of the internal WAIT flag. (read)

The WIT bit can select whether to generate an I²C-bus interrupt request at eighth clock (before ACK clock) during the data reception.

When the ACKCLK bit in the S20 register is 1 (ACK clock) and the WIT bit is set to 1 (enable I²C-bus interrupt at 8th clock), an I²C-bus interrupt request is generated at the eighth clock (before ACK clock). Then, the PIN bit in the S10 register becomes 0 (interrupt requested).

When the ACKCLK bit in the S20 register is 0 (no ACK clock), write a 0 to the WIT bit to disable the I²Cbus interrupt by data reception.

During data transmission and slave address reception, any interrupt request will not be generated at the eighth clock (before ACK clock) regardless of the value written to the WIT bit.

Reads of the WIT bit returns the internal WAIT flag status.

The I²C-bus interrupt request is generated at the falling edge of the ninth clock (ACK clock) regardless of the value written to the WIT bit. Then, the PIN bit in the S10 register becomes 0 (interrupt requested).

Therefore, read the internal WAIT flag status to determine whether the I²C-bus interrupt request is generated at eighth clock (before ACK clock) or at the falling edge of the ACK clock.

When a 1 is written to the WIT bit to enable the I2C-bus interrupt by data reception, the internal WAIT flag changes under the following condition.

Condition to become 0:

The S20 register (ACKBIT bit) is written.

Condition to become 1:

• The S00 register is written.

During data transmission and slave address reception, the internal WAIT flag is 0 and the I²C-bus interrupt request will be generated only at the falling edge of the ninth clock (ACK clock), regardless of the value written to the WIT bit.

Table 25.6 lists an interrupt request generation timing and the conditions to restart transmission/ reception during data reception. Figure 25.4 shows Interrupt Request Generation Timing in Receive Mode.

Table 25.6 Generating Interrupt Request and Restarting Transmission/Reception During Data Reception

I ² C-bus Interrupt Request Generation Timing	Internal WAIT Flag Status	Conditions to Restart Transmission/Reception
At the falling edge of 8th clock of data (before the ACK clock) (1)		Write to the ACKBIT bit in the S20 register (3)
At the falling edge of 9th clock (ACK clock) (2)	0	Write to the S00 register

Notes:

- 1. See the timing of (1) on the IR bit in the IICIC register in Figure 25.4.
- 2. See the timing of (2) on the IR bit in the IICIC register in Figure 25.4.
- Do not change the value of the bits other than ACKBIT bit in the S20 at this time. Also, do not write to the S00 register.

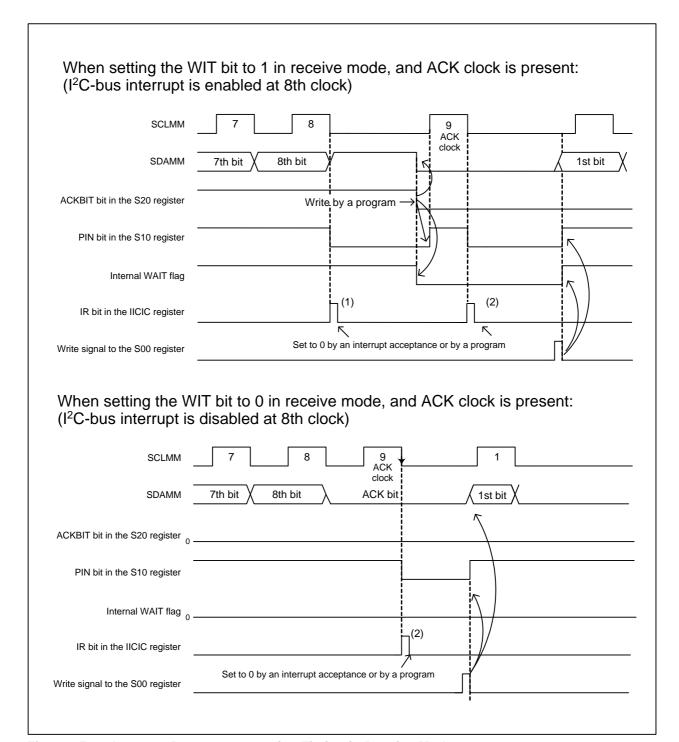


Figure 25.4 Interrupt Request Generation Timing in Receive Mode

PED (SDAMM Port Function Switch Bit) (b2) PEC (SCLMM Port Function Switch Bit) (b3)

Bits PEC and PED are enabled when the ES0 bit in the S1D0 register is set to 1 (I2C interface enabled).

When the PEC bit is set to 1 (output port), the P7_1 bit value is output from the SCLMM pin regardless of the internal SCL output signal and PD7 1 bit value. When the PED bit is set to 1 (output port), the P7_0 bit value is output from the SDAMM pin regardless of the internal SDA output signal and PD7_0 bit value.

The signal level on the bus is input to the internal SDA and internal SCL.

When bits P7_1 to P7_0 in the P7 register are read after setting bits PD7_1 and PD7_0 in the PD7 register to 0 (input mode), the level on the bus can be read regardless of the setting values of bits PED and PEC. Table 25.7 lists SCLMM and SDAMM Pin Functions.

Table 25.7 SCLMM and SDAMM Pin Functions

Pin	S1D0 Register	S3D0 F	Register	Pin Function
FIII	ES0 bit	PED bit	PEC bit	- First discussion
P7_1/SCLMM	0	-	-	I/O port or other peripheral pins
	1	1 -		SCLMM (SCL input/output)
	1	-	1	Output port (output P7_1 bit value)
P7_0/SDAMM	0	-	-	I/O port or other peripheral pins
	1	0	-	SDAMM (SDA input/output)
	1	1	-	Output port (output P7_0 bit value)

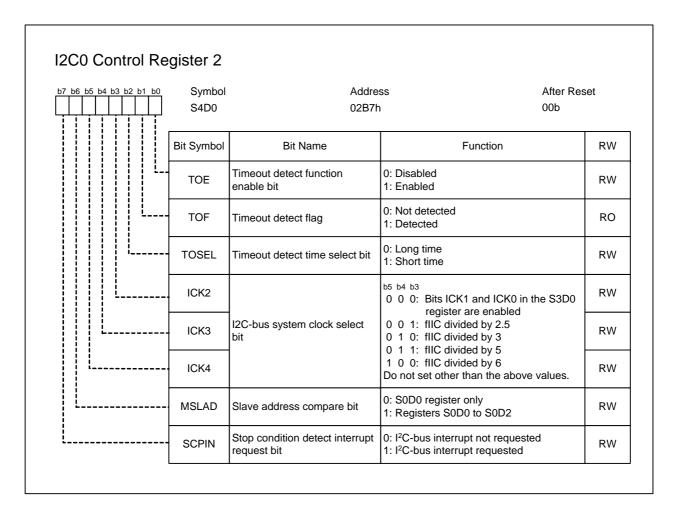
^{-: 0} or 1

SDAM (Internal SDA Output Monitor Bit) (b4) SCLM (Internal SCL Output Monitor Bit) (b5)

The internal SDA and SCL output signal levels are the same as the output level of the I²C interface before it has any effect from the external device output. Bits SDAM and SCLM are read only bits. Should be written with 0.

ICK1-ICK0 (I2C bus System Clock Select Bit) (b7-b6)

Bits ICK1 to ICK0 should be rewritten when the ES0 bit in the S1D0 register is 0 (I2C interface disabled). The fVIIC is selected by setting all the bits ICK1 to ICK0, bits ICK4 to ICK2 in the S4D0 register, and the PCLK0 bit in the PCLKR register. Refer to 25.3.1.2 "Bit Rate and Duty Cycle".


Table 25.8 I²C-bus System Clock Select Bits

	S4D0 Register		S3D0 F	Register	fVIIC
ICK4 Bit	ICK3 Bit	ICK2 Bit	ICK1 Bit	ICK0 Bit	
0	0	0	0	0	fIIC divided-by-2
0	0	0	0	1	fIIC divided-by-4
0	0	0	1	0	fIIC divided-by-8
0	0	1	_	_	fIIC divided-by-2.5
0	1	0	_	_	fIIC divided-by-3
0	1	1	_	_	fIIC divided-by-5
1	0	0	_	_	fIIC divided-by-6

-: 0 or 1

Do not set any combination other than the above.

25.2.8 I2C0 Control Register 2 (S4D0)

TOE (Timeout Detect Function Enable Bit) (b0)

The TOE bit enables the timeout detect function. Refer to 25.3.9 "Timeout Detection" for details.

TOF (Timeout Detect Flag) (b1)

The TOF bit is enabled when the TOE is set to 1. When the TOF bit is set to 1 (detected), the IR bit in the IICIC register is set to 1 (requested) at the same time.

Condition to become 0:

- The ES0 bit in the S1D0 register is set to 0 (I2C interface disabled).
- The IHR bit in the S1D0 register is set to 1 (I2C interface reset).

Condition to become 1:

 The BB bit in the S10 register is set to 1 (bus busy) and the SCLMM high period is greater than the timeout detect period.

TOSEL (Timeout Detection Period Select Bit) (b2)

The TOSEL bit selects timeout detection period. The TOSEL bit is enabled when the TOE bit is 1 (timeout detect function enabled).

When long time is selected, the internal counter increments fVIIC as a 16-bit counter. when short time is selected, it increments fVIIC as a 14-bit counter. Therefore, timeout detect period is as follows. When the TOSEL bit is set to 0 (long time),

$$65536 \times \frac{1}{\text{fVIIC}}$$

When the TOSEL bit is set to 1 (short time),

$$16384 \times \frac{1}{\text{fVIIC}}$$

Table 25.9 lists Timeout Detect Period.

Table 25.9 Timeout Detect Period

fVIIC	Timeout Detect					
	TOSEL Bit: 0 (Long time) TOSEL bit: 1 (Short time)					
4 MHz	16.4 ms	4.1 ms				
2 MHz	32.8 ms	8.2 ms				
1 MHz	65.6 ms	16.4 ms				

ICK4-ICK2 (I2C bus System Clock Select Bit) (b5-b3)

Bits ICK4 to ICK2 should be rewritten when the ES0 bit in the S1D0 register is set to 0 (I2C interface disabled).

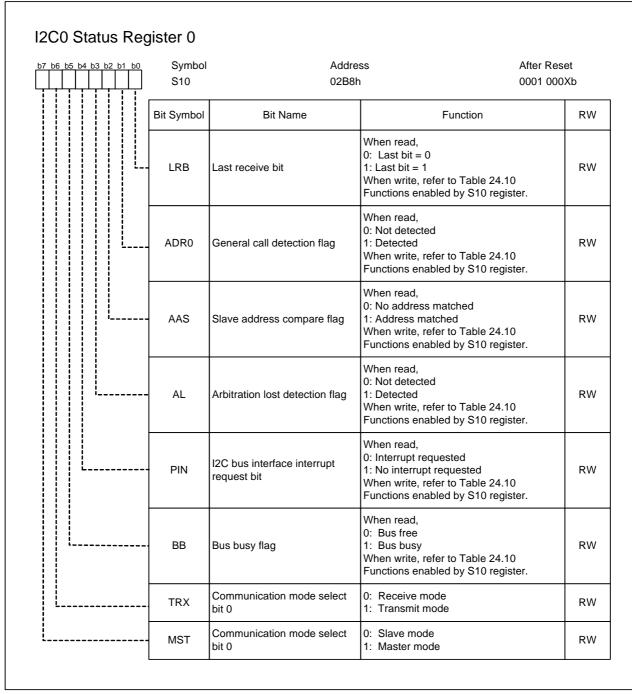
The fVIIC is selected by setting all the bits ICK4 to ICK2, bits ICK1 to ICK0 in the S3D0 register, and the PCLK0 bit in the PCLKR register. Refer to Table 25.8 "I2C-bus System Clock Select Bits" and 25.3.1.2 "Bit Rate and Duty Cycle".

MSLAD (Slave Address Control Bit) (b6)

The MSLAD bit is enabled when the ALS bit in the S1D0 register is set to 0 (addressing format). The MSLAD bit selects the S0Di register (i = 0 to 2) that is used for address match detection.

SCPIN (Stop Condition Detect Interrupt Request Bit) (b7)

The SCPIN bit is enabled when the SIM bit in the S3D0 register is set to 1 (enable I2C-bus interrupt by stop condition detection).


Condition to become 0:

Writing a 0 by a program.

Condition to become 1:

 Stop condition is detected (writing a 1 by a program has no effect).

25.2.9 I2C0 Status Register 0 (S10)

Do not use the bit managing instruction (read-modify-write instruction) to access the S10 register. Use MOV instruction to write to the S10 register.

Bit 5 to bit 0 in the S10 register (six lower bits) monitors the state of the I²C interface. The bit values cannot be changed by a program. However, a write to the S10 register, including the six lower bits, is used to generate start/stop condition.

Bits MST and TRX are read and write bits. To change bits MST or TRX without generating the start/ stop condition, set 1111b to four lower bits in the S10 register.

Table 21.10 lists the functions enabled by write access to the S10 register. Do not write other than the values listed in Table 21.10. If the values listed in Table 21.10 are written to the S10 register, six lower bits in the S10 register will not be changed.

Table 25.10 Functions Enabled by Writing to the S10 Register

		Bit Sett	ing of th	e S10 F	Register			Function		
MST	TRX	BB	PIN	AL	AAS	ADR0	LRB	T diletion		
1	1	1	0	0	0	0	0	Sets the I ² C interface to start condition standby state in master transmit/receive mode		
1	1	0	0	0	0	0	0	Sets the I ² C interface to stop condition standby state in master transmit/receive mode		
0/1	0/1	_	0	1	1	1	1	Selects communication mode		

^{-: 0} or 1

Refer to 25.3.2 "Generation of Start Condition" and 25.3.3 "Generation of Stop Condition" for start/stop condition generation.

LRB (Last Receive Bit) (b0)

The LRB bit function in read access is described as follows. See Table 25.10 "Functions Enabled by Writing to the S10 Register" for the bit function in write access.

The LRB bit stores the last bit value of the received data. It is used to check whether the ACK is received.

Condition to become 0:

- An ACK response is sent from a receiver at ACK clock.
- The ACKCLK bit is set to 0 (no ACK clock) and the last bit value is 0.
- The S00 register is written.

Condition to become 1:

- No ACK response is sent from a receiver at ACK clock.
- The ACKCLK bit is set to 0 (no ACK clock) and the last bit value is 1.

ADR0 (General Call Detection Flag) (b1)

The ADR0 bit function in read access is described as follows. See Table 25.10 "Functions Enabled by Writing to the S10 Register" for the bit function in write access.

Condition to become 0:

- Stop condition is detected.
- Start condition is detected.
- The ES0 bit in the S1D0 register is set to 0 (I2C interface disabled).
- The IHR bit in the S1D0 register is set to 1 (I2C interface reset).

Condition to become 1:

 The ALS bit in the S1D0 register is set to 0 (addressing format) and the received slave address is 000000b (general call) in slave mode.

AAS (Slave Address Compare Flag) (b2)

The AAS bit function in read access is described as follows. See Table 25.10 "Functions Enabled by Writing to the S10 Register" for the bit function in write access.

Condition to become 0:

- The S00 register is written.
- The ES0 bit in the S1D0 register is set to 0 (I²C interface disabled).
- The IHR bit in the S1D0 register is set to 1 (I2C interface reset).

Condition to become 1:

- In slave-receiver mode, the ALS bit in the S1D0 register is set to 0 (addressing format) and the received slave address is matched with bits SAD6 to SAD0 in any of registers S0D0 to S0D2.
- In slave-receiver mode, the ALS bit in the S1D0 register is set to 0 (addressing format) and the general call address (000000b) is received.

AL (Arbitration Lost Detection Flag) (b3)

The AL bit function in read access is described as follows. See Table 25.10 "Functions Enabled by Writing to the S10 Register" for the bit function in write access.

Condition to become 0:

- The S00 register is written.
- The ES0 bit in the S1D0 register is set to 0 (I²C interface disabled).
- The IHR bit in the S1D0 register is set to 1 (I²C interface reset).

Condition to become 1:

- In master-transmitter mode or master-receiver mode, the SDAMM pin level changes to low by an external device, not by the ACK clock, when slave address is transmitted.
- The SDAMM pin level changes to low by an external device for other than the ACK clock when data is transmitted in master-transmitter mode.
- In master-transmitter mode or master-receiver mode, the SDAMM pin level changes to low by an external device when start condition is transmitted.
- In master-transmitter mode or master-receiver mode, the SDAMM pin level changes to low by an external device when stop condition is transmitted.
- The function to avoid start condition overlaps is started.

PIN (I2C bus Interface Interrupt Request Bit) (b4)

The PIN bit function in read access is described as follows. See Table 25.10 "Functions Enabled by Writing to the S10 Register" for the bit function in write access.

Condition to become 0:

- Slave address transmission is completed in master mode (including a case of detecting arbitration lost).
- One-byte data transmission is completed (including a case of detecting arbitration lost).
- One-byte data reception is completed (the falling edge of 8th clock is detected when the ACKCKL bit is set to 0. The falling edge of ACK clock when the ACKCKL bit is set to 1.).
- The WIT bit in the S3D0 register is set to 1 (I2C-bus interrupt enabled at 8th clock) and 1-byte data is received (before ACK clock).
- In slave-receiver mode, the ALS bit in the S1D0 register is set to 0 (addressing format) and any of the slave address stored into bits SAD6 to SAD0 in the S0Di register (i = 0 to 2) is matched with the received slave address (slave address match).
- In slave-receiver mode, the ALS bit in the S1D0 register is set to 0 (addressing format) and the general call address (0000000b) is received.
- In slave-receiver mode, the ALS bit in the S1D0 register is set to 1 (free format) and the slave address reception is completed.

Condition to become 1:

- The S00 register is written.
- The S20 register is written (when the WIT bit is 1 and internal WAIT flag is 1).
- The ES0 bit in the S1D0 register is set to 0 (I2C interface disabled).
- The IHR bit in the S1D0 register is set to 1 (I2C interface reset).

The IR bit in the IICIC register is set to 1 (interrupt requested) as soon as the PIN bit is set to 0 (I²C-bus interrupt requested). When the PIN bit is set to 0, the SCLMM pin output level is low.

However, the SCLMM pin output level does not become low when all the following conditions are met.

- In master mode, when arbitration lost is detected by a slave address, the ALS bit in the S1D0 register is 0 (addressing format), and the received address not 0000000b (general call) does not match any of bits SAD6 to SAD0 in the registers S0D0 to S0D2.
- In master mode, when arbitration lost is detected by data, the ALS bit in the S1D0 register is 0 (addressing format), and the slave address not 0000000b (general call) does not match any of bits SAD6 to SAD0 in the registers S0D0 to S0D2.

BB (Bus Busy Flag) (b5)

The BB bit function in read access is described as follows. See Table 25.10 "Functions Enabled by Writing to the S10 Register" for the bit function in write access.

The BB bit indicates the state of the bus system, whether the bus is free or not. The BB bit changes depending on the SCLMM and SDAMM input signals, regardless of master mode or slave mode. Condition to become 0:

- Stop condition is detected.
- The ES0 bit in the S1D0 register is set to 0 (I²C interface disabled).
- The IHR bit in the S1D0 register is set to 1 (I2C interface reset).

Condition to become 1:

Start condition is detected.

TRX (Communication Mode Select Bit 0) (b6)

The TRX selects transmit mode or receive mode.

Condition to become 0:

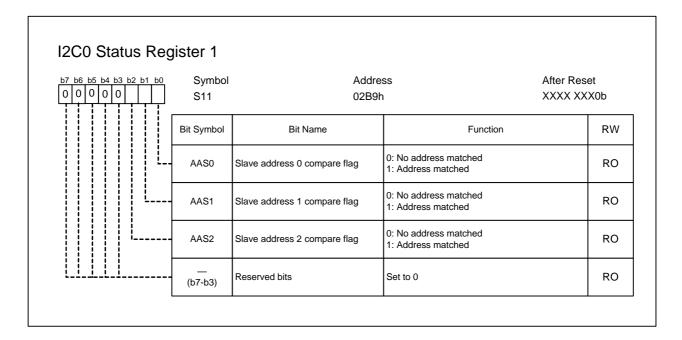
- The TRX bit is set to 0 by a program.
- Arbitration lost is detected.
- Stop condition is detected.
- Start condition overlap protect function is enabled.
- Start condition is detected when the MST bit in the S10 register is set to 0 (slave mode).
- No ACK is detected from a receiver when the MST bit in the S10 register is set to 0 (slave mode).
- The ES0 bit in the S1D0 register is set to 0 (I2C interface disabled).
- The IHR bit in the S1D0 register is set to 1 (I2C interface reset).

Condition to become 1:

- The TRX bit is set to 1 by a program.
- The ALS bit in the S1D0 register is set to 0 (addressing format), the AAS bit is set to 1 (address matched) after receiving the slave address, and the received R/W bit is set to 1, in slave mode.

MST (Communication Mode Select Bit 1) (b7)

The MST bit selects master mode or slave mode.


Condition to become 0:

- The MST bit is set to 0 by a program.
- The one-byte data that lost arbitration is completed transmitting/receiving when arbitration lost is detected.
- Stop condition is detected.
- Start condition overlap protect function is enabled.
- The ES0 bit in the S1D0 register is set to 0 (I²C interface disabled.
- The IHR bit in the S1D0 register is set to 1 (I2C interface reset).

Condition to become 1:

• The MST bit is set to 1 by a program.

25.2.10 I2C0 Status Register 1 (S11)

AAS0 Bit (Slave Address 0 Compare Flag) (b0)

AAS1 Bit (Slave Address 1 Compare Flag) (b1)

AAS2 Bit (Slave Address 2 Compare Flag) (b2)

The AASi bit indicates the address match when the ALS bit in the S1D0 register is set to 0 (addressing format) and any of the slave address stored into bits SAD6 to SAD0 in the S0Di register (i = 0 to 2) is compared with the received slave address. The AASi bit is set to 1 when there is an address match or when a general call address is received.

Bits AAS2 to AAS0 are set to 0 under the following conditions.

- The ES0 bit in the S1D0 register is set to 0 (I2C interface disabled).
- The IHR bit in the S1D0 register is set to 1 (I²C interface reset).
- The S00 register is written.

25.3 **Operations**

25.3.1 Clock

Figure 25.5 shows I²C-bus Interface Clock.

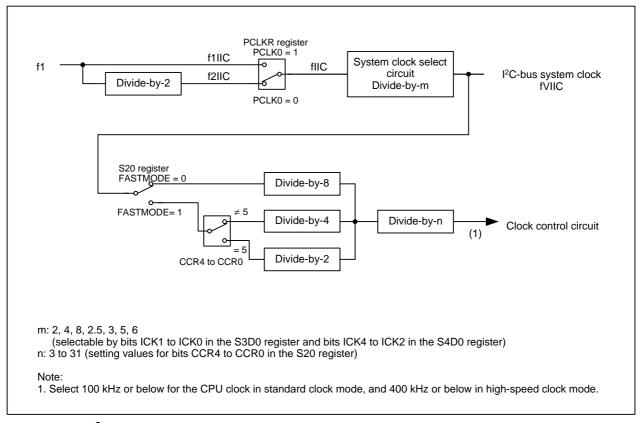


Figure 25.5 I²C-bus Interface Clock

25.3.1.1 **fVIIC**

The fVIIC is determined by the setting combination of the following.

- The frequency of peripheral clock f1
- The PCLK0 bit in the PCLKR register
- Bits ICK1 to ICK0 in the S3D0 register
- Bits ICK4 to ICK2 in the S4D0 register

The fVIIC stops when the ES0 bit in the S1D0 register is 0 (I²C interface disabled).

Refer to Table 25.8 "I2C-bus System Clock Select Bits" for details.

Bit Rate and Duty Cycle 25.3.1.2

Bit rate is determined by the setting combination of the fVIIC and bits CCR4 to CCR0 in the S20 register.

Table 25.11 lists Bit Rate of Internal SCL Output and Duty Cycle. Even if there is a change in duty cycle, the bit rate does not change. The bit rate and duty cycle described here are the ones before the I²C interface have any effect from the SCL output of external device.

Table 25.11 Bit Rate of Internal SCL Output and Duty Cycle

Item	Standard Clock Mode	High-Speed Clock Mode (CCR value = other than 5)	High-Speed Clock Mode (CCR value = 5)	
Bit rate (bps)	fVIIC 8 × CCR value	fVIIC 4 × CCR value	$\frac{\text{fVIIC}}{2 \times \text{CCRvalue}} = \frac{\text{fVIIC}}{10}$	
Duty cycle	50% (1)	50% (2)	35 to 45%	

CCR value: Setting value of bits CCR4 to CCR0

Notes:

- Fluctuation of high level: -4 to +2 fVIIC cycles 1.
- 2. Fluctuation of high level: -2 to +2 fVIIC cycles

When the setting value (CCR value) of bits CCR4 to CCR0 is 5 (00100b) in high-speed clock mode, the maximum bit rate should be 400 kbps in high-speed clock mode.

The bit rate and duty cycle are as follows.

• Bit rate:

$$\frac{\text{fVIIC}}{2 \times \text{CCR value}} = \frac{\text{fVIIC}}{10}$$

When fVIIC is 4 MHz, the bit rate is 400 kbps.

Duty cycle is 35 to 45%

Even if the bit rate is 400 kbps, the minimum low period of SCLMM clock of 1.3 µs (I²C-bus standard) is ensured.

Table 25.12 lists Bit Setting of Bits CCR4 to CCR0 and Bit Rate (fVIIC = 4 MHz).

Table 25.12 Bit Setting of Bits CCR4 to CCR0 and Bit Rate (fVIIC = 4 MHz)

Bits CO	Bits CCR4 to CCR0 in the S20 Register			Register	Bit Ra	Bit Rate (kbps)		
CCR4	CCR3	CCR2	CCR1	CCR0	Standard Clock Mode	High-Speed Clock Mode		
0	0	0	0	0	Do not set (1)	Do not set ⁽¹⁾		
0	0	0	0	1	Do not set ⁽¹⁾	Do not set ⁽¹⁾		
0	0	0	1	0	Do not set ⁽¹⁾	Do not set ⁽¹⁾		
0	0	0	1	1	Do not set (2)	333		
0	0	1	0	0	Do not set (2)	250		
0	0	1	0	1	100	400		
0	0	1	1	0	83.3	166		
:	:	:	:	:	:	:		
1	1	1	0	1	17.2	34.5		
1	1	1	1	0	16.6	33.3		
1	1	1	1	1	16.1	32.3		

Notes:

- 1. Bits CCR4 to CCR0 should not be set to 0 to 2 regardless of the fVIIC frequency.
- 2. The maximum bit rate is 100 kbps in standard clock mode and 400 kbps in high-speed clock mode. Do not exceed the maximum bit rate.

25.3.1.3 Slave Address Receive in Wait Mode and Stop Mode

When the CM02 bit in the CM0 register is set to 0 (peripheral clock f1 does not stop in wait mode) and wait mode is entered, the I²C interface receives slave address even in wait mode.

When the CM02 bit in the CM0 register is set to 1 (peripheral clock f1 stops in wait mode), and wait mode, stop mode, or low-power consumption mode is entered, the I²C interface stops operating because fVIIC also stops.

The SCL/SDA interrupt can be used in both wait mode and stop mode.

Generation of Start Condition 25.3.2

Follow the procedure below when the ES0 bit in the S1D0 register is 1 (I2C interface enabled) and the BB bit in the S10 register is set to 0 (bus free). Figure 25.6 shows Start Condition Generation Procedure.

- (1) Write "E0h" to the S10 register.
 - The I²C interface enters the start condition standby state and the SDAMM pin is left open.
- (2) Write a slave address to the S00 register.
- A start condition is generated. Then, the bit counter becomes 000b, the SCL clock signal is output for one byte, and the slave address is transmitted.

Write access to the S10 register is disabled during 1.5 fVIIC cycles after a stop condition is generated and the BB bit becomes 0 (bus free). Therefore, when writing E0h to the S10 register and a slave address to the S00 register during the 1.5 fVIIC cycles, start condition standby state is not entered, and a start condition is not generated accordingly.

When generating a start condition immediately after the falling edge of the BB bit, check both TRX and MST bits are 1 after the procedure (1), and then execute the procedure (2).

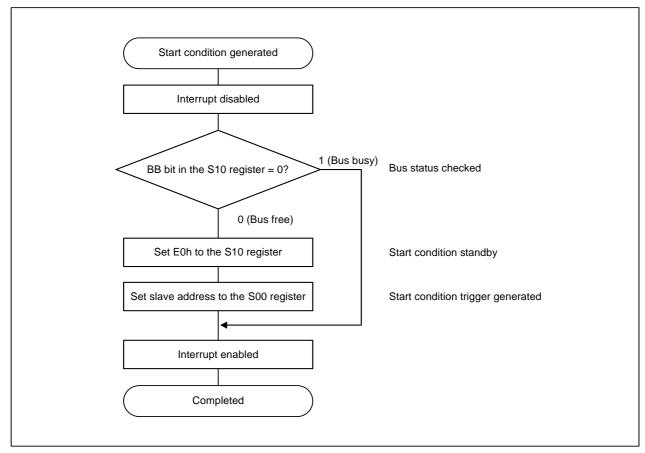


Figure 25.6 **Start Condition Generation Procedure**

The start condition generation timing depends on the modes (standard clock mode or high-speed clock mode). Figure 25.7 shows Start Condition Generation Timing.

Table 25.13 lists Setup/Hold Time for Start/Stop Condition Generation.

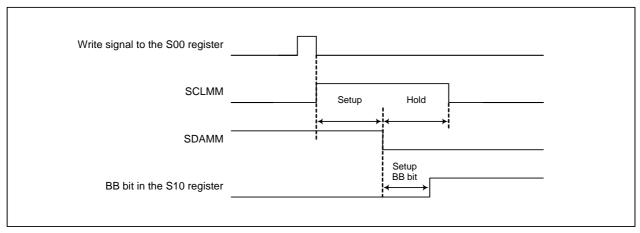


Figure 25.7 **Start Condition Generation Timing**

Table 25.13 Setup/Hold Time for Start/Stop Condition Generation

Item	STSPSEL Bit	Standard Clock Mode		High-speed Clock Mode		
		fVIIC cycles	fVIIC = 4 MHz	fVIIC cycles	fVIIC = 4MHz	
Setup time	0 (short mode)	20	5.0 μs	10	2.5 μs	
	1 (long mode)	52	13.0 μs	26	6.5 μs	
Hold time	0 (short mode)	20	5.0 μs	10	2.5 μs	
	1 (long mode)	52	13.0 μs	26	6.5 μs	
BB bit set/ reset time	-	<u>SSC value – 1</u> + 2	3.375 μs ⁽¹⁾	3.5	0.875 μs	

^{-: 0} or 1

STSPSEL: Bit in the S2D0 register

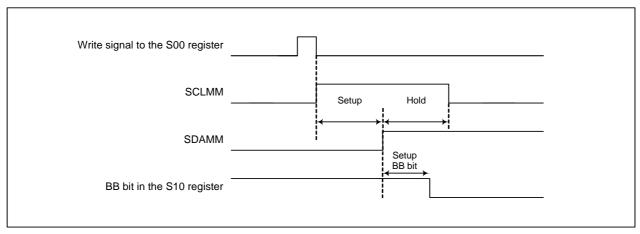
SSC value: Value of bits SSC4 to SSC0 in the S2D0 register

Note:

1. Example value when bits SSC4 to SSC0 are 11000b.

25.3.3 **Generation of Stop Condition**

Follow the procedure below when the ES0 bit in the S1D0 register is 1 (I²C interface enabled).


(1) Write C0h to the S10 register.

The I²C interface enters the stop condition standby state and the SDAMM pin is driven low.

(2) Write a dummy data to the S00 register.

A stop condition is generated.

The stop condition generation timing depends on the modes (standard clock mode or high-speed clock mode). Figure 25.8 shows Sop Condition Generation Timing. Refer to Table 25.13 "Setup/Hold Time for Start/Stop Condition Generation" for setup/hold time.

Sop Condition Generation Timing Figure 25.8

The S10 register or S00 register should not be written until the BB bit in the S10 register becomes 0 (bus free) after the instructions to generate a stop condition (refer to above (2)) are executed. If the SCLMM pin input signal becomes low until the BB bit in the S10 register becomes 0 (bus free) from the instruction to generate a stop condition is executed and the SCLMM pin becomes high-level, the internal SCL output becomes low. In this case, perform one of the procedures below to stop the low signal output from the SCLMM pin (leave the SCLMM pin open).

- Generate a stop condition (perform the procedures (1) and (2) described previously).
- Set the ES0 bit in the S1D0 register to 0 (I2C interface disabled).
- Write a 1 to the IHR bit (I2C interface reset).

25.3.4 **Generation of Restart Condition**

Follow the procedure below to generate a restart condition when one-byte data is transmitted/received.

- (1) Write E0h to the S10 register. (Start condition standby state. SDAMM pin becomes highimpedance.)
- (2) Wait until the SDAMM pin level becomes high.
- (3) Write a slave address to the S00 register (a start condition trigger generated)

Figure 25.9 shows Restart Condition Generation Timing.

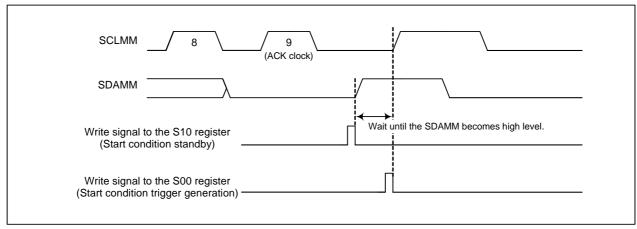


Figure 25.9 **Restart Condition Generation Timing**

25.3.5 **Start Condition Overlap Protect**

The I²C interface generates a start condition by setting registers S10 and S00 by a program. The bus system must be free before setting these registers. Check whether the bus is free with the BB bit in the S10 register by a program before setting the registers.

However, even if the bus system is checked free, other master devices may generate a start condition before setting registers S10 and S00. In this case, when the I²C interface detects the start condition, the BB bit becomes 1 (bus busy) and the start condition overlap protect function is performed.

The start condition overlap protect function operates as follows.

- The start condition standby state is not entered even if the S10 register is set to E0h.
- If the I²C interface is in the start condition standby state, exit the state.
- A start condition trigger is not generated even if a data is written to the S00 register by program.
- Bits MST and TRX in the S10 register are set to 0 (slave-receiver mode).
- The AL bit in the S10 register becomes 1 (arbitration lost detected).

Figure 25.10 shows Start Condition Overlap Protect Operation.

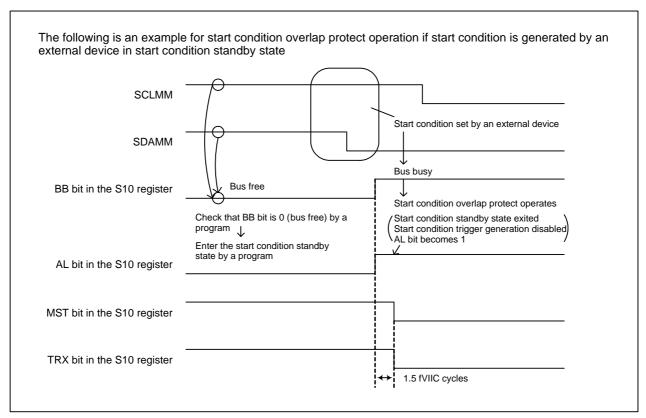


Figure 25.10 Start Condition Overlap Protect Operation

The start condition overlap protect is enabled from the falling edge of SDAMM (start condition) to the completion of the slave address receive. If data is written to register S10 and S00 during the period, the above operation is performed. Figure 25.11 shows Start Condition Overlap Protect Function Enable Period.

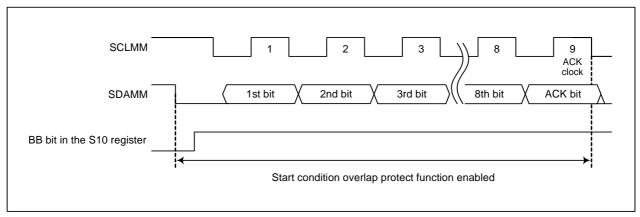


Figure 25.11 Start Condition Overlap Protect Function Enable Period

25.3.6 **Arbitration Lost**

When the following conditions are all met, the signal level of SDAMM pin becomes low by an external device and the I²C interface determines that it has lost arbitration.

- (1) Transmit/receive (one of the following)
 - Slave address transmit in master-transmitter mode or master-receiver mode
 - Data transmit (ACK clock not included) in master-transmitter mode
 - Start condition generated in master-transmitter mode or master-receiver mode
 - Stop condition generated in master-transmitter mode or master-receiver mode
- (2) Internal SDA output: High
- (3) SDAMM pin level: Low (sampling at the rising edge of the clock of SCLMM pin.)

Figure 25.12 shows Operation Example When Arbitration Lost is Detected.

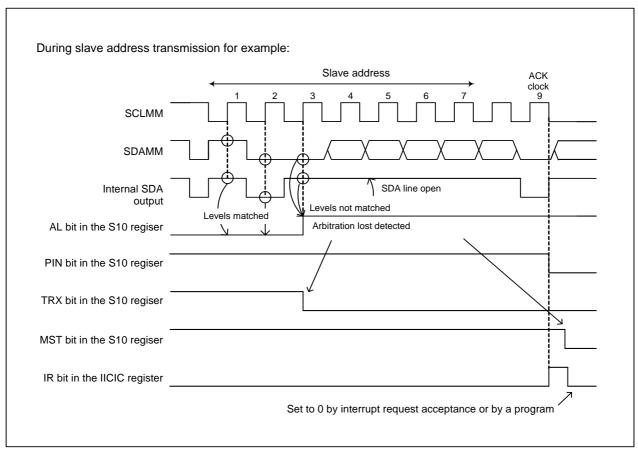


Figure 25.12 Operation Example When Arbitration Lost is Detected

When arbitration lost is detected,

- The AL bit in the S10 register becomes 1 (arbitration lost detected)
- Internal SDA output becomes high. (SDAMM becomes high-impedance)
- Slave-receiver mode is entered by setting the TRX bit in the S10 register to 0 (receive mode) and the MST bit in the S10 register to 0 (slave mode).

In order to write the AL bit to 0 again after arbitration lost is detected, set a value to the S00 register.

When arbitration is lost in slave address transmission, the I²C interface enters the slave-receiver mode automatically and receives slave address which sent from another master. When the ALS bit in the S1D0 register is 1 (addressing format), slave address comparison result is determined by reading bits ADR0 and AAS in the S10 register

When arbitration is lost during data transmission, slave-receiver mode is automatically entered.

25.3.7 **Start Condition and Stop Condition Detection**

Figure 25.13 shows Start Condition Detection, Figure 25.14 shows Stop Condition Detection, and Table 25.14 lists Conditions to Detect Start/Stop Condition.

Start/Stop condition is detected only when the start/stop condition detect conditions (SCL open time, setup time, and hold time) are selected by bits SSC4 to SSC0 in the S2D0 register, and the signals input to pins SCLMM and SDAMM meet all three conditions (SCLMM open time, setup time, and hold time) listed in Table 25.14.

The BB bit in the S10 register becomes 1 when a start condition is detected. It becomes 0 when a stop condition is detected. The set timing and reset timing of the BB bit depends on the mode, standard mode or high-speed clock mode. Refer to BB bit set/reset time in Table 25.15.

Table 25.15 lists Recommended SSCi (i = 0 to 4) Bit Value in Standard Clock Mode.

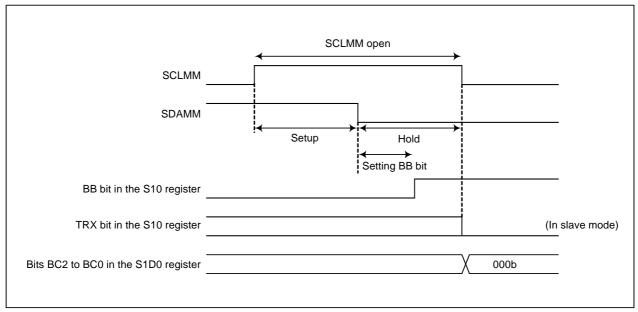


Figure 25.13 Start Condition Detection

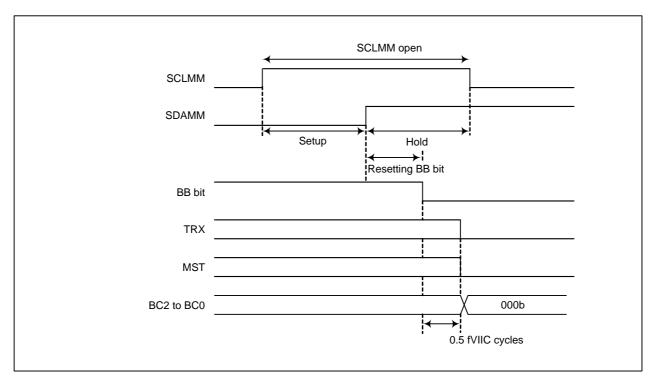


Figure 25.14 Stop Condition Detection

Table 25.14 Conditions to Detect Start/Stop Condition

	Standard Clock Mode	High-speed Clock Mode
SCLMM open time	SSC value + 1 cycle	4 cycles
Setup time	SSC value + 1 cycles	2 cycles
Hold time	SSC value cycles	2 cycles
BB bit set/ reset time	SSC value – 1 + 2 cycles	3.5 cycles

Unit: fVIIC cycles

SSC value: Value of bits SSC4 to SSC0 in the S2D0 register

Table 25.15 Recommended SSCi (i = 0 to 4) Bit Value in Standard Clock Mode

fVIIC	SSC Value (recommen ded)	Start/stop Condition	Start/stop Condition						
		SCLMM Open Time	Setup Time	Hold Time	Time				
5 MHz	11110b	6.2 μs (31)	3.2 μs (16)	3.0 μs (15)	4.125 μs (16.5)				
4 MHz	11010b	6.75 μs (27)	3.5 μs (14)	3.25 μs (13)	3.625 μs (14.5)				
	11000b	6.25 μs (25)	3.25 μs (13)	3.0 μs (12)	3.375 μs (13.5)				
2 MHz	01100b	6.5 μs (13)	3.5 μs (7)	3.0 μs (6)	3.75 μs (7.5)				
	01010b	5.5 μs (11)	3.0 μs (6)	2.5 μs (5)	3.25 μs (6.5)				
1 MHz	00100b	5.0 μs (5)	3.0 μs (3)	2.0 μs (2)	3.5 μs (3.5)				

SSC value: Value of bits SSC4 to SSC0 in the S2D0 register

^{():} fVIIC cycles

Operation After Completion of Slave Address/Data Transmit/Receive 25.3.8

After completing transmission/reception of slave address or one-byte data, the PIN bit in the S10 register is set to 0 (interrupt requested) at the falling edge of ACK clock. The IR bit in the IICIC register becomes 1 (interrupt requested) at the same time. The value in the S10 register and so on changes depending on the state of transmit/receive data, and the level of pins SCLMM and SDAMM. Figure 25.15 shows Operation After Completion of Slave Address/Data Transmit/Receive.

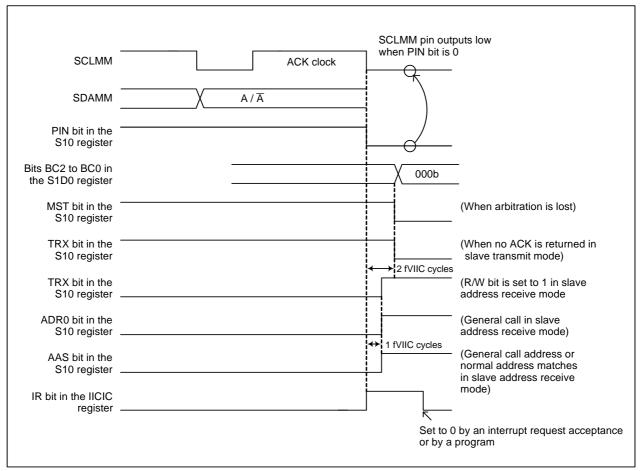


Figure 25.15 Operation After Completion of Slave Address/Data Transmit/Receive

25.3.9 **Timeout Detection**

If the SCL clock is stopped in transmit/receive mode, each device stops operating, keeping the communication state. Timeout detection is a function to detect timeout and generate an I²C-bus interrupt request when the SCLMM pin is driven high for more than the selected timeout detection period in transmit/receive mode. Figure 25.16 shows Timeout Detect Timing. Refer to "TOSEL (Timeout Detection Period Select Bit) (b2)" of 25.2.8 "I2C0 Control Register 2 (S4D0)" for timeout detection period.

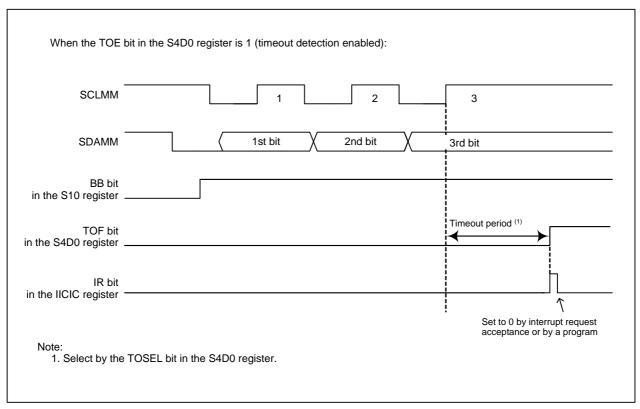


Figure 25.16 Timeout Detect Timing

Timeout is detected when the following conditions are all met:

- The TOE bit in the S4D0 register is set to 1 (timeout detection enabled)
- The BB bit in the S10 register is set to 1 (bus busy)
- Driving the SCLMM pin high for more than timeout detect period

When the timeout is detected,

- the TOF bit in the S4D0 register becomes 1 (timeout detected)
- the IR bit in the IICIC register becomes 1 (I²C-bus interrupt requested)

When the timeout is detected, perform one of the following.

- Set the ES0 bit in the S1D0 register to 0 (disabled).
- Set the IHR bit in the S1D0 register to 1 (I2C interface reset).

25.3.10 Data Transmit/Receive Examples

The data transmit/receive examples are described in this section. The conditions for the examples are follows.

- Slave address: 7 bits
- Data: 8 bits
- ACK clock
- Standard clock mode, bit rate: 100 kbps (fIIC: 20 MHz, fVIIC: 4 MHz)

20 MHz (fIIC) divided-by-5 = 4 MHz (fVIIC),

- 4 MHz (fVIIC) divided-by-8 and further divided-by-5 =100 kbps (bit rate)
- In receive mode, ACK response is sent for other than the last data. NACK is returned after the last data is received.
- When receiving data, I²C-bus interrupt at 8th clock (just before ACK clock): disabled
- Stop condition interrupt: enabled
- Timeout interrupt: disabled
- Set an own slave address to the S0D0 register (registers S0D1 or S0D2 should not be used)

If an I²C-bus interrupt at 8th clock (just before ACK clock) is enabled in data receive, a receiver generates ACK or NACK after each byte of data has been received.

25.3.10.1 Initial Setting

Follow the initial setting procedures below for 25.3.10.2 to 25.3.10.5.

- (1) Write an own slave address to bits SAD6 to SAD0 in the S0D0 register.
- (2) Write 85h to the S20 register. (CCR value: 5, standard mode selected, ACK clock presents)
- (3) Write 18h to the S4D0 register. (fVIIC: fIIC divided-by-5, timeout interrupt disabled)
- (4) Write 01h to the S3D0 register. (stop condition detect interrupt enabled and I2C-bus interrupt at 8th clock is disabled when receiving data)
- (5) Write 0Fh to the S10 register. (slave-receiver mode)
- (6) Write 98h to the S2D0 register (SSC value: 18h, start/stop condition generation timing: long mode)
- (7) Write 08h to the S1D0 register (bit counter: 8, I2C interface enabled, addressing format, input level: I2C-bus input)

If the MCU uses a single-master system and it is a master, start the initial setting procedures from (2).

25.3.10.2 Master Transmission

The master transmission is described in this section. The initial settings described in 25.3.10.1 "Initial Setting" are assumed to be completed. Figure 21.17 shows the operation of master transmission. The following programs (A) to (C) are executed at the (A) to (C) in Figure 25.17, respectively.

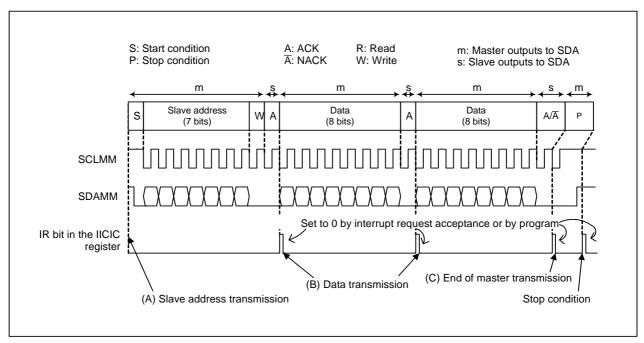


Figure 25.17 Example of Master Transmission

- (A) Slave address transmission
 - (1) The BB bit in the S10 register must be 0 (bus free).
 - (2) Write E0h to the S10 register. (Start condition standby)
 - (3) Write a slave address to the seven most significant bits (MSB) and a 0 to the least significant bit (LSB). (Start condition generated, then slave address transmitted)
- (B) Data transmission
 - (in I²C-bus interrupt routine)
 - (1) Write transmit data to the S00 register. (data transmission)
- (C) Completion of Master transmission
 - (in I²C-bus interrupt routine)
 - (1) Write C0h to the S10 register. (Stop condition standby state)
 - (2) Write a dummy data to the S00 register. (stop condition generated)

When the transmission is completed or ACK is not returned from slave device (NACK returned), master transmission should be completed as above.

25.3.10.3 Master Reception

The master reception is described in this section. The initial settings described in 25.3.10.1 "Initial Setting" are assumed to be completed. Figure 25.18 shows the operation example of master reception. The following programs (A) to (D) are executed at the (A) to (D) in Figure 25.18, respectively.

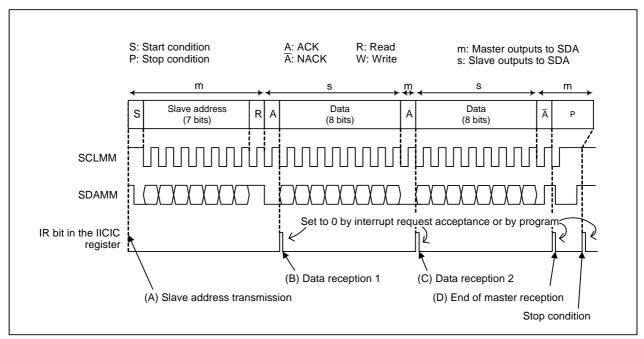


Figure 25.18 Example of Master Reception

- (A) Slave address transmission
 - (1) The BB bit in the S10 register must be 0 (bus free).
 - (2) Write E0h to the S10 register. (Start condition standby)
 - (3) Write a slave address to the seven most significant bits (MSB) and a 0 to the least significant bit (LSB). (Start condition generated, then slave address transmitted)
- (B) Data reception 1 (after slave address transmission)
 - (In I²C-bus interrupt routine)
 - (1) Write AFh to the S10 register. (Master-receiver mode)
 - (2) Set the ACKBIT bit in the S20 register to 0 (ACK presents) because the data is not the last one.
 - (3) Write a dummy data to the S00 register
- (C) Data reception 2 (data reception)
 - (In I²C-bus interrupt routine)
 - (1) Read the received data from the S00 register
 - (2) Set the ACKBIT bit in the S20 register to 1 (no ACK) because the data is the last one.
 - (3) Write a dummy data to the S00 register
- (D) End of master reception
 - (In I²C-bus interrupt routine)
 - (1) Read the received data from the S00 register
 - (2) Write C0h to the S10 register. (Stop condition standby state)
 - (3) Write a dummy data to the S00 register (stop condition generated)

25.3.10.4 Slave Reception

The slave reception is described in this section. The initial settings described in 225.3.10.1 "Initial Setting" are assumed to be completed. Figure 25.19 shows the example of slave reception. The following programs (A) to (C) are executed at the (A) to (C) in Figure 25.19, respectively.

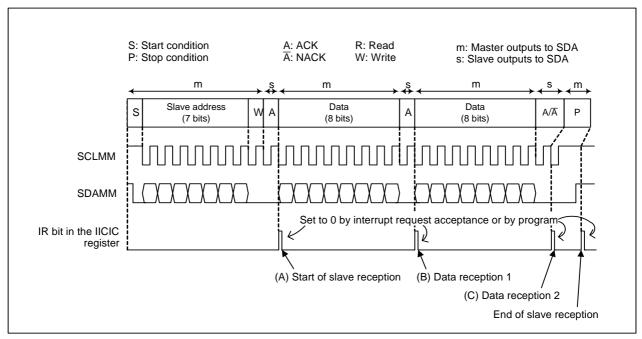


Figure 25.19 Example of Slave Reception

- (A) Slave receive is started.
 - (In I²C-bus interrupt routine)
 - (1) Check the content of S10 register. When the TRX bit is 0, the I2C interface is in slave-receiver mode.
 - (2) Write a dummy data to the S00 register.
- (B) Data reception 1
 - (In I²C-bus interrupt routine)
 - (1) Read the received data from the S00 register.
 - (2) Set the ACKBIT bit in the S20 register to 0 (ACK presents) because the data is not the last one.
 - (3) Write a dummy data to the S00 register.
- (C) Data reception 2
 - (In I²C-bus interrupt routine)
 - (1) Read the received data from the S00 register
 - (2) Set the ACKBIT bit in the S20 register to 1 (no ACK presents) because the data is the last one.
 - (3) Write a dummy data to the S00 register.

25.3.10.5 Slave Transmission

The slave transmission is described in this section. The initial settings described in 25.3.10.1 "Initial Setting" are assumed to be completed. Figure 25.20 shows the example of slave transmission. The following programs (A) to (B) are executed at the (A) and (B) in Figure 25.20, respectively.

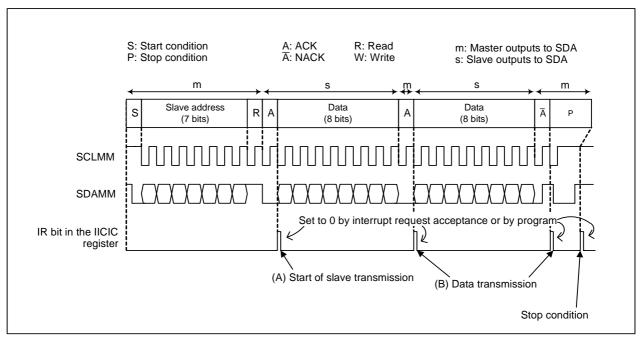


Figure 25.20 Example of Slave Transmission

- (A) Start of slave transmission
 - (In I²C-bus interrupt routine)
 - (1) Check the content of the S10 register. When the TRX bit is set to 1, the I²C interface is in slavetransmitter mode.
 - (2) Write a transmit data to the S00 register
- (B) Data transmission
 - (In I²C-bus interrupt routine)
 - (1) Write a transmit data to the S00 register

Write a dummy data to the S00 register even if an interrupt occurs at an ACK clock of the last transmit data. When the S00 register is written, the SCLMM pin becomes high-impedance.

Page 614 of 791

M16C/65 Group

25.4 Interrupts

I²C interface generates an interrupt request. Figure 25.21 shows I²C Interface Interrupts, and Table 25.16 lists I²C-bus Interrupts.

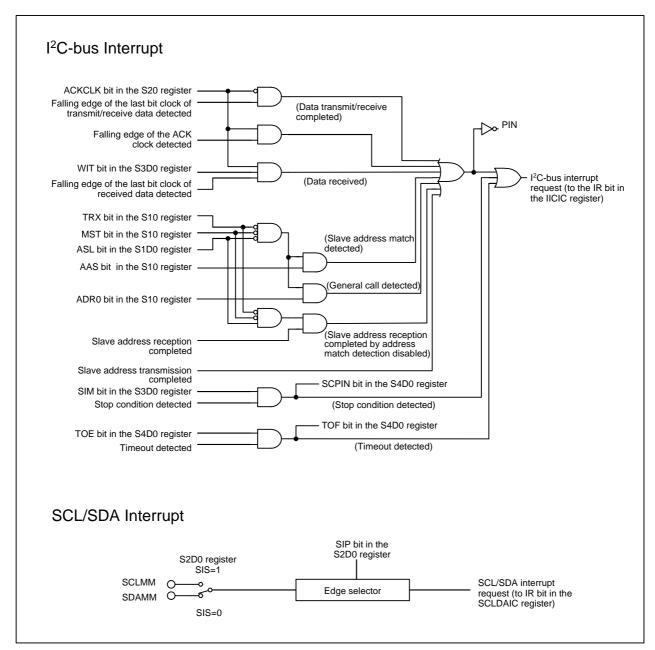


Figure 25.21 I²C Interface Interrupts

Table 25.16 I²C-bus Interrupts

Interrupt	Interrupt Source	Associated Bits (Register)		Interrupt
		Interrupt enabled	Interrupt request	Control Register
I ² C-bus Interrupt	Completion of data transmit/receive When the ACKCKL = 0, Detection of the falling edge of the last clock of transmit/receive data through SCLMM pin When the ACKCKL = 1, Detection of the falling edge of ACK clock through SCLMM pin	_	PIN (S10)	IICIC
	Data reception (before ACK clock) Detection of the falling edge of the last clock of transmit/receive data through SCLMM pin	WIT (S3D0)		
	Detection of slave address match Received slave address matches bits SAD6 to SAD0 in slave-receiver mode with addressing format (AAS bit in the S10 register = 1)	_		
	Detection of general call General call in slave-receiver mode with addressing format (ADR0 bit in the S10 register = 1)			
	Completion of receiving slave address in slave-receiver mode with free format			
	Stop condition detected	SIM (S3D0)	SCPIN (S4D0)	
	Timeout detected	TOE (S4D0)	TOF (S4D0)	1
SCL/ SDA interrupt	Detection of the falling edge or rising edge of input/output signal for the SCLMM or SDAMM pin	_	_	SCLDAIC

Refer to 14.7 "Interrupt Control". Table 25.17 lists Registers Associated with I²C Interface Interrupts.

Table 25.17 Registers Associated with I²C Interface Interrupts

Address	Register Name	Register Symbol	Value After Reset
007Bh	IICBus Interface Interrupt Control Register	IICIC	XXXX X000b
007Ch	SCL/SDA Interrupt Control Register	SCLDAIC	XXXX X000b
0206h	Interrupt Source Select Register 2	IFSR2A	00h

When using the I²C-bus interface interrupt, set the IFSR22 bit in the IFSR2A register to 1 (I²C-bus interrupt). When using SCL/SDA interrupt, set the IFSR23 bit in the IFSR2A register to 1 (SCL/SDA interrupt).

The SCL/SDA interrupt is enabled even in wait mode and stop mode.

The IR bit in the SCLDAIC register may become 1 (interrupt requested) when the ES0 bit in the S1D0 register, SIP bit in the S2D0 register, or SIS bit in the S2D0 register is changed. Therefore, follow the procedure below to change these bits. Refer to 14.13 "Notes on Interrupts".

- (1) Set bits ILVL2 to ILVL0 in the SCLDAIC register to 000b (interrupt disabled).
- (2) Set the ES0 bit in the S1D0 register and bits SIP and SIS in the S2D0 register.
- (3) Set the IR bit in the SCLDAIC register to 0 (no interrupt request).

25.5 Notes on Multi-Master I²C-bus Interface

25.5.1 **Limitation on CPU Clock**

When the CM07 bit in the CM0 register is 1 (CPU clock is a sub clock), do not access the registers listed in Table 25.4 "Register Configuration". Set the CM07 bit to 0 (main clock, PLL clock, or on-chip oscillator clock) to access these registers.

25.5.2 Register Access

Notes are described to access the I2C interface control registers. The period from the rising edge of 1st clock of slave address or one-byte data transmission/reception to the falling edge of an ACK clock is considered as "period of transmission/reception". When the ACKCLK bit is 0 (no ACK clock), the period of transmission/reception is from the rising edge of 1st clock of slave address or one-byte data transmission/reception to the falling edge of 8th clock.

25.5.2.1 **S00 Register**

Do not write to the S00 register during transmission/reception.

25.5.2.2 S10 Register

Do not change bits other than the IHR bit in the S10 register during transmission/reception.

25.5.2.3 S20 Register

Do not change bits other than the ACKBIT bit in the S20 register during transmission/reception.

25.5.2.4 S3D0 Register

- Do not use the bit managing instruction (read-modify-write instruction) to access the S3D0 register.
- Bits ICK1 and ICK0 should be changed when the ES0 bit in the S1D0 register is 0 (I2C interface disabled).

S4D0 Register 25.5.2.5

Bits ICK4 to ICK2 should be changed when the ES0 bit in the S1D0 register is 0 (I2C interface disabled).

25.5.2.6 S10 Register

- Do not use the bit managing instruction (read-modify-write instruction) to access the S10 register.
- Do not write to the S10 register when bits MST and TRX change their values.

Figure 25.13 "Start Condition Detection" to Figure 25.15 "Operation After Completion of Slave Address/ Data Transmit/Receive" shows when bits MST and TRX change.

26. Consumer Electronics Control (CEC) Function

26.1 Introduction

The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the HDMI (High-Definition Multimedia Interface).

Table 26.1 and Table 26.2 list CEC function specifications, Figure 26.1 shows CEC Function Block Diagram and Table 26.3 lists I/O Pin.

Table 26.1 CEC Function Specifications (1/2)

Item	Specification
Count source	fC, timer A0 underflow
	In either case, the frequency should be 32.768 kHz and oscillation
	allowable error should be within ± 1%.
Data format	Start bit: 1 bit
	Data bit: 8 bits
	EOM bit: 1 bit
	ACK bit: 1 bit
Transmission start condition	Before transmission starts, satisfy the following requirement.
	• The CTXDEN bit in the CECC3 register = 1 (transmission enabled)
Reception start condition	Before reception starts, satisfy the following requirements.
	• The CRXDEN bit in the CECC3 register = 1 (reception enabled)
	Start bit detected
Interrupt request	Transmit interrupt
generation timing	When 8 bits of data is transmitted completely.
	 When 10 bits of data is transmitted completely.
	Transmit error interrupt
	When transmit arbitration lost occurs.
	 When NACK is received in transmission (ACK received in Broadcast
	transmission).
	Receive interrupt
	 When 8 bits of data is received completely.
	When 10 bits of data is received completely.
	• The above receive interrupts can be confined to when matching Des-
	tination address or in Broadcast
	When the start bit is received completely.
	Receive error interrupt
	A signal out of the acceptable range is received.
Error detection	Arbitration lost
	If one of the following conditions occurs during transmission, arbitration
	lost is detected:
	When changing the CEC pin from Hi-Z to low output, the pin level is
	already low.
	When changing the CEC pin from low output to Hi-Z, the pin level
	remains low even after being out of the acceptable range.
	Transmission error
	A value of the CCTBA bit in the CCTB2 register matches a value of the
	CTNACK bit in the CECC2 register.
	Acceptable range error
	Low or high period of the data bit is out of the acceptable range.

CEC Function Specifications (2/2) Table 26.2

Table 26.2	ble 26.2 CEC Function Specifications (2/2)			
	Item	Specification		
Select function	ons	Digital filter enabled/disabled		
		Transmission stop selected		
		Transmission stop by receiving ACK or NACK can be selected.		
		Arbitration lost detection conditions		
		One of the following conditions can be selected.		
		 When transmitting the start bit and the data bit of Initiator address 		
		 When transmitting the start bit and all data bits 		
		Transmit rising timing selected		
		• Selected from 8 levels, standard value -180 μs to standard value +30μs		
		Transmit falling timing selected		
		• Start bit: standard value -160μs to standard value		
		• Data bit: selectable from 4 levels, standard value -310 μs to standard		
		value		
		Receive edge detection selected		
		One of the following conditions can be selected.		
		Only a falling edge detected		
		Both falling and rising edges detected		
		ACK output in receiving process		
		One of the following conditions can be selected.		
		• Inserted by program		
		Set by the CCRBAO bit of CCRB2 register.		
		Inserted by hardware		
		ACK is output when matching Destination address. Otherwise, NACK is output.		
		Start bit acceptable range		
		• Select ± 200μs or ± 300μs		
		Data bit acceptable range		
		One of the following conditions can be selected.		
		 Period between a falling edge and a rising edge ± 200 μs, 		
		Period between a falling edge and a falling edge \pm 350 μ s		
		 Period between a falling edge and a rising edge ± 300 μs, 		
		Period between a falling edge and a falling edge \pm 500 μ s		
		Low pulse output when receive error occurs		
		• Whether error low pulse is output or not can be selected when the		
		receive error occurs.		
		Low pulse output wait control when receive error occurs. One of the following conditions can be selected.		
		Error low pulse is output in synchronization with the rising edge of the		
		CEC input signal if the CEC input signal is low level when the receive		
		error occurs.		
		• Error low pulse is output immediately after the error occurs regardless of the CEC input signal state.		

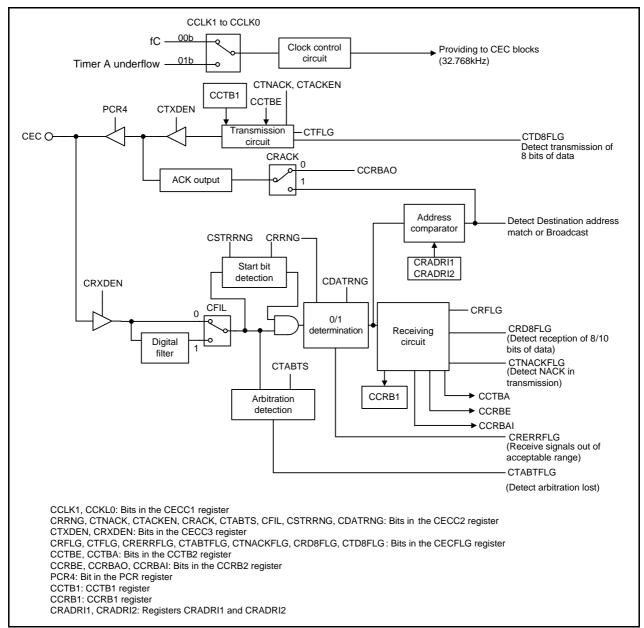


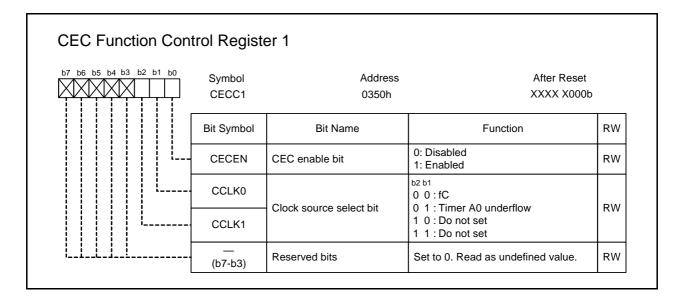
Figure 26.1 **CEC Function Block Diagram**

Table 26.3 I/O Pin

Pin Name	I/O Type	Description
CEC	Input/Output	CEC input and output (N-channel open-drain output)

Note:

Set the direction bit of the ports sharing a pin to 0 (input mode). 1.


26.2 Registers

The registers and the bits of the CEC function are synchronized with the count source. The contents of the register is changed immediately after rewriting the value of the register by a program, while the internal circuit starts to operate from the next count source timing.

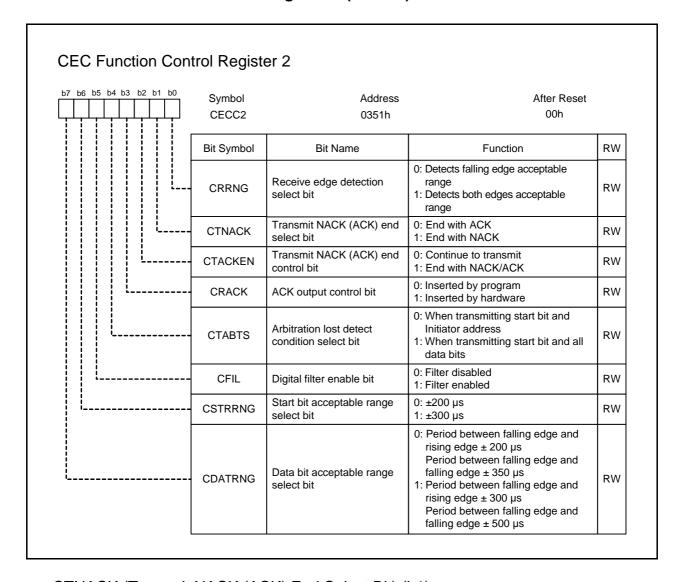
Table 26.4 Register Structure

Address	Register Name	Register Symbol	After Reset
0350h	CEC Function Control Register 1	CECC1	XXXX X000b
0351h	CEC Function Control Register 2	CECC2	00h
0352h	CEC Function Control Register 3	CECC3	XXXX 0000b
0353h	CEC Function Control Register 4	CECC4	00h
0354h	CEC Flag Register	CECFLG	00h
0355h	CEC Interrupt Source Select Register	CISEL	00h
0356h	CEC Transmit Buffer Register 1	CCTB1	00h
0357h	CEC Transmit Buffer Register 2	CCTB2	XXXX XX00b
0358h	CEC Receive Buffer Register 1	CCRB1	00h
0359h	CEC Receive Buffer Register 2	CCRB2	XXXX X000b
035Ah	CEC Receive Follower Address Set Register 1	CRADRI1	00h
035Bh	CEC Receive Follower Address Set Register 2	CRADRI2	00h
0366h	Port Control Register	PCR	0000 0XX0b

26.2.1 **CEC Function Control Register 1 (CECC1)**

CECEN (CEC Enable Bit) (b0)

Set the CECEN bit to 1 (CEC enabled) when the count source is selected by using bits CCLK1 to CCLK0 and the count source is stable.


When the CECEN bit is set to 0 (CEC disabled), the circuit of the CEC function is reset.

CCLK1-CCLK0 (Clock Source Select Bit) (b2-b1)

Change the clock source when the CECEN bit is set 0 (CEC disabled).

Under development

26.2.2 **CEC Function Control Register 2 (CECC2)**

CTNACK (Transmit NACK (ACK) End Select Bit) (b1)

This bit is enabled when the CTACKEN bit is set to 1 (end with ANCK/ACK).

CTACKEN (Transmit NACK (ACK) End Control Bit) (b2)

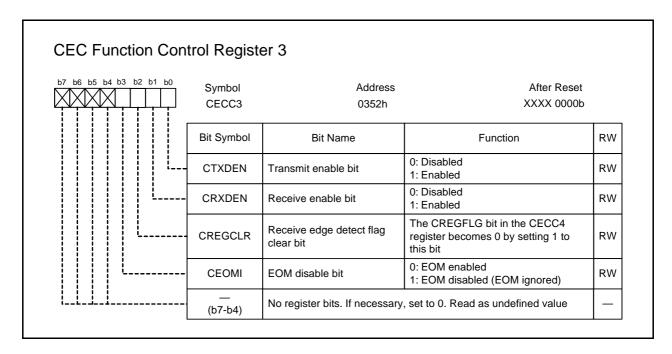
Select the end condition by using the CTNACK bit when the CTACKEN bit is set to 1 (end with NACK/ ACK).

CRACK (ACK Output Control Bit) (b3)

When the CRACK bit is set 0 (inserted by program), the value of the CCRBAO bit in the CCRB2 register is output as ACK data.

When the CRACK bit is set to 1 (inserted by hardware), ACK is output if the received Destination address matches the address selected by the CRADRI1 or CRADRI2 register. Table 26.5 lists ACK Output When Inserted by Hardware.

Table 26.5 ACK Output When Inserted by Hardware


Destination Address		
Received Destination Address	Address Selected by the CRADRI1 or CRADRI2 Register (Own Address)	
Directly address	Matches the received Destination address	ACK
(0000b to 1110b)	Not match the received Destination address	NACK
Broadcast (1111b)	1111b (matches the received Destination address)	ACK
	0000b to 1110b	NACK

CTABTS (Arbitration Lost Detect Condition Select Bit) (b4)

When the CEC output is low, the range of detecting arbitration lost if the level becomes Hi-z (rising edge) by the external source can be selected.

When the CEC output is Hi-z, arbitration lost is detected regardless of the rage selected by the CTABTS bit, if the level becomes low (falling edge) by the external source.

26.2.3 **CEC Function Control Register 3 (CECC3)**

CTXDEN (Transmit Enable Bit) (b0) CRXDEN (Receive Enable Bit) (b1)

When changing the value of these bits, transmission/reception is enabled or disabled after one or more cycles of the clock source elapses.

CREGCLR (Receive Edge Detect Flag Clear Bit) (b2)

The CREGFLG bit in the CECC4 register is set to 0 by setting the CREGCLR bit to 1 when the CEC input is Hi-Z. When the CEC input is low, the CREGFLG bit remain unchanged even if the CREGCLR bit is set to 1.

The CREGCLR bit holds the written value.

To set the CREGCLR bit to 1 in order to set the CREGFLG bit to 0 again, write 0 and then 1.

Figure 26.2 shows Operation of Bits CREGFLG and CREGCLR.

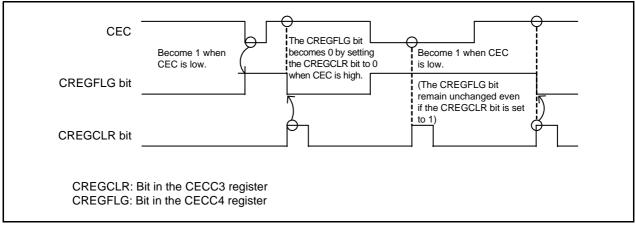
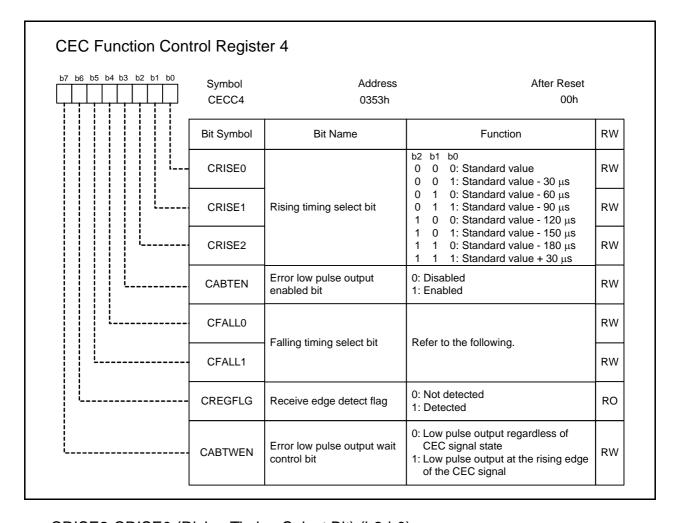


Figure 26.2 Operation of Bits CREGFLG and CREGCLR

CEOMI (EOM Disable Bit) (b3)


Whether the operation continues or stops can be selected when the EOM is 1. Table 26.6 lists Operation When the EOM is 1.

When the CEOMI bit is set to 1 (EOM disabled), data transmission continues even though the EOM is 1. To stop transmitting, set the CTXDEN bit in the CECC3 register to 0 (transmission disabled).

Table 26.6 Operation When the EOM is 1

CEOMI	Operation When EOM is 1		
Bit	Reception	Transmission	
0	Subsequent data reception is ignored once the data that the EOM is 1 (wait for start bit) is received.	Subsequent data is not transmitted once the data that the EOM is 1 is transmitted.	
1	ACK/NACK is returned even if the data that the EOM is 1 is received.	Data is transmitted even if the data that the EOM is 1 is transmitted.	

Under development

CRISE2-CRISE0 (Rising Timing Select Bit) (b2-b0)

The rising timing of the signal in transmission is selected. The rising timing is common to the start bit and data bit.

CABTEN (Error Low Pulse Output Enable Bit) (b3)

When the CABTEN bit is set to 1 (low pulse output enabled in receive error), 3.6 ms of low pulse is output if the data bit in reception is out of the acceptable range.

Output timing is selected by the CABTWEN bit.

CFALL1-CFALL0 (Falling Timing Select Bit) (b5-b4)

The falling timing of the signal in transmission is specified.

Table 26.7 Falling Timing of Signal in Transmission

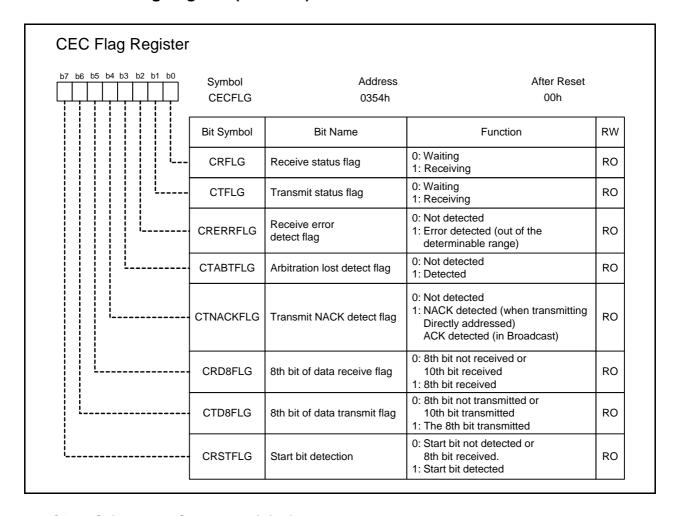
Bits CFALL1 to CFALL0	Falling Timing	
DIG CI ALLI IO CI ALLO	Start Bit	Data Bit
00b	Standard value	Standard value
01b	Standard value - 40 μs	Standard value - 190 μs
10b	Standard value - 100 μs	Standard value - 250 μs
11b	Standard value - 160 μs	Standard value - 310 μs

CREGFLG (Receive Edge Detect Flag) (b6)

Refer to Figure 26.2 "Operation of Bits CREGFLG and CREGCLR".

Condition to become 0.

• Set the CREGCLR bit in the CECC3 register to 1 when the CEC input is Hi-Z.


Condition to become 1.

• The CEC input is low level.

CABTWEN (Error Low Pulse Output Wait Control Bit) (b7)

This bit is enabled when the CABTEN bit is set to 1 (low pulse output enabled in reception error). If the receive error occurs when the CABTWEN bit is set to 1 (low pulse output at rising edge of the CEC signal) and the CEC input is low, 3.6 ms of low pulse is output from the rising edge of the CEC signal after the error. If there is no rising edge of the CEC signal within 3.6 ms from the reception error, low pulse is not output because it is assumed that another device outputs error low pulse.

Under development

CRFLG (Receive Status Flag) (b0)

Condition to become 0.

Waiting

Condition to become 1.

- Receiving
- Error low pulse is being output when the CABTEN bit in the CECC4 register is set to 1 (error low pulse output enabled).

CRERRFLG (Receive Error Detect Flag) (b2)

Condition to become 0.

• Set the CRXDEN bit in the CECC3 to 0 (receive disabled).

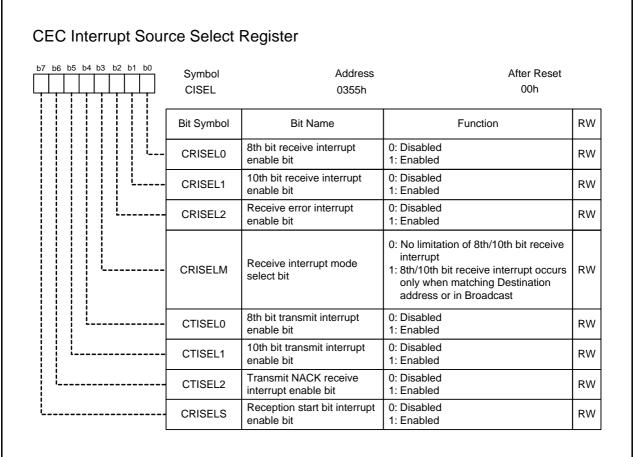
Condition to become 1.

• Low or high period of the data bit is out of the acceptable range

CTABTFLG (Arbitration Lost Detect Flag) (b3)

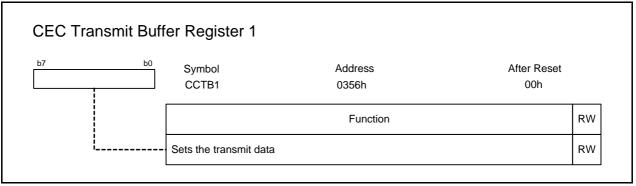
Condition to become 0.

• Set the CTXDEN bit in the CECC3 register to 0 (transmit disabled).

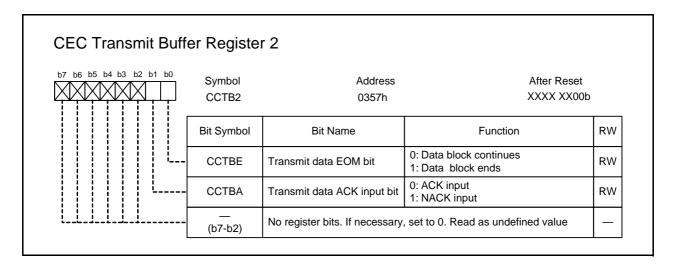

CTNACKFLG (Transmit NACK Detect Flag) (b4)

Condition to become 0.

• Set the CTXDEN bit in the CECC3 register to 0 (transmit disabled).



26.2.6 **CEC Interrupt Source Select Register (CISEL)**


Set the CECEN bit in the CECC1 register to 0 (CEC disabled) to change the CISEL register.

26.2.7 **CEC Transmit Buffer Register 1 (CCTB1)**

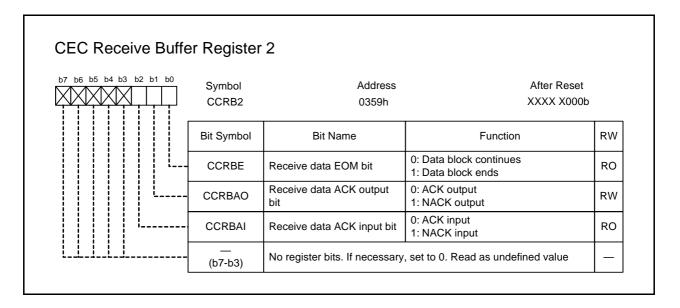
Rewrite the CCTB1 register when the CTXDEN bit in the CECC3 register is set to 0 (transmit disabled), or the CTXDEN bit is set to 1 and the CTD8FLG in the CECFLG register is set to 1 (while bits EOM and ACK are being transmitted after the 8th bit has been transmitted). Do not rewrite the CCTB1 register when the CTXDEN bit is set to 1 and the CTD8FLG bit is set to 0 (while the 1st bit to 8th bit are being transmitted).

26.2.8 **CEC Transmit Buffer Register 2 (CCTB2)**

CCTBE (Transmit Data EOM Bit) (b0)

Rewrite the CCTBE bit when the CTXDEN bit in the CECC3 register is set to 0 (transmit disabled), or the CTXDEN bit is set to 1 and the CTD8FLG in the CECFLG register is set to 1 (while bits EOM and ACK are being transmitted after the 8th bit has been transmitted). Do not rewrite the CCTBE bit when the CTXDEN bit is set to 1 and the CTD8FLG bit is set to 0 (while the 1st bit to 8th bit are being transmitted).

CCTBA (Transmit Data ACK Input Bit) (bs1)


Read the CCTBA bit after transmitting the 10th bit (ACK bit) (the CTD8FLG bit in the CECFLG register changes from 1 to 0).

26.2.9 **CEC Receive Buffer Register 1 (CCRB1)**

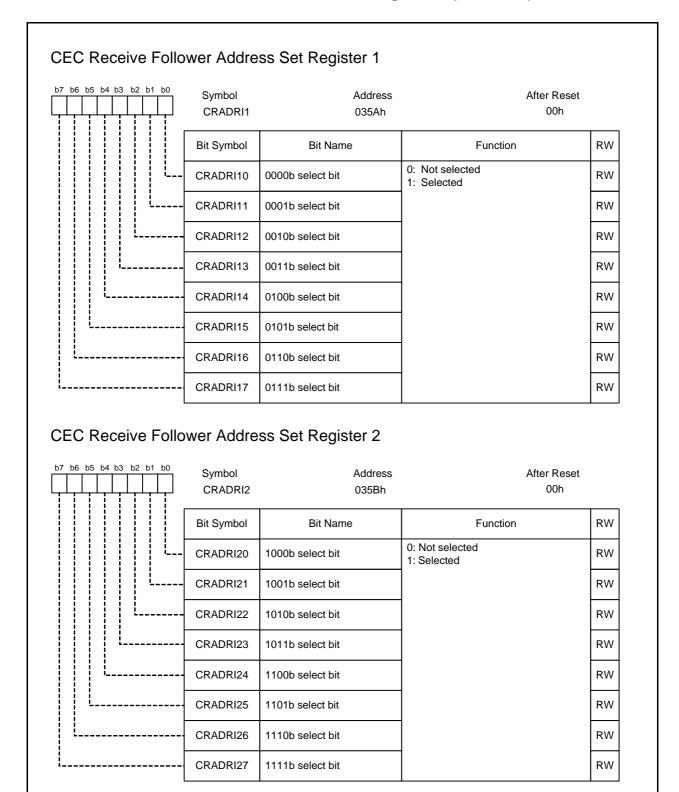
Read the CCRB1 register after receiving the 8th bit (the CRD8FLG bit in the CECFLG register changes from 0 to 1).

26.2.10 CEC Receive Buffer Register 2 (CCRB2)

CCRBE (Receive Data EOM bit) (b0)

Read the CCRBE bit after receiving the 10th bit (ACK bit) (the CRD8FLG bit in the CECFL register changes from 1 to 0).

CCRBAO (Receive Data ACK Output Bit) (b1)


The CCRBAO bit is valid when the CRACK bit in the CECC2 register is set to 0 (inserted by program).

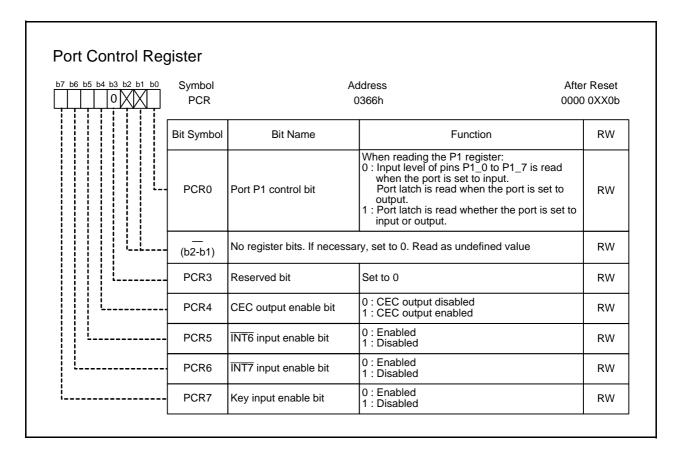
Rewrite the CCRBAO bit when the CRXDEN bit in the CECC3 register is set to 0 (receive disabled), or the CRXDEN bit is set to 1 and the start bit to EOM bit are being received. Do not rewrite the CCR-BAO bit when the ACK bit is being transmitted.

CCRBAI (Receive Data ACK Input Bit) (b2)

Read the CCRBAI bit after the 10th bit (ACK bit) is received (the CRD8FLG bit in the CECFL register changes from 1 to 0).

26.2.11 CEC Receive Follower Address Set Register 1 (CRADRI1), **CEC Receive Follower Address Set Register 2 (CRADRI2)**

Select the receive follower address (own address).


Set the CECEN bit in the CECC1 register to 0 (CEC disabled) to change registers CRADRI1 and CRADRI2.

26. Consumer Electronics Control (CEC) Function

ACK is returned by setting the CRADRI27 bit to 1 (selects 1111b) when the Follower address is 1111b (Broadcast) and the CRACK bit in the CECC2 register is 1 (ACK output in reception is inserted by hardware).

When the received Destination address matches the address selected by the CRADRI1 or CRADRI2 register, it may be described as Destination address match in this chapter.

26.2.12 Port Control Register (PCR)

PCR4 (CEC Output Enable Bit) (b4)

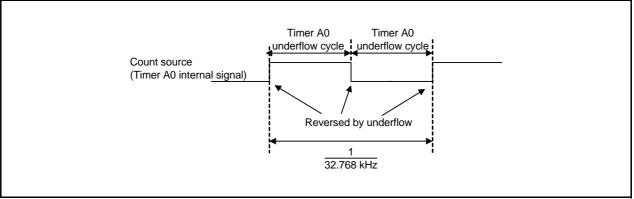
To use the CEC function, set the PCR4 bit to 1 (CEC output enabled).

26.3 **Operations**

26.3.1 Standard Value and I/O Timing

The CEC transmission/reception is based on the count source cycle.

When outputting, an output waveform is based on the count source cycle which is closest to the CEC standard value. When inputting, an input waveform is sampled in the count source cycle


Also, the input/output is practically performed based on the count source cycle closest to the acceptable range or output timing.

26.3.2 **Count Source**

Select fC or timer A0 underflow by bits CCLK1 to CCLK0 in the CECC1 register. In either case, the clock frequency should be 32.768kHz and oscillation allowable error should be within ± 1%. Set the CECEN bit in the CECC1 register to 1 (CEC enabled), after the count source is selected by bits CCLK1 and CCLK0 and when the count source is stable.

To use fC, set the PM25 bit in the PM2 register to 1 (peripheral clock fC provided). Refer to 8. "Clock Generator" for details.

When the timer A0 underflow is used as the count source, each time timer A0 underflows the internal signal of the timer A0 is reversed. Since this internal signal is the count source, two cycles of timer A0 underflows are one cycle of the count source. Figure 26.3 shows Count Source When Timer A0 Underflow Selected. Use the timer A0 without timer mode and gate function. Refer to 17. "Timer A" for details.

Count Source When Timer A0 Underflow Selected Figure 26.3

26.3.3 **CEC Input/Output**

The CEC input and output share pins with the I/O port and NMI input. To use CEC input and output, set bits as follows:

- set the PM24 bit in the PM2 register to 0 (NMI interrupt disabled)
- set bits NMIDF2 to NMIDF0 in the NMIDF register to 000b (NMI/SD filter disabled)
- set the PCR4 bit in the PCR register to 1 (CEC output enabled)
- set the PD8_5 bit in the PD8 register to 0 (input mode)

Also, the CEC input has a digital filter besides the NMI/SD filter (refer to 26.3.4 "Digital Filter").

26.3.4 **Digital Filter**

The input to the CEC pin goes into the internal circuit in synchronization with the count source. If the same level signal is input to the CEC pin twice in a row that level is transferred to the internal circuit, when the CFIL bit in the CECC2 register is set to 1 (digital filter enable). Figure 26.4 shows Digital Filter.

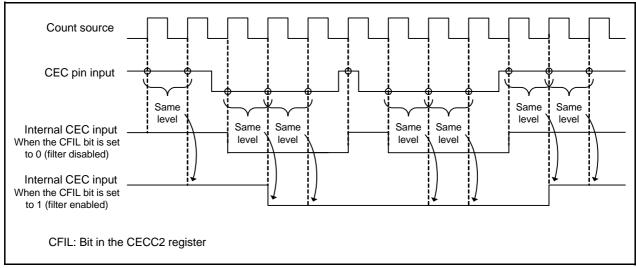


Figure 26.4 **Digital Filter**

26.3.5 Reception

26.3.5.1 **Start Bit Detection**

The detect timing of the start bit and data bit is selected by the CRRNG bit in the CEC2 register. Select the start bit acceptable range by the CSTRRNG bit in the CECC2 register. Figure 26.5 shows Start Bit Acceptable Range.

When the start bit within the acceptable range is detected, the CRSTFLG bit in the CECFLG register becomes 1 (start bit detected).

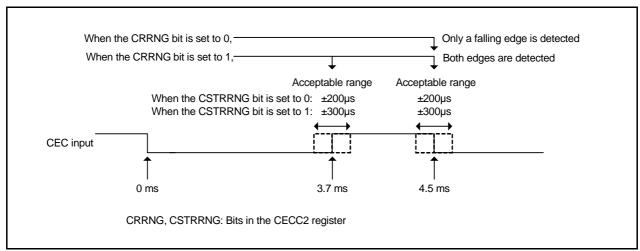


Figure 26.5 Start Bit Acceptable Range

26.3.5.2 **Data Bit Detection**

The detect timing of the start bit and data bit (other than start bit) is selected by the CRRNG bit in the CECC2 register. Select the data bit acceptable range by the CDATRNG bit in the CECC2 register. Figure 26.6 shows Data Bit Acceptable Range (CRRNG Bit = 0).

When the CRRNG bit is set to 0 (detects falling edge acceptable range), the input data is determined as data 1 if the rising edge is detected before 1.05ms and the input data is determined as data 0 if the rising edge is detected after 1.05 ms.

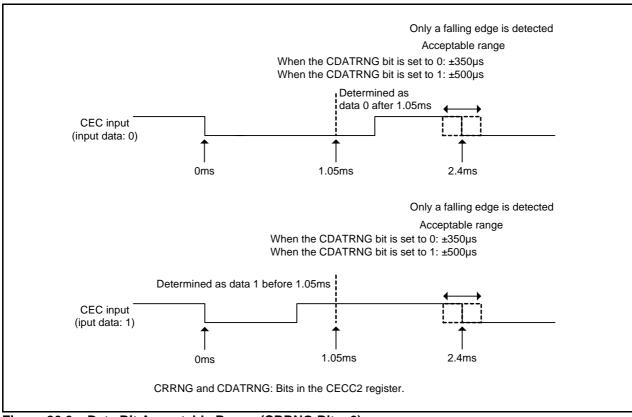


Figure 26.6 Data Bit Acceptable Range (CRRNG Bit = 0)

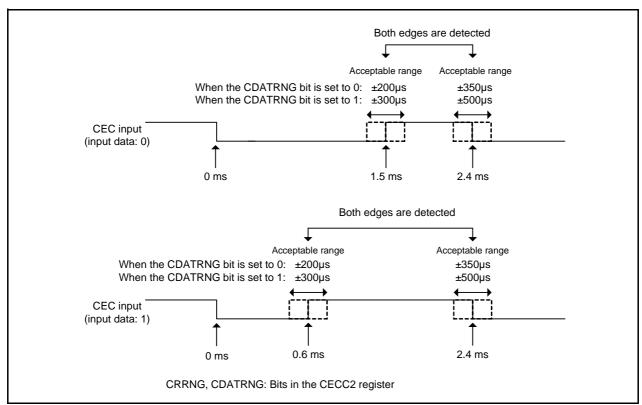


Figure 26.7 Data Bit Acceptable Range (CRRNG Bit = 1)

If the data bit is out of the acceptable range, the receive error occurs. The operations when the receive error occurs are as follows:

- The CRERRFLG bit in the CECFLG register is set to 1 (receive error)
- 3.6 ms of low pulse is output when the CABTEN bit in the CECC4 register is set to 1 (low pulse output enabled in receive error).

Low pulse output timing can be selected by the CABTWEN bit in the CECC4 register when the CABTEN bit is set to 1 (low pulse output enabled in receive error). Figure 26.8 shows Low Pulse Output in Receive Error.

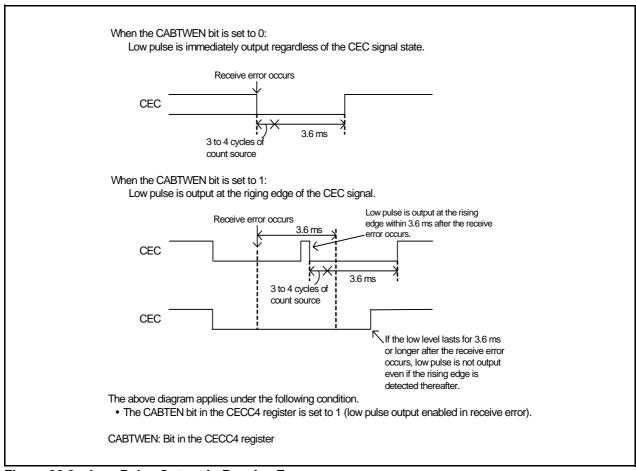


Figure 26.8 Low Pulse Output in Receive Error

26.3.5.3 **ACK Bit Output**

The output value of the 10th bit (ACK bit) can be selected.

When the CRACK bit in the CECC2 register is set to 0 (inserted by program), the value of the CCR-BAO bit in the CCRB2 register is output as ACK data.

When the CRACK bit is set to 1 (inserted by hardware), ACK is output when the received Destination address matches the address selected by the CRADRI1 or CRADRI2 register (own address). Table 26.8 lists ACK Output.

Table 26.8 ACK Output

CRACK	CCRBAO	Destination Address		
Bit	Bit	Received Destination Address	Address selected by the CRADRI1 or CRADRI2 Register (Own Address)	ACK Output
0	0	-	-	ACK
	1	-	-	NACK
1	-	Directly address	Matches received Destination address	ACK
		(0000b to1110b)	Not match received Destination address	NACK
		Broadcast address	1111b (matches received Destination address)	ACK
		(1111b)	0000b to 1110b	NACK

26.3.5.4 **Reception Examples**

Figure 26.9 shows a Reception Example and Figure 26.10 shows a Reception Example (Change from Error Low Pulse Output Disabled to Enabled When an Error Occurs).

When a receive error occurs, the CRERRFLG bit in the CECFLG register becomes 1 (receive error). If a reception ends due to the error during the reception, set the CRXDEN bit in the CECC3 register to 0 (receive disabled). When the CRXDEN bit is set to 0, the CRERRFLG bit becomes 0. To restart the reception, set the CRXDEN bit to 0 (reception disabled), and then set the CRXDEN bit to 1 (reception enabled) after waiting for one or more cycles of the count source.

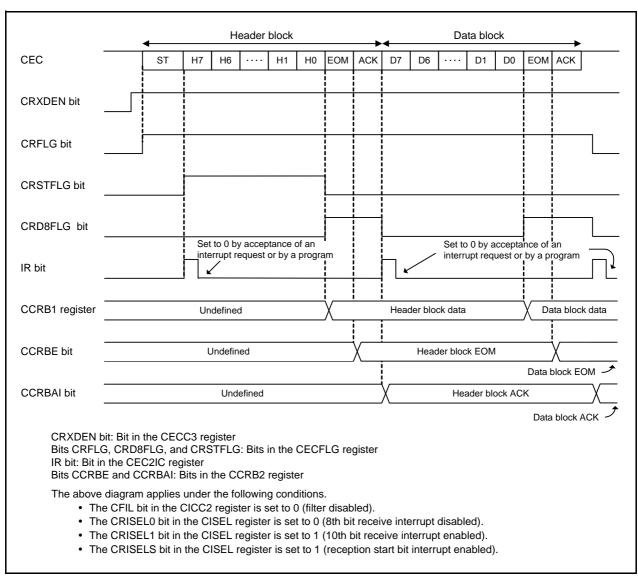


Figure 26.9 Reception Example

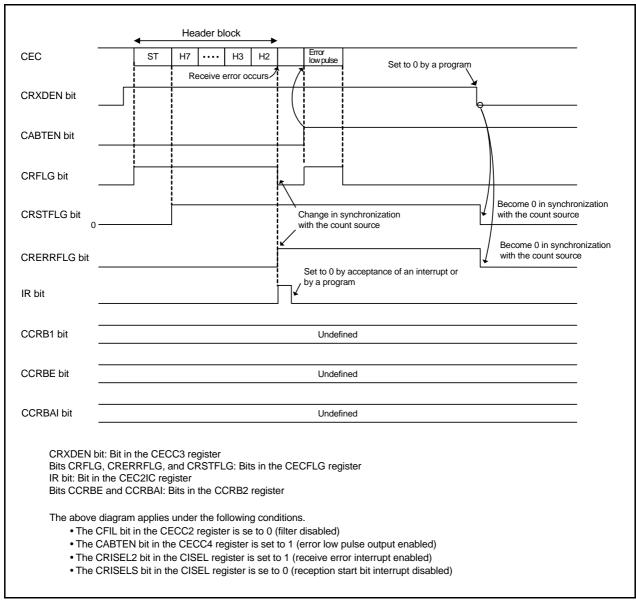


Figure 26.10 Reception Example (Change from Error Low Pulse Output Disabled to Enabled When an Error Occurs)

26.3.6 **Transmission**

26.3.6.1 **Transmit Signal Timing Select**

Rising or falling timing of the transmit signal can be selected.

The rising timing of the transmit signal is selected by bits CRISE2 to CRISE0 in the CECC4 register. Figure 26.11 shows Rising Timing of Transmit Signal.

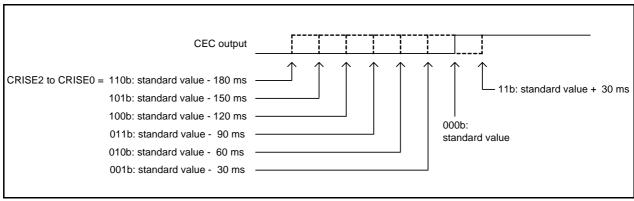


Figure 26.11 Rising Timing of Transmit Signal

The falling timing of the transmit signal is selected by bits CFALL1 to CFALL0 in the CECC4 register. Figure 26.12 shows Falling Timing of Transmit Signal.

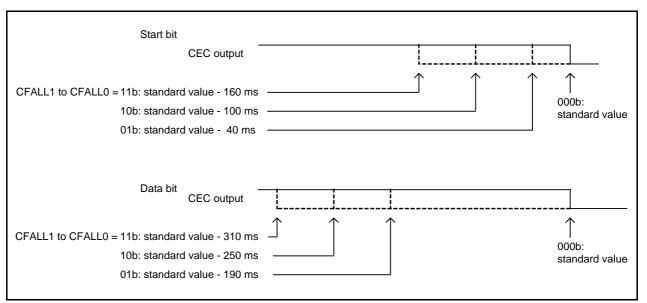


Figure 26.12 Falling Timing of Transmit Signal

Arbitration Lost Detection 26.3.6.2

When data is transmitted, an arbitration lost is detected in the following cases.

- •The CEC output changes from Hi-Z to low by the external source (falling edge).
- •The CEC output changes from low to Hi-Z by the external source (rising edge).

A range for detecting the arbitration lost the rising edge is selected by the CTABTS bit in the CECC2 register. Figure 26.13 shows Arbitration Lost Detectable Range.

When the arbitration lost is detected, the CTABTFLG bit in the CECFLG register becomes 1 (arbitration lost detected).

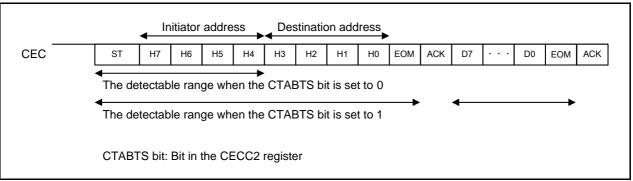


Figure 26.13 Arbitration Lost Detectable Range

26.3.6.3 **Transmission Example**

Figure 26.14 shows a Transmission Example, Figure 26.15 shows a Transmission Example (When NACK Received) and Figure 26.16 shows a Transmission Example (When an Arbitration Lost Detected).

Set the CTXDEN bit in the CECC3 register to 0 (transmit disabled) after the transmission. To continue the transmission, set the CTXDEN bit to 0 (transmit disabled) after sending one frame (one header block and one or more data blocks), and wait for one or more cycles of the count source before setting the CTXDEN bit to 1 (transmit enabled).

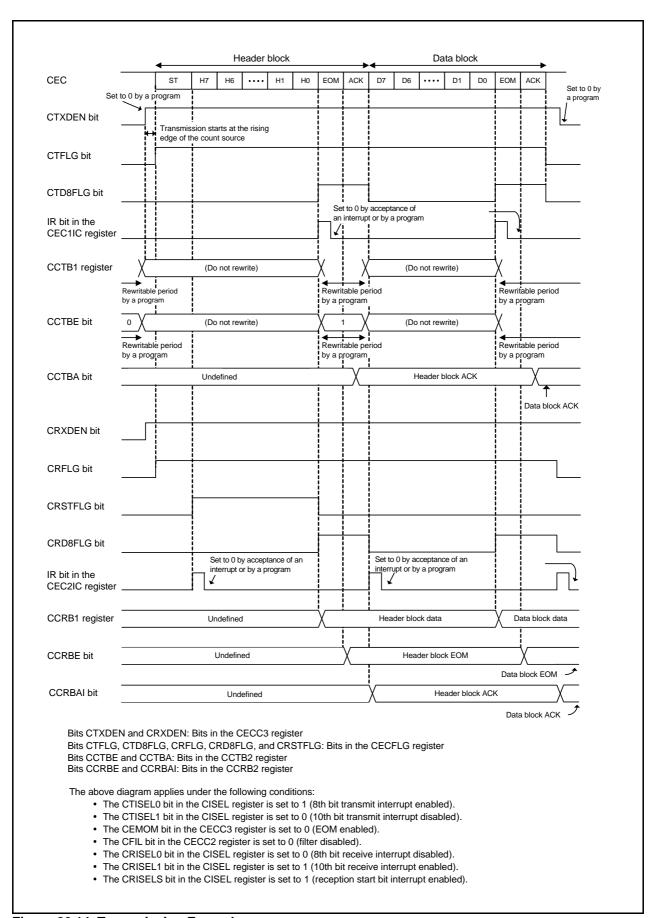


Figure 26.14 Transmission Example

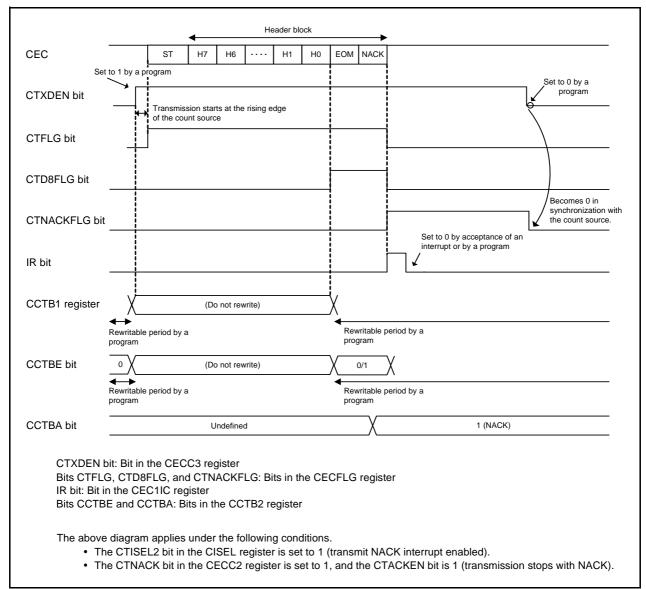


Figure 26.15 Transmission Example (When NACK Received)



Figure 26.16 Transmission Example (When an Arbitration Lost Detected)

26.4 Interrupts

The CEC function has CEC1 interrupt and CEC2 interrupt. Table 26.9 and Table 26.10 list CEC Interrupt Sources. These sources cause a request of CEC1 interrupt or CEC2 interrupt. When the CRISELM bit in the CISEL register is set to 1, the 8th/10th bit receive interrupt request is generated if the received Destination address is either one of the following case:

- Matches the address selected by the CRADRI1 or CRADRI2 register.
- Broadcast (1111b)

Figure 26.17 shows CEC Function Interrupt.

Table 26.9 CEC1 Interrupt Sources

Туре	Source	Interrupt Request Timing	Interrupt Enable Bit
Transmit interrupt	8th bit transmitted	When the CTD8FLG bit change from 0 to 1.	CRISEL0
	10th bit transmitted	When the CTD8FLG bit changes from 1 to 0.	CRISEL1
Transmit error interrupt	Arbitration lost	When the CTABTFLG bit changes from 0 to 1.	CTISEL2
	NACK received (Directly address) ACK received (Broadcast)	When the CTNACKFLG bit changes from 0 to 1.	

CTD8FLG, CTABTFLG, CTNACKFLG: Bits in the CECFLG register

Table 26.10 CEC2 Interrupt Sources

Туре	Source	Interrupt Request Timing	Interrupt Enable Bit
Receive interrupt	8th bit received	When the CRD8FLG bit changes from 0 to 1 ⁽¹⁾	CRISEL0
	10th bit received	When the CRD8FLG bit changes from 1 to 0 ⁽¹⁾	CRISEL1
	Start bit detected	When the CRSTFLG bit changes from 0 to 1	CRISELS
Receive error interrupt	Nonstandard signal received	Wen the CRERRFLG bit changes from 0 to 1	CRISEL2

CRD8FLG, CRSTFLG, CRERRFLG: Bits in the CECFLG register Note:

1. The CRISELM bit in the CISEL register affects the interrupt.

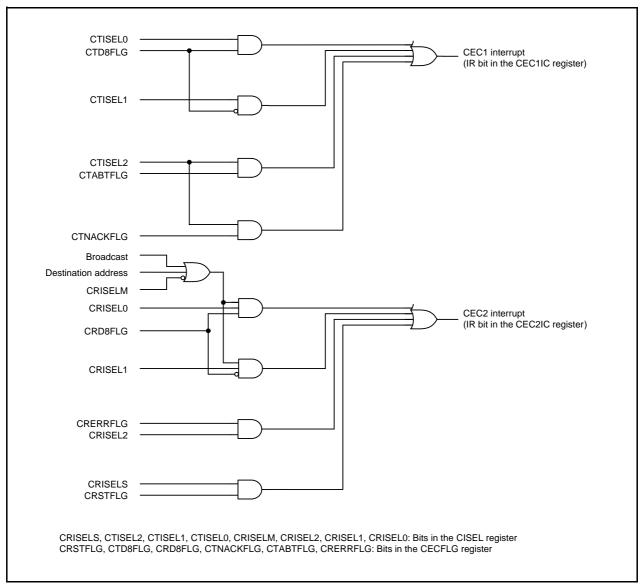


Figure 26.17 CEC Function Interrupt

For the interrupt request timing, refer to the operation examples.

For interrupt control, refer to 14.7 "Interrupt Control". Table 26.11 lists CEC Function Interrupt-Associated Registers.

Table 26.11 CEC Function Interrupt-Associated Registers

Address	Register Name	Register Symbol	After Reset
006Bh	CEC1 Interrupt Control Register	CEC1IC	XXXX X000b
006Ch	CEC2 Interrupt Control Register	CEC2IC	XXXX X000b
0205h	Interrupt Source Select Register 3	IFSR3A	00h

The CEC function shares the interrupt vectors and the interrupt control registers with other peripheral functions. To use CEC1 interrupt, set the IFSR33 bit in the IFSR3A register to 1 (CEC1). To use CEC2 interrupt, set the IFSR34 bit in the IFSR3A register to 1 (CEC2).

Notes on CEC (Consumer Electronics Control) 26.5

26.5.1 **Registers and Bit Operation**

The registers and the bits of the CEC function are synchronized with the count source. Therefore, the internal circuit starts to operate from the next count source timing, while the contents of the register is changed immediately after rewriting the value of the register.

When changing the value of the same bit successively or reading the bit changed under the influence of another bit, wait for one or more cycles of the count source.

Example: when changing the value of the same bit successively

- (1) Change the bit to 0.
- (2) Wait for one or more cycles of the count source.
- (3) Change the same bit to 1.

Example: when reading the bit changed under the influence of another bit (after the reception is disabled, to ensure that the CRERRFLG bit in the CECFLG register becomes 0 (no reception error detected)).

- (1) Set the CRXDEN bit in the CECC3 register to 0 (reception disabled)
- (2) Wait for one or more cycles of the count source
- (3) Read the CRERRFLG bit in the CECFLG register.

27. A/D Converter

27.1 Introduction

A/D converter consists of one 10-bit successive approximation A/D converter. Table 27.1 shows A/D Converter Specifications, Figure 27.1 shows an A/D Converter Block Diagram.

Table 27.1 A/D Converter Specifications

Item	Specification
A/D conversion method	Successive approximation
Analog input voltage	0 V to AVCC (VCC1)
Operating clock	f1, f1 divided by 2, f1 divided by 3, f1 divided by 4, f1 divided by 6, f1 divided by 12, fOCO40M divided by 2, fOCO40M divided by 3, fOCO40M divided by 4, fOCO40M divided by 6, or fOCO40M divided by 12
Resolution	10 bits
Integral nonlinearity error	AVCC = VREF = 5 V AN0 to AN7, AN0_0 to AN0_7, or AN2_0 to AN2_7 input: ±3 LSB ANEX0 or ANEX1 input: ±3 LSB AVCC = VREF = 3.0 V AN0 to AN7, AN0_0 to AN0_7, or AN2_0 to AN2_7 input: ±3 LSB ANEX0 or ANEX1 input: ±3 LSB
Operation modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0, repeat sweep mode 1
Analog input pins	8 pins (AN0 to AN7) + 2 pins (ANEX0 and ANEX1) + 8 pins (AN0_0 to AN0_7) + 8 pins (AN2_0 to AN2_7)
A/D conversion start conditions	Software trigger The ADST bit in the ADCON0 register is set to 1 (A/D conversion start). External trigger (retrigger is enabled) Input to the ADTRG pin changes from high to low after the ADST bit is set to 1(A/D conversion start).
Conversion rate per pin	Minimum 43 φAD cycles

27. A/D Converter M16C/65 Group

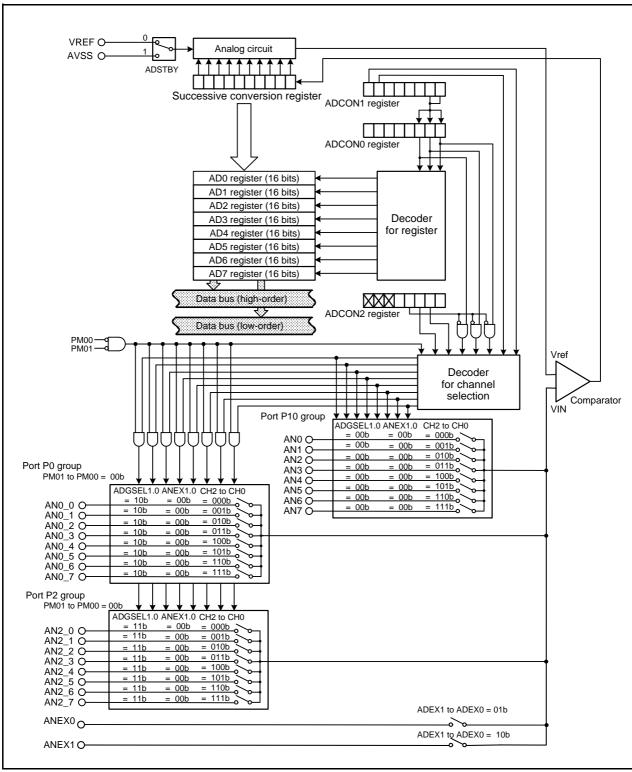


Figure 27.1 A/D Converter Block Diagram

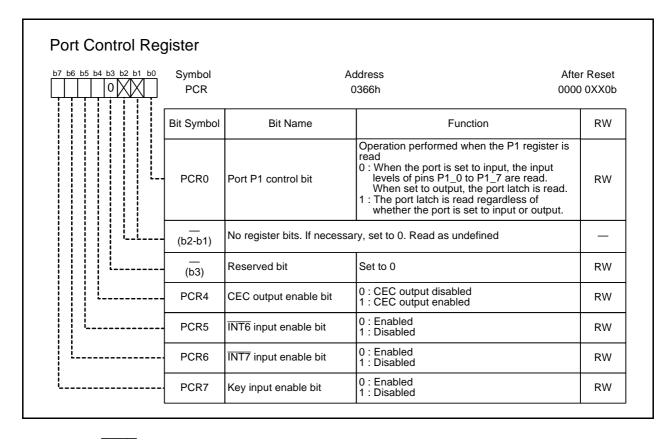
Table 27.2 I/O Pins

Pin Name	Input/Output	Function
AN0 to AN7	Input	Analog input
ANEX0, ANEX1	Input	Analog input
AN0_0 to AN0_7	Input	Analog input
AN2_0 to AN2_7	Input	Analog input
ADTRG	Input	Trigger input

Note:

Set the direction bit of the ports sharing a port to 0 (input mode). 1.

27.2 Registers


Table 27.3 lists registers associated with A/D converter. Set the CKS3 bit in the ADCON2 register before setting other registers associated with A/D converter excluding the PCR register. However, bits in the ADCON2 register and the CKS3 bit can be set simultaneously. After changing the CKS3 bit, set the registers in the same way again.

The PCR register can be set before setting the CKS3 bit. After changing the CKS3 bit, the PCR register does not need to be set again.

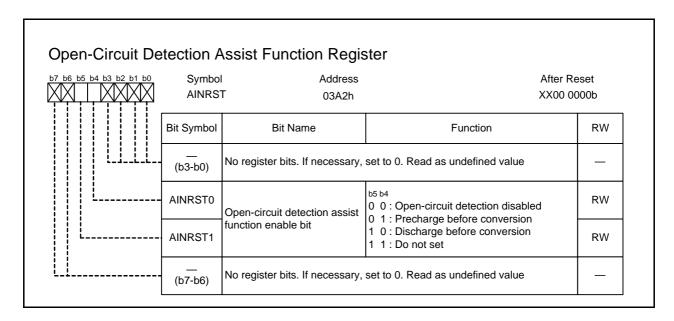
Table 27.3 Register Structure

Address	Register Name	Register Symbol	After Reset
0366h	Port Control Register	PCR	0000 0XX0b
03A2h	Open-Circuit Detection Assist Function	AINRST	XX00 0000b
	Register		
03C0h	A/D Register 0	AD0	XXXX XXXXb
03C1h			0000 00XXb
03C2h	A/D Register 1	AD1	XXXX XXXXb
03C3h			0000 00XXb
03C4h	A/D Register 2	AD2	XXXX XXXXb
03C5h			0000 00XXb
03C6h	A/D Register 3	AD3	XXXX XXXXb
03C7h			0000 00XXb
03C8h	A/D Register 4	AD4	XXXX XXXXb
03C9h			0000 00XXb
03CAh	A/D Register 5	AD5	XXXX XXXXb
03CBh			0000 00XXb
03CCh	A/D Register 6	AD6	XXXX XXXXb
03CDh			0000 00XXb
03CEh	A/D Register 7	AD7	XXXX XXXXb
03CFh			0000 00XXb
03D4h	A/D Control Register 2	ADCON2	0000 X00Xb
03D6h	A/D Control Register 0	ADCON0	0000 0XXXb
03D7h	A/D Control Register 1	ADCON1	0000 X000b

27.2.1 **Port Control Register (PCR)**

PCR5 (INT6 Input Enable Bit) (b5)

Set the PCR5 bit to 1 (INT6 input disabled) when using the AN2_4 pin is used for analog input.

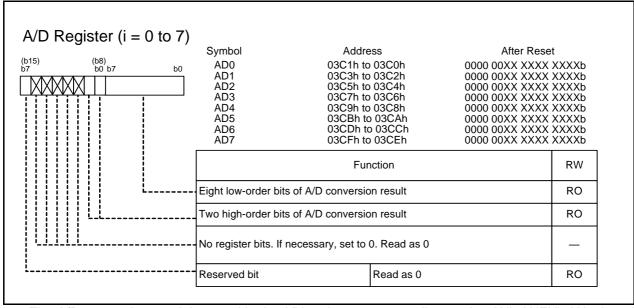

PCR6 (INT7 Input Enable Bit) (b6)

Set the PCR6 bit to 1 (INT7 input disabled) when using AN2_5 pin is used for analog input.

PCR7 (key Input Enable Bit) (b7)

Set the PCR7 bit to 1 (key input disabled) when using pins AN4 to AN7 are used for analog input.

27.2.2 **Open-Circuit Detection Assist Function Register (AINRST)**

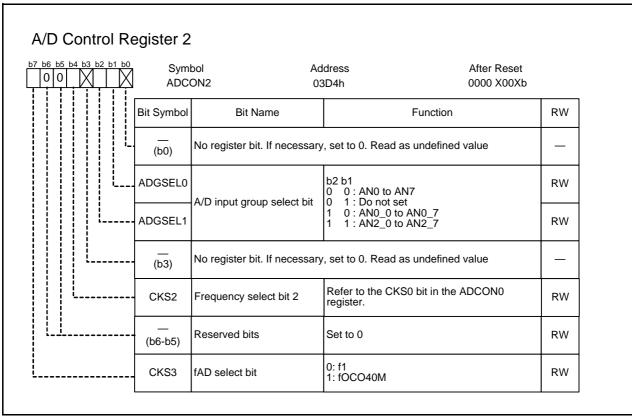


AINRST1-AINRST0 (Open-circuit Detection Assist Function Enable Bit) (b5-b4)

To enable the A/D open-circuit detection assist function, set the AINRST0 bit or AINRST1 bit to 1, and then set the ADST bit in the ADCON0 register to 1 (A/D conversion) after waiting for one cycle of ϕ AD.

27.2.3 AD Register i (ADi) (i = 0 to 7)

Under development



The A/D conversion result is stored in the ADi register corresponding to pins ANi, ANEXi, ANO_i, and AN2_i. Table 27.4 lists Analog Pin and A/D Conversion Result Storing Register.

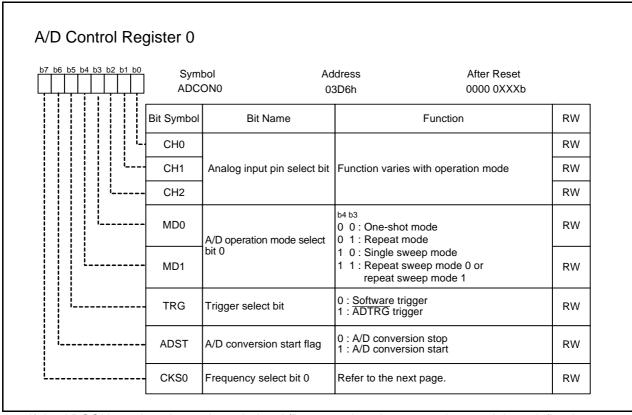
Table 27.4 Analog Pin and A/D Conversion Result Storing Register

Analog Pin			A/D Conversion Result Storing Register	
AN0	ANEX0	AN0_0	AN2_0	AN0 register
AN1	ANEX1	AN0_1	AN2_1	AN1 register
AN2		AN0_2	AN2_2	AN2 register
AN3		AN0_3	AN2_3	AN3 register
AN4		AN0_4	AN2_4	AN4 register
AN5		AN0_5	AN2_5	AN5 register
AN6		AN0_6	AN2_6	AN6 register
AN7		AN0_7	AN2_7	AN7 register

27.2.4 A/D Control Register 2 (ADCON2)

If the ADCON2 register is rewritten during A/D conversion, the conversion result is undefined.

ADGSEL1-ADGSEL0 (A/D Input Group Select Bit) (b2-b1)


ANO_0 to ANO_7 are used as analog input pins even if bits PM01 to PM00 are set to 01b (memory expansion mode) and bits PM05 to PM04 are 11b (multiplexed bus is allocated to the entire CS space).

CKS3 (fAD Select Bit) (b7)

Set the CKS3 bit while A/D conversion stops.

Set the CKS3 bit, and then set other A/D converter related registers. Also, after changing the CKS3 bit, set the A/D converter related registers again. Note that bits in the ADCON2 register and the CKS3 bit can be set simultaneously.

27.2.5 A/D Control Register 0 (ADCON0)

If the ADCON0 register is rewritten during A/D conversion, the conversion result is undefined.

MD1-MD0 (A/D Operation Mode Select Bit) (b4-b3)

A/D operation mode is selected by a combination of bits MD1 to MD0 and the MD2 bit in the ADCON1 register. Table 27.5 lists A/D Operation Mode.

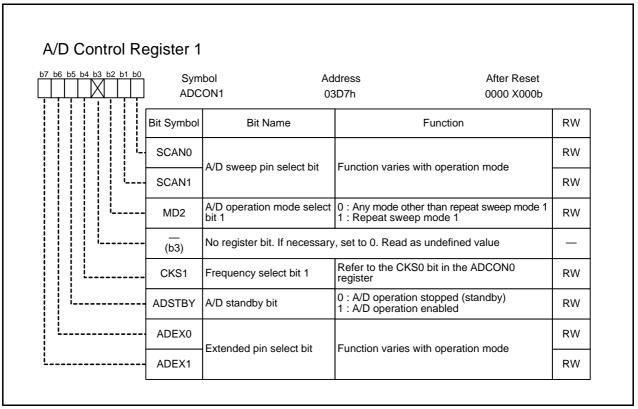
Table 27.5 A/D Operation Mode

Bit Setting			
ADCON1 Register	ADCON0 Register		A/D Operation Mode
MD2	MD1	MD0	
0	0	0	One-shot mode
0	0	1	Repeat mode
0	1	0	Single sweep mode
0	1	1	Repeat sweep mode 0
1	1	1	Repeat sweep mode 1

Do not set bit combinations not listed above.

CKS0 (Frequency Select Bit) (b7)

\$\phi\$AD frequency is selected by a combination of the CKS0 bit in the ADCON0 register, the CKS1 bit in the ADCON1 register, and bits CKS3 and CKS2 in the ADCON2 register. Select bits CKS2 to CKS0 after setting the CKS3 bit in the ADCON2 register. Note that bits CKS3 and CKS2 can be set simultaneously. Table 27.6 lists ϕ A/D Frequency.


Table 27.6 ♦ A/D Frequency

CKS3	CKS2	CKS1	CKS0	φA/D
0	0	0	0	fAD(f1) divided by 4
	0	0	1	fAD(f1) divided by 2
	0	1	0	fAD(f1)
	0	1	1	
	1	0	0	fAD(f1) divided by 12
	1	0	1	fAD(f1) divided by 6
	1	1	0	fAD(f1) divided by 3
	1	1	1	
1	0	0	0	fAD(fOCO40M) divided by 4
	0	0	1	fAD(fOCO40M) divided by 2
	1	0	0	fAD(fOCO40M) divided by 12
	1	0	1	fAD(fOCO40M) divided by 6
	1	1	0	fAD(fOCO40M) divided by 3
	1	1	1	

Note:

1. Do not set bit combinations not listed above.

27.2.6 A/D Control Register 1 (ADCON1)

If the ADCON1 register is rewritten during A/D conversion, the conversion result is undefined.

MD2 (A/D Operation Mode Select Bit 1) (b2)

A/D operation mode is selected by a combination of bits MD1 to MD0 in the ADCON0 register and the MD2 bit. Refer to Table 27.5 "A/D Operation Mode".

ADSTBY (A/D Standby Bit) (b5)

If the ADSTBY bit is changed from 0 (A/D operation stopped) to 1 (A/D operation enabled), wait for 1 φA/D cycle or more before starting A/D conversion.

When the A/D converter is not used, no current flows in the A/D converter by setting the ADSTBY bit to 0 (A/D operation stopped: standby). This helps the power consumption to be reduced.

27. A/D Converter M16C/65 Group

27.3 **Operations**

27.3.1 A/D Conversion Cycle

A/D conversion cycle is based on fAD and ϕ AD. Figure 27.2 shows fAD and ϕ AD.

When the CKS3 bit in the ADCON2 register is 1 (fOCO40M is fAD), do not set the CKS2 bit in the ADCON2 register to 0 and the CKS1 bit in the ADCON1 register to 1 (fDA = ϕ AD).

Set the A/D converter related registers after setting the CKS3 bit.

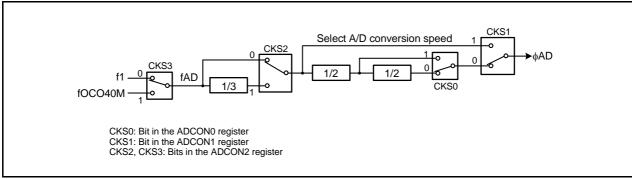


Figure 27.2 fAD and ϕ AD

Figure 27.3 shows A/D Conversion Timing.

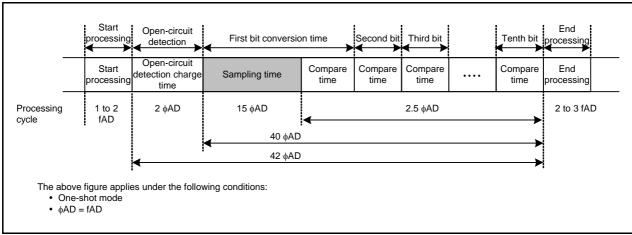


Figure 27.3 A/D Conversion Timing

M16C/65 Group

Table 27.7 lists Cycles of A/D Conversion Item. A/D conversion period is as follows.

Start processing time depends on which ϕAD is selected.

A/D conversion starts after the start processing time elapses by setting the ADST bit in the ADCON0 register to 1 (A/D conversion start). When reading the ADST bit before starting A/D conversion, 0 (A/D conversion stop) is read.

When selecting multiple pins and in A/D conversion repeat mode, between-execution processing time is inserted between A/D conversions.

In one-shot mode and single sweep mode, the ADST bit becomes 0 at the end processing time and the last A/D conversion result is stored in the ADi register.

One-shot mode:

Start processing time + A/D conversion execution time + end processing time

Two pins are selected in single sweep mode:

Start processing time + (A/D conversion execution time + between-execution processing time + A/D conversion execution time) + end processing time

Table 27.7 Cycles of A/D Conversion Item

A/D C	Cycle	
Start processing time	φAD = fAD	1 to 2 cycles of fAD
	φAD = fAD divided by 2	2 to 3 cycles of fAD
	φAD = fAD divided by 3	3 to 4 cycles of fAD
	φAD = fAD divided by 4	3 to 4 cycles of fAD
	φAD = fAD divided by 6	4 to 5 cycles of fAD
	φAD = fAD divided by 12	7 to 8 cycles of fAD
A/D conversion	Open-circuit detection disabled	40 cycles of φAD
execution time	Open-circuit detection enabled	42 cycles of φAD
Between-execution processing time		1 cycle of φAD
End processing time		2 to 3 cycles of fAD

27.3.2 A/D Conversion Start Conditions

Under development

An A/D conversion start trigger has a software trigger and an external trigger. Figure 27.4 shows A/D Conversion Start Trigger.

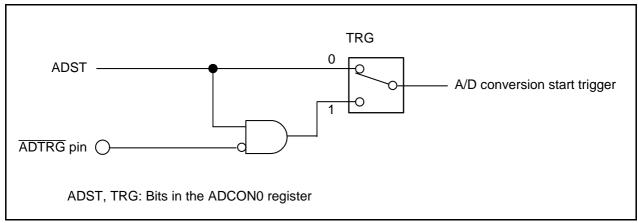


Figure 27.4 A/D Conversion Start Trigger

27.3.2.1 **Software Trigger**

When the TRG bit in the ADCON0 register is 0 (software trigger), A/D conversion starts by setting the ADST bit in the ADCON0 register to 1 (A/D conversion start).

27.3.2.2 **External Trigger**

When the TRG bit in the ADCON0 register is 1 (ADTRG trigger), A/D conversion starts if the input level at the ADTRG pin changes from high to low under the following conditions:

- The direction bit of the port sharing a pin is set to 0 (input mode)
- The TRG bit in the ADCON0 register is set to 1 (ADTRG trigger)
- The ADST bit in the ADCON0 register is set to 1 (A/D conversion start)

Under the above conditions, when input to the ADTRG pin is changed from high to low, the A/D conversion starts.

Set the high- and low-level durations of the pulse input to the ADTRG pin to two or more cycles of fAD.

27.3.3 A/D Conversion Result

When reading the ADi register before A/D conversion is completed, the undefined value is read. Read the ADi register after completing A/D conversion. Use the following procedure to detect the completion of A/D conversion.

- In one-shot mode and single sweep mode: The IR bit in the ADIC register becomes 1 (interrupt requested) at the completion of A/D conversion. Ensure that the IR bit becomes 1 to read the ADi register. when not using A/D interrupt, set the IR bit to 0 (interrupt not requested) by a program after reading the ADi register.
- In repeat mode, repeat sweep mode 0, and repeat sweep mode 1: The IR bit remain unchanged (no interrupt request is generated). At first, read the ADi register after one A/D conversion period elapses (refer to 27.3.1 "A/D Conversion Cycle"). After that, whenever the ADi register is read, the conversion result which has been obtained before reading is read. The ADi register is overwritten in every A/D conversion. Read the value before the ADi register is overwritten.

27.3.4 **Extended Analog Input Pins**

In one-shot mode and repeat modes, pins ANEX0 and ANEX1 can be used as analog input pins by setting bits ADEX1 to ADEX0 in the ADCON1 register.

The A/D conversion result of pins ANEX0 and ANEX1 are respectively stored in registers AD0 and AD1.

27.3.5 **Current Consumption Reduce Function**

When the A/D converter is not in use, the power consumption can be reduced by setting the ADSTBY bit in the ADCON1 register to 0 (A/D operation stopped: standby) to shut off any analog circuit current

To use the A/D converter, set the ADSTBY bit to 1 (A/D operation enabled) and wait for 1 φAD cycle or more before setting the ADST bit in the ADCON0 register to 1 (A/D conversion start). Do not set bits ADST and ADSTBY to 1 at the same time.

Also, do not set the ADSTBY bit to 0 (A/D operation stopped: standby) during A/D conversion.

27.3.6 **Open-Circuit Detection Assist Function**

The A/D converter has a function to set charge of the sampling capacitor to a predefined state (AVCC or AVSS) before A/D conversion starts in order to prevent the effect of analog input voltage of previous conversion. This function enables to detect open-circuit of a trace connected to the analog input pin

Figure 27.5 shows A/D Open-Circuit Detection Example on AVCC (Precharge) and Figure 27.6 shows A/D Open-Circuit Detection Example on AVSS (Predischarge).

The conversion result in open-circuit depends on the external circuit. Use this function only after careful evaluation for the system.

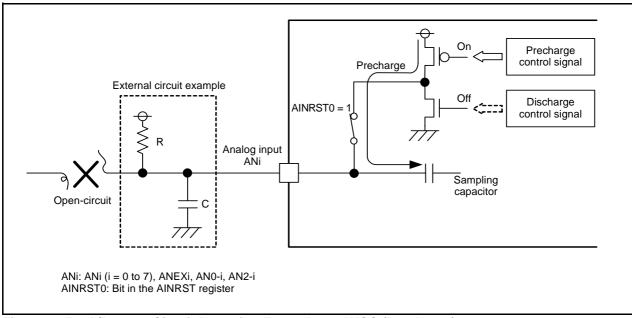
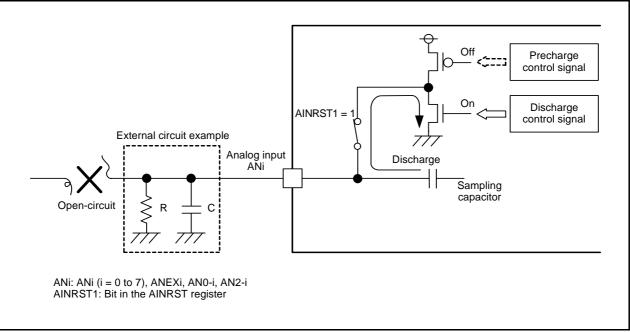
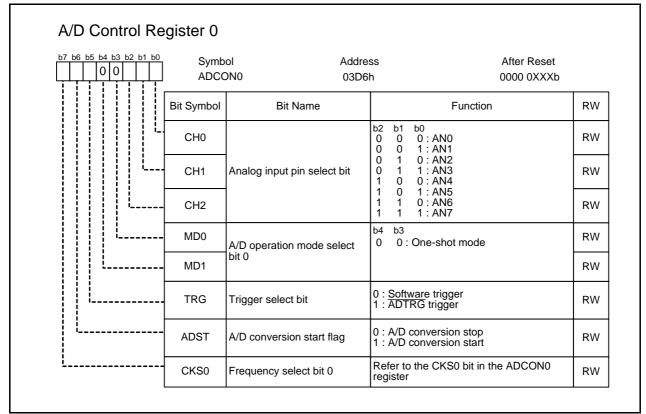



Figure 27.5 A/D Open-Circuit Detection Example on AVCC (Precharge)

A/D Open-Circuit Detection Example on AVSS (Predischarge) Figure 27.6

Operational Modes 27.4

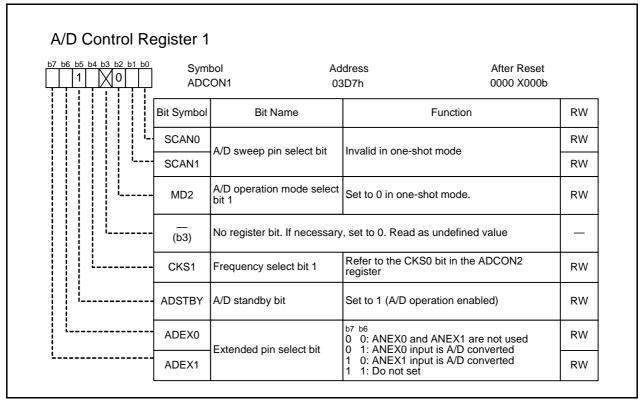

27.4.1 **One-Shot Mode**

In one-shot mode, the analog voltage applied to a selected pin is converted to a digital code once. Table 27.8 shows One-Shot Mode Specifications.

Table 27.8 One-Shot Mode Specifications

Item	Specification
Function	Bits CH2 to CH0 in the ADCON0 register and bits ADGSEL1 to ADGSEL0 in the ADCON2 register, or bits ADEX1 to ADEX0 in the ADCON1 register are used to select a pin. The analog voltage applied to the pin is converted to a digital code once.
A/D conversion start conditions	When the TRG bit in the ADCON0 register is 0 (software trigger) the ADST bit in the ADCON0 register is set to 1 (A/D conversion starts). When the TRG bit is 1 (ADTRG trigger) input level at the ADTRG pin changes from high to low after the ADST bit is set to 1 (A/D conversion start).
A/D conversion stop conditions	 Completion of A/D conversion (if a software trigger is selected, the ADST bit becomes 0 (A/D conversion stop)). Set the ADST bit to 0.
Interrupt request generation timing	Completion of A/D conversion.
Analog input pin	Select one pin from among AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7, ANEX0, and ANEX1.
Reading of A/D conversion result	Read the register among AD0 to AD7 that corresponds to the selected pin.

27.4.1.1 A/D Control Register 0 (ADCON0) (In One-Shot Mode)



If the ADCON0 register is rewritten during A/D conversion, the conversion result is undefined.

CH2-CH0 (analog input pin select bit) (b2-b0)

ANO_0 to ANO_7 and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7. Use bits ADGSEL1 to ADGSEL0 in the ADCON2 register to select the desired group.

A/D Control Register 1 (ADCON1) (In One-Shot Mode) 27.4.1.2

If the ADCON1 register is rewritten during A/D conversion, the conversion result is undefined.

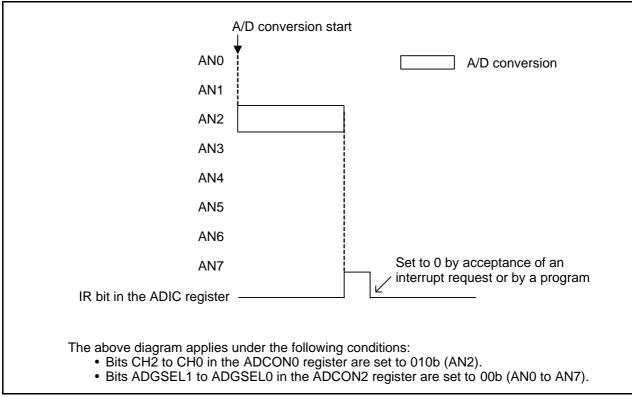
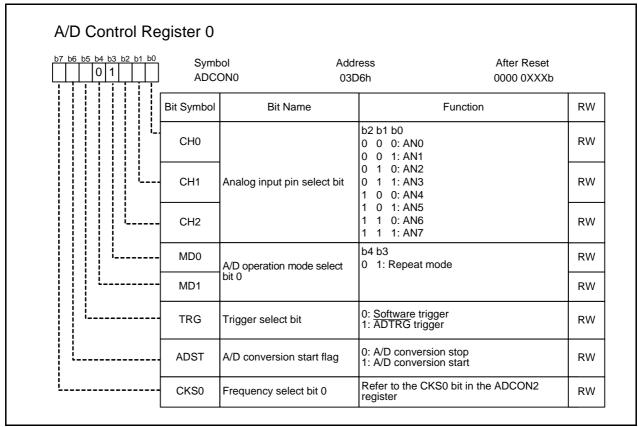


Figure 27.7 Operation Example in One-Shot Mode

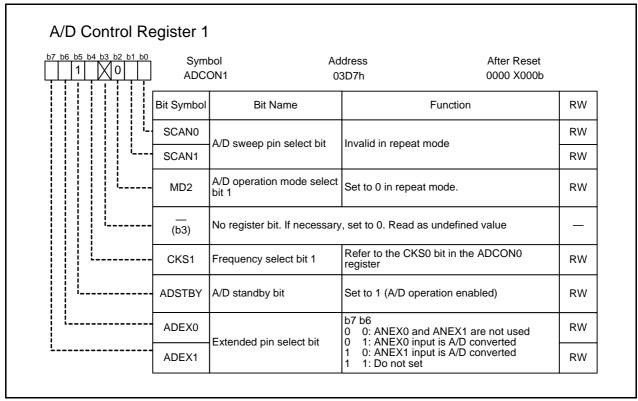

Repeat Mode 27.4.2

In repeat mode, the analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 27.9 lists Repeat Mode Specifications.

Table 27.9 Repeat Mode Specifications

lt a ma	Charification
Item	Specification
Function	Bits CH2 to CH0 in the ADCON0 register and bits ADGSEL1 to ADGSEL0
	in the ADCON2 register, or bits ADEX1 to ADEX0 in the ADCON1 register
	are used to select a pin. The analog voltage applied to the pin is repeatedly
	converted to a digital code.
A/D conversion start	• When the TRG bit in the ADCON0 register is 0 (software trigger)
conditions	the ADST bit in the ADCON0 register is set to 1 (A/D conversion start).
	•When the TRG bit is 1 (ADTRG trigger)
	input level at the ADTRG pin changes from high to low after the ADST bit
	is set to 1 (A/D conversion start).
A/D conversion stop	Set the ADST bit to 0 (A/D conversion stop).
condition	
Interrupt request	No interrupt requests generated
generation timing	
Analog input pin	Select one pin from among AN0 to AN7, AN0_0 to AN0_7, AN2_0 to
	AN2_7, ANEX0, and ANEX1.
Reading of A/D conversion	Read the register among AD0 to AD7 that corresponds to the selected pin.
result	

27.4.2.1 A/D Control Register 0 (ADCON0) (In Repeat Mode)



If the ADCON0 register is rewritten during A/D conversion, the conversion result is undefined.

CH2-CH0 (analog input pin select bit) (b2-b0)

ANO_0 to ANO_7 and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7. Use bits ADGSEL1 to ADGSEL0 in the ADCON2 register to select the desired group.

A/D Control Register 1 (ADCON1) (In Repeat Mode) 27.4.2.2

If the ADCON1 register is rewritten during A/D conversion, the conversion result is undefined.

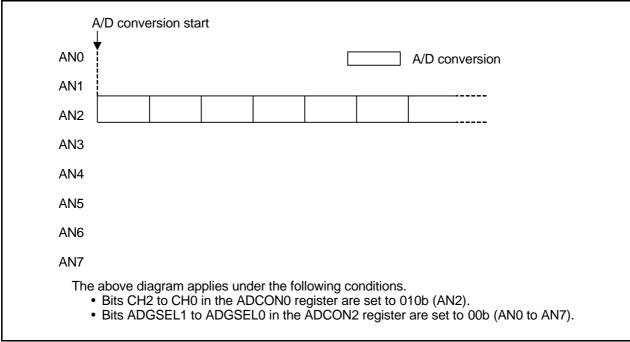
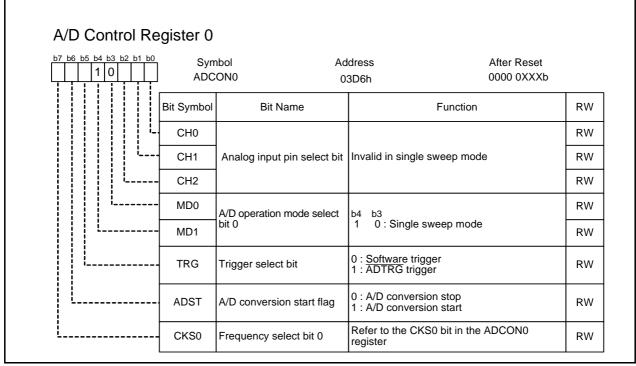
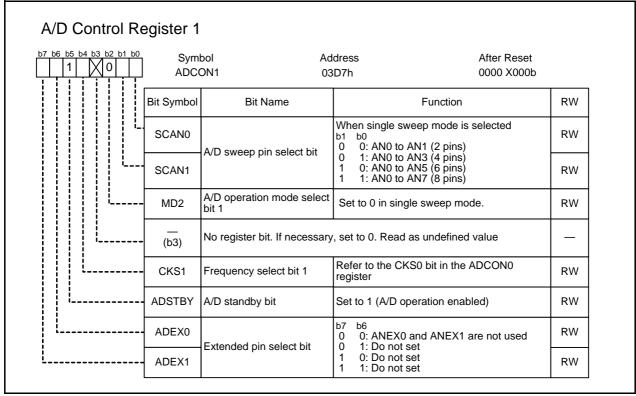


Figure 27.8 Operation Example in Repeat Mode


27.4.3 **Single Sweep Mode**

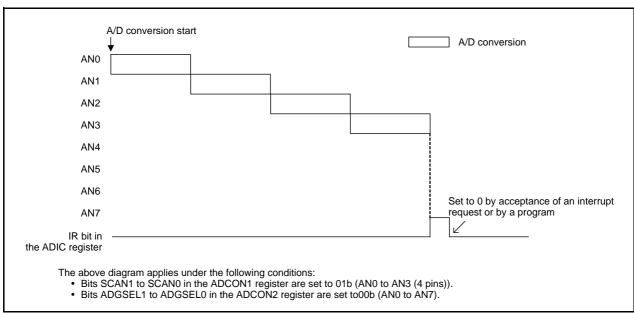
In single sweep mode, the analog voltage applied to selected pins is converted one-by-one to a digital code. Table 27.10 shows the Single Sweep Mode Specifications.

Table 27.10 Single Sweep Mode Specifications


Item	Specification
Function	Bits SCAN1 to SCAN0 in the ADCON1 register and bits ADGSEL1 to ADGSEL0 in the ADCON2 register are used to select pins. The analog voltage applied to the pins is converted one-by-one to a digital code.
A/D conversion start conditions	When the TRG bit in the ADCON0 register is 0 (software trigger) the ADST bit in the ADCON0 register is set to 1 (A/D conversion start). When the TRG bit is 1 (ADTRG trigger) input level at the ADTRG pin changes from high to low after the ADST bit is set to 1 (A/D conversion start).
A/D conversion stop conditions	 Completion of A/D conversion (if a software trigger is selected, the ADST bit is set to 0 (A/D conversion stop)). Set the ADST bit to 0.
Interrupt request generation timing	Completion of A/D conversion
Analog input pin	Select from AN0 and AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), and AN0 to AN7 (8 pins). AN0_0 to AN0_7 and AN2_0 to AN2_7 can be selected in the same way.
Reading of A/D conversion result	Read the registers among AD0 to AD7 that corresponds to the selected pin.

27.4.3.1 A/D Control Register 0 (ADCON0) (In Single Sweep Mode)

If the ADCON0 register is rewritten during A/D conversion, the conversion result is undefined.

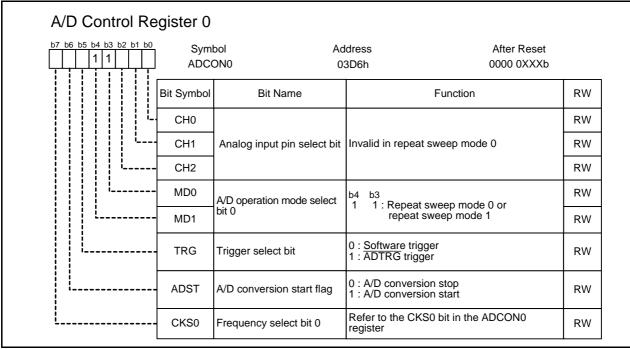

A/D Control Register 1 (ADCON1) (In Single Sweep Mode) 27.4.3.2

If the ADCON1 register is rewritten during A/D conversion, the conversion result is undefined.

SCAN1-SCAN0 (A/D sweep pin select bit) (b1-b0)

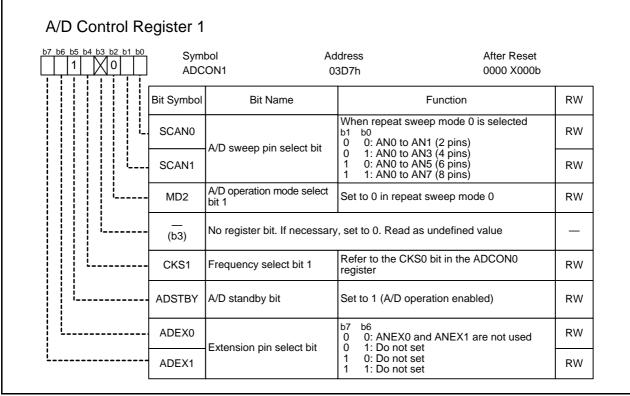
ANO 0 to ANO_7 and AN2_0 to AN2_7 can be used in the same way as ANO to AN7. Use bits ADGSEL1 to ADGSEL0 in the ADCON2 register to select the desired group.

Operation Example in Single Sweep Mode Figure 27.9


27.4.4 Repeat Sweep Mode 0

In repeat sweep mode 0, the analog voltage applied to selected pins is repeatedly converted to a digital code. Table 27.11 shows the Repeat Sweep Mode 0 Specifications.

Table 27.11 Repeat Sweep Mode 0 Specifications


Item	Specification
Function	Bits SCAN1 to SCAN0 in the ADCON1 register and bits ADGSEL1 to ADGSEL0 in the ADCON2 register are used to select pins. Analog voltage applied to the pins is repeatedly converted to a digital code.
A/D conversion start conditions	 When the TRG bit in the ADCON0 register is 0 (software trigger) the ADST bit in the ADCON0 register is set to 1 (A/D conversion start). When the TRG bit is 1 (ADTRG trigger) input level at the ADTRG pin changes from high to low after the ADST bit is set to 1 (A/D conversion start).
A/D conversion stop condition	Set the ADST bit to 0 (A/D conversion stop).
Interrupt request generation timing	No interrupt requests generated
Analog input pin	Select from AN0 and AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), and AN0 to AN7 (8 pins). AN0_0 to AN0_7 and AN2_0 to AN2_7 can be selected in the same way.
Reading of A/D conversion result	Read the registers among AD0 to AD7 that corresponds to the selected pins.

27.4.4.1 A/D Control Register 0 (ADCON0) (In Repeat Sweep Mode 0)

If the ADCON0 register is rewritten during A/D conversion, the conversion result is undefined.

A/D Control Register 1 (ADCON1) (In Repeat Sweep Mode 0) 27.4.4.2

If the ADCON1 register is rewritten during A/D conversion, the conversion result is undefined.

SCAN1-SCAN0 (A/D sweep pin select bit) (b1-b0)

ANO_0 to ANO_7 and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7. Use bits ADGSEL1 to ADGSEL0 in the ADCON2 register to select the desired group.

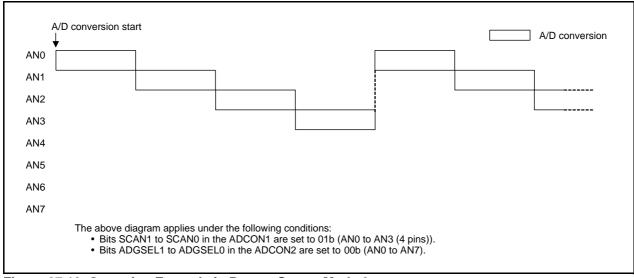
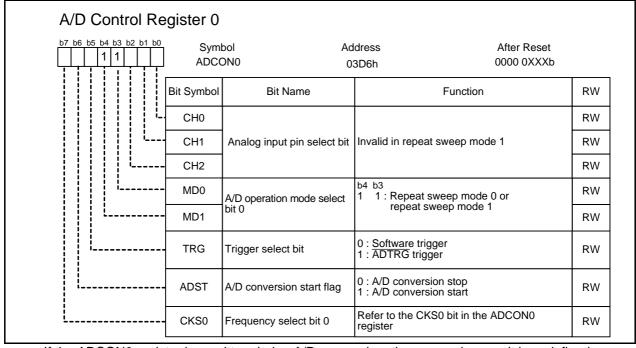


Figure 27.10 Operation Example in Repeat Sweep Mode 0

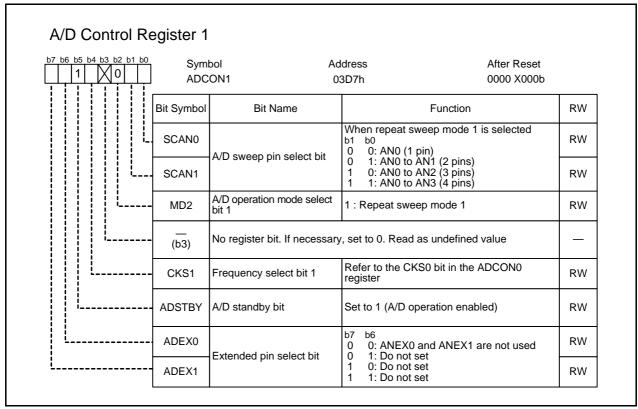
M16C/65 Group


27.4.5 **Repeat Sweep Mode 1**

In repeat sweep mode 1, the analog voltage applied to eight selected pins including some prioritized pins is repeatedly converted to a digital code. Table 27.12 lists the Repeat Sweep Mode 1 Specifications.

Table 27.12 Repeat Sweep Mode 1 Specifications

Item	Specification
Function	The input voltage of all eight pins selected by bits ADGSEL1 to ADGSEL0 in the ADCON2 register is repeatedly converted to a digital code. One to four pins selected by SCAN1 to SCAN0 in the ADCON1 register is/are converted by priority. Example: If AN0 is prioritized, input voltage is converted to a digital code in the following order: AN0-AN1-AN0-AN2-AN0-AN3 •••
A/D conversion start conditions	 When the TRG bit in the ADCON0 register is 0 (software trigger), the ADST bit in the ADCON0 register is set to 1 (A/D conversion start). When the TRG bit is 1 (ADTRG trigger), input level at the ADTRG pin changes from high to low after the ADST bit is set to 1 (A/D conversion start).
A/D conversion stop condition	Set the ADST bit to 0 (A/D conversion stop).
Interrupt request generation timing	No interrupt requests generated
Analog input pins to be given priority when A/D converted	Select from AN0 (1 pin), AN0 and AN1 (2 pins), AN0 to AN2 (3 pins), and AN0 to AN3 (4 pins). AN0_0 to AN0_3 and AN2_0 to AN2_3 can be selected in the same way.
Reading of A/D conversion result	Read the registers among AD0 to AD7 that corresponds to the selected pins.


27.4.5.1 A/D Control Register 0 (ADCON0) (In Repeat Sweep Mode 1)

If the ADCON0 register is rewritten during A/D conversion, the conversion result is undefined.

A/D Control Register 1 (ADCON1) (In Repeat Sweep Mode 1) 27.4.5.2

If the ADCON0 register is rewritten during A/D conversion, the conversion result is undefined.

SCAN1-SCAN0 (A/D sweep pin select bit) (b1-b0)

ANO_0 to ANO_7 and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7. Use bits ADGSEL1 to ADGSEL0 in the ADCON2 register to select the desired group.

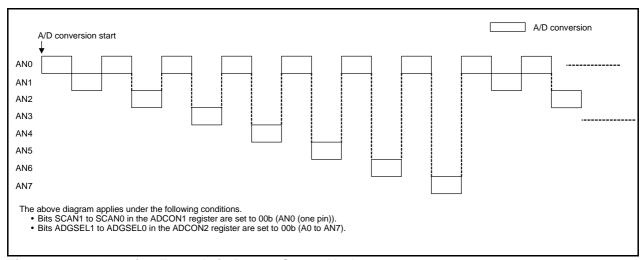


Figure 27.11 Operation Example in Repeat Sweep Mode

M16C/65 Group

ANi_2 ANi_3 ANi_4 ANi_5 ANi_6 ANi_7 (): A/D conversion i = none, 0, 2, 15

Figure 27.12 Transition Diagram of Pins Used in A/D Conversion in Repeat Sweep Mode 1

M16C/65 Group 27. A/D Converter

27.5 **External Sensor**

Figure 27.13 shows Analog Input Pin and External Sensor Equivalent Circuit. R₁ in Figure 27.13 is obtained by the following formulas.

$$I_2 = \frac{C_2(E_x - V_{samp})}{C_{in} \times R_1 + C_2(R_1 + R_2)} exp \left[\frac{-t_{samp}}{C_{in} \times R_1 + C_2(R_1 + R_2)} \right]$$

Time required to charge C₂:

Sampling time
$$-t_{samp} > C_{in} \times R_1 + C_2(R_1 + R_2)$$

$$R1 < \frac{t_{samp} - C_2 \times R_2}{C_{in} + C_2} \qquad \quad t_{samp} \, = \, \frac{15}{\phi AD} \label{eq:rate}$$

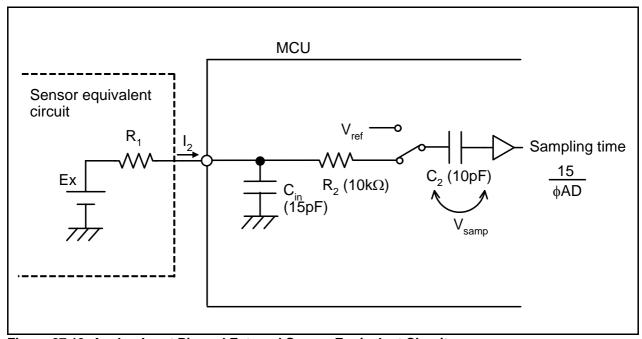


Figure 27.13 Analog Input Pin and External Sensor Equivalent Circuit

: Input pin capacity C_{in} : Sampling capacity

: Sensor output resistance

: Selector resistance : Sensor output voltage

V_{samp}: Sampled voltage

V_{ref}: A/D converter reference voltage

M16C/65 Group 27. A/D Converter

When capacitor C₁ is connected, C₁ is obtained by the following formulas. Figure 27.14 shows Analog Input Pin and External Sensor Equivalent Circuit (Capacitor is Connected).

If R₁ is infinite, C₂ is charged from C₁.

When the difference of voltages generated by divided capacitor, C₁ and C₂ is V_P:

$$V_{P} = \frac{C_{2}}{C_{1} + C_{2}} \times (E_{x} - V_{samp})...(1)$$

When the difference generated by the conversion is V_{p1} :

$$V_P = V_{P1} \times \frac{1}{2^i} < \frac{VREF}{A \times 2^x} ...(2)$$

X = 10 (bits)

A: $V_{P1} = \frac{1}{A}$ LSB (e.g. when $V_{P1} = 0.1$ LSB, A = 10)

From (1) and (2)

$$C_1 = C_2 \times \left(\frac{E_x - V_2}{V_{P1}} - 1\right)...(3)$$

$$\therefore C_1 > C_2 \left(A \times 2^{x} \frac{1}{2^{i}} - 1 \right) \dots (4)$$

In 10-bit resolution A/D converter, C_1 is 0.21 μF or more when C_2 = 10 pF.

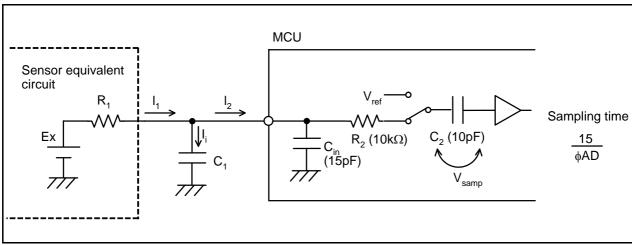


Figure 27.14 Analog Input Pin and External Sensor Equivalent Circuit (Capacitor is Connected)

 C_1 : Board parasitic capacitance

: Input pin capacity : Sampling capacity

: Sensor output resistance

: Selector resistance : Sensor output voltage

V_{samp}: Sampled voltage

: A/D converter reference voltage

M16C/65 Group 27. A/D Converter

27.6 Interrupt

Refer to the operation examples for timing of generating interrupt requests.

Also, refer to 14.7 "Interrupt Control" for details. Table 27.13 lists Registers Associated with A/D Converter Interrupt.

Table 27.13 Registers Associated with A/D Converter Interrupt

Address	Register Name	Register Symbol	After Reset
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXX X000b

27. A/D Converter M16C/65 Group

27.7 **Notes on A/D Converter**

27.7.1 **Analog Input Pin**

When VCC1 ≥ VCC2, set analog input voltage as follows: analog input voltage (AN_0 to AN_7, ANEX0, and ANEX1) ≤ VCC1 analog input voltage (AN0 0 to AN0 7 and AN2 7 to AN2 7) ≤ VCC2

Do not use any of four pins AN4 to AN7 as analog input pins if a key input interrupt is to be used (key input interrupt request is generated when analog input voltage becomes low level).

27.7.2 **\$AD Frequency**

Set ϕ AD to 2 MHz or more, but an upper limit is set as follows:

 $4.0 \le VCC1 \le 5.5V$: $\phi AD \le 25 \text{ MHz}$ $3.2 \le VCC1 \le 4.0V$: $\phi AD \le 16$ MHz $3.0 \le VCC1 \le 3.2V$: $\phi AD \le 10 \text{ MHz}$

27.7.3 **Pin Configuration**

Three capacitors should be respectively put between pins AVCC, VREF, analog input (ANi (i = 0 to 7), ANEXi, ANO_i, and AN2_i) and the AVSS pin to protect from error operations caused by noise, latchup, or to reduce conversion errors. Also, a capacitor between the VCC1 pin and the VSS pin. Figure 27.15 shows Example of Pin Configuration.

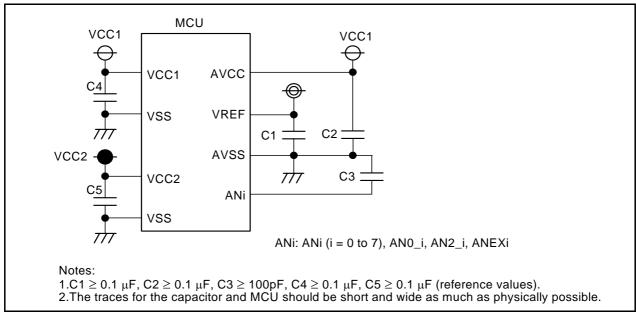


Figure 27.15 Example of Pin Configuration

27.7.4 **Register Access**

Set registers ADCON0 (exclude bit 6), ADCON1, and ADCON2 when A/D conversion stops (before trigger is generated).

Set the ADSTBY bit which is 1 to 0 after A/D conversion stops.

27.7.5 A/D Conversion Start

If the ADSTBY bit in the ADCON1 is changed from 0 (A/D operation stopped) to 1 (A/D operation enabled), wait for 1 ϕ A/D cycle or more before starting A/D conversion.

27. A/D Converter M16C/65 Group

27.7.6 A/D Operation Mode Change

When A/D operation mode has been changed, re-select analog input pins by using bits CH2 to CH0 in the ADCON0 register or bits SCAN1 to SCAN0 in the ADCON1 register.

27.7.7 State When Forcibly Terminated

If A/D conversion in progress is halted by setting the ADST bit in the ADCON0 register to 0, the conversion result is undefined. In addition to that, the unconverted ADi register may also become undefined. Do not use any ADi registers when setting the ADST bit to 0 by a program during A/D conversion.

27.7.8 A/D Open-Circuit Detection Assist Function

The conversion result in open-circuit depends on the external circuit. Use this function only after careful evaluation for the system. Do not use this function when VCC1 > VCC2.

When A/D conversion starts after changing the AINRST register, follow these procedures:

- (1) Change bits AINRST1 to AINRST0 in the AINRST register.
- (2) Wait for one cycle of φAD.
- (3) Set the ADST bit in the ADCON0 register to 1 (A/D conversion start).

27.7.9 **Detection of Completion of A/D Conversion**

In one-shot mode and single sweep mode, use the IR bit in the ADIC register to detect completion of A/D conversion. When not using interrupt, set the IR bit to 0 by a program after the detection. When 1 is written to the ADST bit in the ADCON0 register, the ADST bit becomes 1 (A/D conversion

start) after start processing time (refer to Table 27.7 "Cycles of A/D Conversion Item") elapses. When reading the ADST bit shortly after writing 1, 0 (A/D conversion stop) may be read.

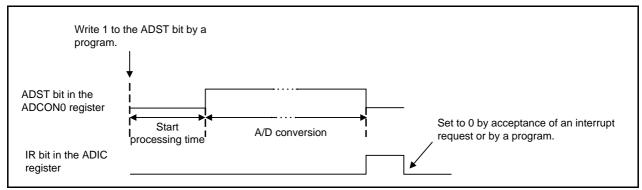


Figure 27.16 ADST Bit Operation

27.7.10 Register Settings

Set the CKS3 bit, and then set other A/D converter related registers. Also, after changing the CKS3 bit, set the A/D converter related registers again. Note that bits in the ADCON2 register and the CKS3 bit can be set simultaneously.

28. D/A Converter M16C/65 Group

28. D/A Converter

28.1 Introduction

The D/A converter consists of two independent 8-bit R-2R type D/A converters. Table 28.1 lists D/A Converter Specifications and Figure 28.1 shows D/A Converter Block Diagram.

Table 28.1 D/A Converter Specifications

Item	Specification		
D/A conversion method	R-2R		
Resolution	8 bits		

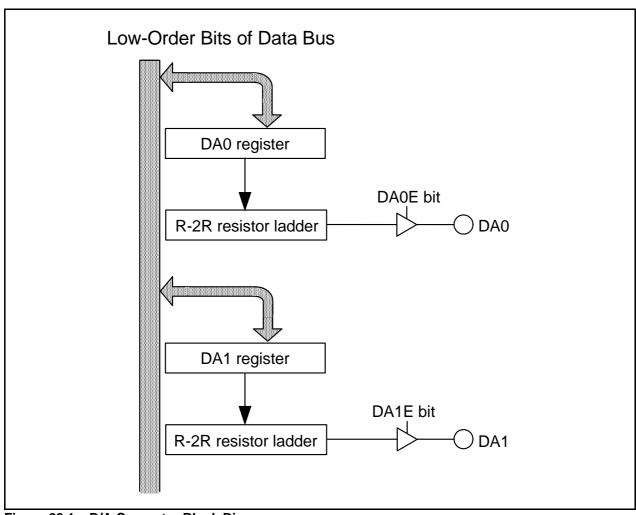


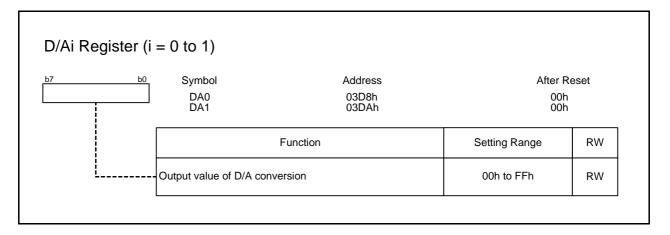
Figure 28.1 D/A Converter Block Diagram

Table 28.2 Input Pin

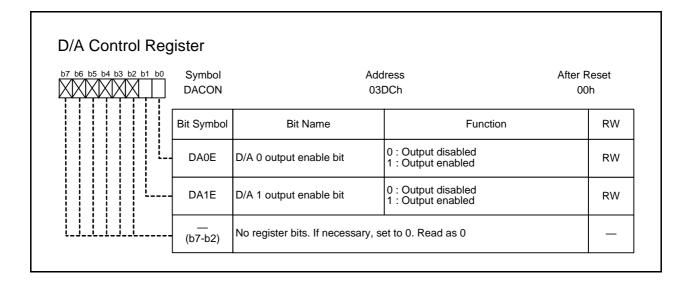
Pin Name	Input/Output	Function
DA0	Output (1)	D/A comparator output
DA1		

Note:

Set the direction bit of the ports sharing a pin to 0 (input mode). When the DAiE bit is se to 1, the corresponding port cannot be pulled up.


28. D/A Converter M16C/65 Group

28.2 Registers


Table 28.3 Register Structure

Address	Register Name	Register Symbol	After Reset
03D8h	D/A0 Register	DA0	00h
03DAh	D/A1 Register	DA1	00h
03DCh	D/A Control Register	DACON	00h

28.2.1 D/Ai Register (DAi) (i = 0 to 1)

D/A Control Register (DACON) 28.2.2

M16C/65 Group 28. D/A Converter

28.3 **Operations**

D/A conversion is performed by writing a value to the DAi register (i = 0 to 1). Output analog voltage (V) is determined by the value n (n = decimal) set in the DAi register.

$$V = VREF \times \frac{n}{256}$$
 (n = 0 to 255)

VREF: Reference voltage

Figure 28.2 shows D/A Converter Equivalent Circuit.

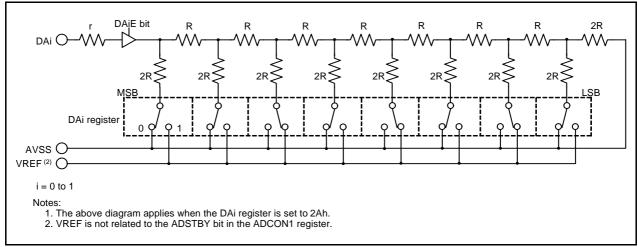


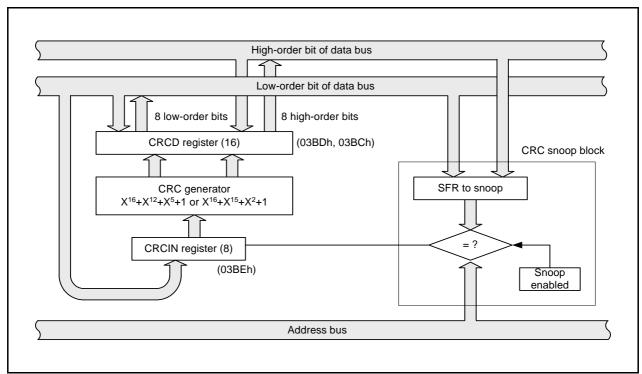
Figure 28.2 D/A Converter Equivalent Circuit

28.4 **Notes on D/A Converter**

Under development

Not Using D/A Converter 28.4.1

When the D/A converter is not used, set the DAiE bit (i = 0 to 1) to 0 (output disabled) and the DAi register to 00h in order to minimize unnecessary current consumption and prevent the flow of a current to R-2R resistor.


29. CRC Calculator

29.1 Introduction

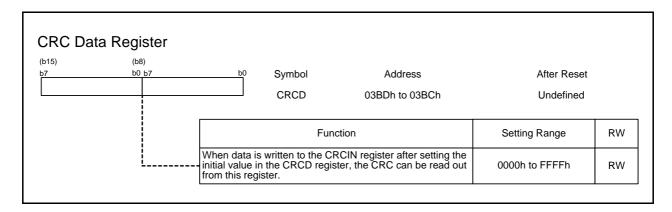
The CRC (Cyclic Redundancy Check) calculator detects errors in data blocks. This CRC calculator is enhanced by additional feature, CRC snoop, in order to monitor reads from and writes to a certain SFR address, and perform CRC calculations automatically on the data read from and data written to the aforementioned SFR address. Figure 29.1 shows CRC Calculator Block Diagram. Figure 29.2 shows CRC Operation (CRC-CCITT).

Table 29.1 CRC Calculator Specification

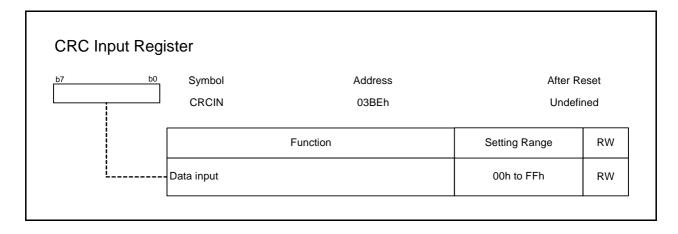
Item	Specification
Operation polynomial	CRC-CCITT $(X^{16} + X^{12} + X^5 + 1)$ or CRC-16 $(X^{16} + X^{15} + X^2 + 1)$
Selectable function	MSB/LSB selectable
	• CRC snoop

CRC Calculator Block Diagram Figure 29.1

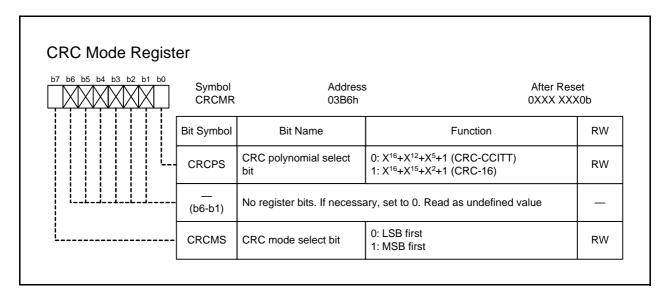
Under development M16C/65 Group

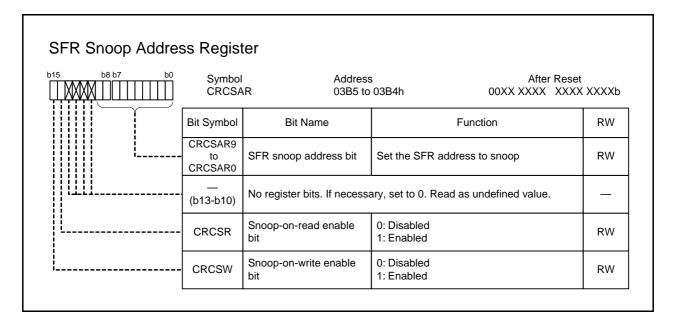

29. CRC Calculator

29.2 Registers


Table 29.2 Register Structure

Address	Register Name	Symbol	After Reset
03B4h	SFR Snoop Address Register	CRCSAR	XXXX XXXXb
03B5h			00XX XXXXb
03B6h	CRC Mode Register	CRCMR	0XXX XXX0b
03BCh	CRC Data Register	CRCD	XXh
03BDh			XXh
03BEh	CRC Input Register	CRCIN	XXh


CRC Data Register (CRCD) 29.2.1


CRC Input Register (CRCIN) 29.2.2

29.2.3 **CRC Mode Register (CRCMR)**

29.2.4 **SFR Snoop Address Register (CRCSAR)**

CRCSR (CRC Snoop On Read Enable Bit) (b14)

Do not set bits CRCSR and CRCSW to 1 simultaneously. When the CRCSW bit is set to 1, set the CRCSR bit to 0.

CRCSW (Snoop On Write Enable Bit) (b15)

Do not set bits CRCSR and CRCSW to 1 simultaneously. When the CRCSR bit is set to 1, set the CRCSW bit to 0.

29.3 **Operations**

29.3.1 **Basic Operation**

The CRC (Cyclic Redundancy Check) calculation detects an error in data blocks. The MCU uses two generator polynomials of CRC-CCITT ($X^{16} + X^{12} + X^5 + 1$) and CRC-16 ($X^{16} + X^{15} + X^2 + 1$) to generate CRC.

The CRC is 16-bit code generated for a given length of a data block in 8 bits unit. After setting the default value in the CRCD register, the CRC is stored in the CRCD register every time one-byte of data is written to the CRCIN register. CRC generation for one-byte data is completed in two CPU clock cycles.

29.3.2 **CRC Snoop**

CRC snoop monitors reads from and writes to a certain SFR address and performs CRC calculation on the data read from and written to the aforementioned SFR address automatically. Because CRC snoop recognizes writes to and reads from a certain SFR address as a trigger to perform CRC calculation automatically, there is no need to write data to the CRCIN register. All SFR addresses from 0020h to 03FFh are subject to the CRC snoop. The CRC snoop is useful to monitor writes to the UART TX buffer, and reads from the UART RX buffer.

To use this function, write a target SFR address to bits CRCSAR9 to CRCSAR0 in the CRCSAR register. Then, set the CRCSW bit in the CRCSAR register to 1 to enable snooping on writes to the target or the CRCSR bit in the CRCSAR register to 1 to enable snooping on reads from the target.

When setting the CRCSW bit to 1, and writing data to a target SFR address by CPU or DMA, CRC calculator stores the data into the CRCIN register and performs CRC calculation. Similarly, when setting the CRCSR bit to 1, and reading data in a target SFR address by CPU or DMA, CRC calculator stores the data into the CRCIN register and performs CRC calculation.

The CRC calculation is performed on one-byte at a time. When the target SFR address is accessed in word (16 bits), CRC is generated on the lower byte (one byte) of data.

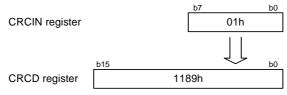
CRC calculation and setting procedure to generate CRC, 80C4h, with CRC-CCITT (LSB first selected)

CRC operation specification

CRC: remainder of a division, inverted value of the CRCIN register generator polynomial

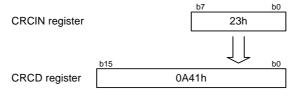
Generator polynomial: X¹⁶ + X¹² + X⁵ + 1 (1 0001 0000 0010 0001b)

Setting procedures


(1) Reverse the bit position of the value 80C4h by a program in 1-byte units.

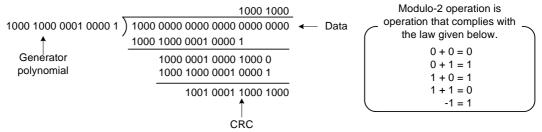
80h \rightarrow 01h, C4h \rightarrow 23h

(1) Write 0000h (initial value) to the CRCD register



(2) Write 01h (reversed value of 80h) to the CRCIN register

After two cycles, "1189h", which is a bitposition-reverse value of "9188h" (CRC for "80h") is stored in the CRCD register.


(3) Write 23h (reversed value of C4h) to the CRCIN register

After two cycles, "0A41h", which is a bitposition-reverse value of "8250h" (CRC for "80C4h") is stored in the CRCD register.

Details on CRC calculation

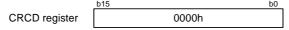
As shown in (3) above, bit position of 01h (0000 0001b) written to the CRCIN register is reversed and becomes 80h (1000 0000b). Add 1000 0000 0000 0000 0000 0000b, as 1000 0000b plus 16 digits, to 0000 0000 0000 0000 0000 0000b, as 0000 0000 0000 0000b plus 8 digits as the default value of the CRCD register to perform the modulo-2 division.

0001 0001 1000 1001b (1189h), the remainder 1001 0001 1000 1000b (9188h) with inversed bit position, can be read from the CRCD register.

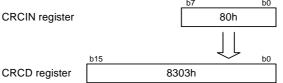
When going on to (4) above, 23h(0010 0011b) written in the CRCIN register is inversed and becomes C4h (1100 0100b). Add 1100 0100 0000 0000 0000 0000 0000b, as 1100 0100b plus 16 digits, to 1001 0001 1000 1000 0000 0000b, as 1001 0001 1000 1000b plus 8 digits as a remainder of (3) left in the CRCD register to perform the modulo-2 division. 0000 1010 0100 0001b (0A41h), the remainder 1000 0010 0101 0000b (8250h) with inversed bit position, can be read from the CRCD register.

CRC Operation (CRC-CCITT) Figure 29.2

CRC calculation and setting procedure to generate CRC, 80C4h with CRC-16 (MSB first selected)

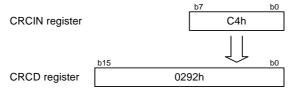

• CRC operation specification

the CRCIN register CRC: remainder of a division, generator polynomial


Generator polynomial: X¹⁶ + X¹⁵ +X² + 1(1 1000 0000 0000 0101b)

Setting procedures

(1) Write 0000h (initial value) to the CRCD register



(2) Write 80h to the CRCIN register

After two cycles, "8303h" (CRC for 80h) is stored into the CRCD register.

(3) Write C4h to the CRCIN register

After two cycles, "0292h" (CRC for 80C4h) is stored into the CRCD register.

Details on CRC calculation

As shown in (2) above, add 1000 0000 0000 0000 0000 0000b, as 80h (1000 0000b) written in the CRCIN register plus 16 digits, to 0000 0000 0000 0000 0000 0000 0000b, as 0000 0000 0000 bplus 8 digits as the default value of the CRCD register. Perform the modulo-2 division on the result. The remainder, 1000 0011 0000 0011b (8303h) can be read from the CRCD register.

When going on to (3) above, add 1100 0100 0000 0000 0000 0000b, as C4h (1100 0100b) written in the CRCIN register plus 16 digits, to 1000 0011 0000 0011 0000 0000b, as 8303h (1000 0011 0000 0011b) plus 8 digits as a remainder of (2) left in the CRCD register to perform the modulo-2 division.

The remainder, 0000 0010 1001 0010b (0292h) can be read from the CRCD register.

Figure 29.3 CRC Operation (CRC-16)

30. Flash Memory

Note •

P1, P4_4 to P4_7, P7_2 to P7_5, P9_1 of the 80-pin package have no external connections. There are no P11 to P14 in the 80-pin and 100-pin packages. For the 80-pin and 100-pin packages, do not use these pins for the entry of user boot function.

30.1 Introduction

Flash memory is used as ROM in this product. The flash memory in this chapter indicates the flash memory inside a microcomputer.

In this product, the flash memory can perform in three rewrite modes: CPU rewrite mode, standard serial I/O mode, and parallel I/O mode.

Table 30.1 lists Flash Memory Specifications (see to Table 1.1 to Table 1.6 "Specifications" for the items not listed in Table 30.1.

Table 30.1 Flash Memory Specifications

Item		Specification
Flash memory rewrite mode		3 modes (CPU rewrite, standard serial I/O, and parallel I/O)
Erase block	Program ROM 1	See Figure 30.1 "Flash Memory Block Diagram".
	Program ROM 2	1 block (16 Kbytes)
	Data flash	2 blocks (4 Kbytes each)
Program method		In units of 2 words
Erase method		Block erase
Program and erase of	control method	Program and erase controlled by software command
Suspend function (ur	nder review)	Program suspend and erase suspend
Protect method		A lock bit protects each block
Number of command	ds	8 commands
Program and erase	Program ROM 1 and	1,000 times ⁽¹⁾
cycles	program ROM 2	
	Data flash	10,000 times ⁽¹⁾
Data retention		20 years
Flash memory rewrite	e disable function	Parallel I/O mode
		ROM code protect function
		Standard serial I/O mode
		ID code check function, forced erase function, and standard serial I/O
		mode disable function
User boot function		User boot mode

Note:

Definition of program and erase cycles

The program and erase cycles is the number of erase operations performed on a per-block basis. For example, assume a case where a 4-Kbyte block is programmed in 1,024 operations, writing two words at a time, and erased thereafter. In this case, the block is reckoned as having been programmed and erased once.

If the program and erase cycles are 1,000 times, each block can be erased up to 1,000 times.

Flash Memory Rewrite Modes Overview **Table 30.2**

Flash Memory Rewrite Mode	CPU Rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode
Function	The flash memory is rewritten when the CPU executes software commands. EW0 mode: Rewritable in areas other than the flash memory EW1 mode: Rewritable in the flash memory	The flash memory is rewritten using a dedicated serial programmer. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2: Two-wire clock asynchronous serial I/O	The flash memory is rewritten using a dedicated parallel programmer.
Areas which can be rewritten	Program ROM 1, program ROM 2, and data flash	Program ROM 1, program ROM 2, and data flash	Program ROM 1, program ROM 2, and data flash
ROM programmer	None	Serial programmer	Parallel programmer

M16C/65 Group 30. Flash Memory

30.2 **Memory Map**

The flash memory is used as ROM in this product. The flash memory comprises program ROM 1, program ROM 2, and data flash. Figure 30.1 shows a Flash Memory Block Diagram.

The flash memory is divided into several blocks, each of which can be protected (locked) from programming or erasing. The flash memory can be rewritten in CPU rewrite, standard serial I/O, and parallel I/O modes.

If the size of program ROM 1 is over 512 Kbytes, blocks 8 to 11 can be used when the IRON bit in the PRG2C register is 1 (program ROM 1 addresses 40000h to 7FFFFh enabled).

Program ROM 2 can be used when the PRG2C0 bit in the PRG2C register is set to 0 (program ROM 2 enabled). Program ROM 2 includes a user boot code area.

Data flash can be used when the PM10 bit in the PM1 register is set to 1 (0E000h to 0FFFFh: data flash). Data flash is divided into block A and block B.

Table 30.3 lists the differences among program ROM 1, program ROM 2, and data flash.

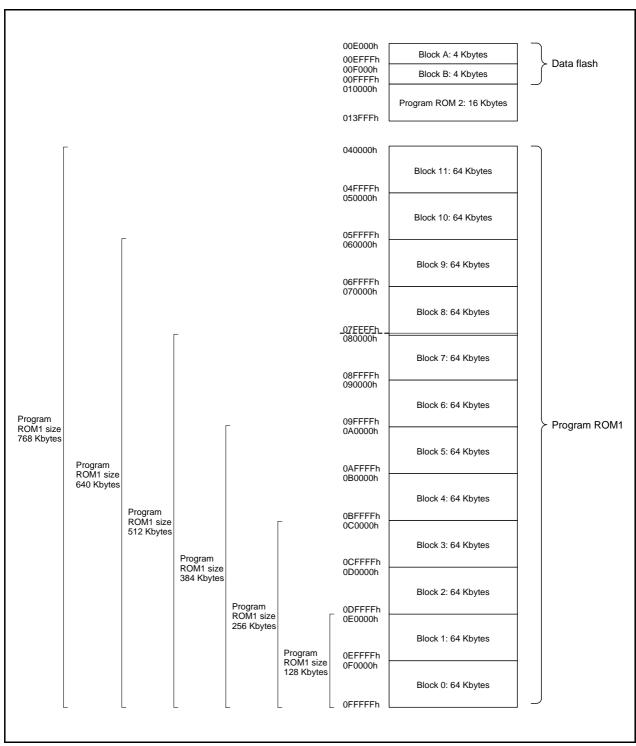
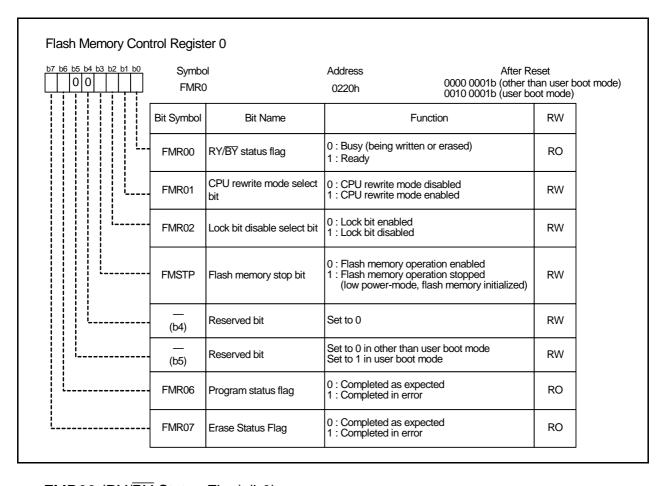


Figure 30.1 Flash Memory Block Diagram

Table 30.3 Program ROM 1, Program ROM 2, and Data Flash

Item	Flash Memory			
item	Program ROM 1	Program ROM 2	Data Flash	
Program and erase cycles	1,000 times		10,000 times	
Forced erase function	Enabled		Disabled	
Frequency limit when reading	No		Yes	


M16C/65 Group 30. Flash Memory

30.3 Registers

Table 30.4 Register Structure

Address	Register Name	Register Symbol	After Reset
0220h	Flash Memory Control Register 0	FMR0	0000 0001b (Other than user boot mode) 0010 0001b (User boot mode)
0221h	Flash Memory Control Register 1	FMR1	00X0 XX0Xb
0222h	Flash Memory Control Register 2	FMR2	XXXX 0000b
0223h	Flash Memory Control Register 3	FMR3	XXXX 0000b
0230h	Flash Memory Control Register 6	FMR6	XX0X XX00b

Flash Memory Control Register 0 (FMR0) 30.3.1

FMR00 (RY/BY Status Flag) (b0)

This bit indicates the flash memory operating state.

Condition to become 0:

During the following commands execution:

Program, block erase, lock bit program, read lock bit status, and block blank check

Condition to become 1:

Other than those above.

FMR01 (CPU Rewrite Mode Select Bit) (b1)

Commands can be accepted by setting the FMR01 bit to 1 (CPU rewrite mode enabled).

To set the FMR01 bit to 1, write 0 and then 1 in succession. Make sure no interrupts or DMA transfers will occur before writing 1 after writing 0.

While in EW0 mode, write to this bit from a program in an area other than flash memory.

Enter read array mode, and then set this bit to 0.

FMR02 (Lock Bit Disable Select Bit) (b2)

The lock bit is disabled by setting the FMR02 bit to 1 (lock bit disabled) (Refer to 30.8.2 "Data Protect Function").

The FMR02 bit does not change the lock bit data but disables the lock bit function. If an erase command is executed when the FMR02 bit is set to 1, the lock bit data status changes from 0 (locked) to 1 (unlocked) after command execution is completed.

To set the FMR02 bit to 1, write 0 and then 1 in succession when the FMR01 bit is 1. Make sure no interrupts or DMA transfers will occur before writing 1 after writing 0.

FMSTP (Flash Memory Stop Bit) (b3)

The FMSTP bit resets flash memory control circuits and minimizes current consumption in the flash memory. Access to the internal flash memory is disabled when the FMSTP bit is set to 1 (flash memory operation stopped). Set the FMSTP bit by a program located in an area other than the flash memory. Set the FMSTP bit to 1 under the following condition.

• A flash memory access error occurs while erasing or programming in EW0 mode (the FMR00 bit does not switch back to 1 (ready)).

Use the following steps to rewrite the FMSTP bit.

To stop the flash memory:

- (1)Set the FMSTP bit to 1.
- (2) Wait the wait time to stabilize flash memory circuit (tps).

To restart the flash memory:

- (1)Set the FMSTP bit to 0.
- (2) Wait the wait time to stabilize flash memory circuit (tps).

The FMSTP bit is valid when the FMR01 bit is 1 (CPU rewrite mode). If the FMR01 bit is 0, although the FMSTP bit can be set to 1 by writing 1, the flash memory is neither placed in low-power mode nor initialized.

When the FMR23 bit is set to 1 (low-current consumption read mode enabled), do not set the FMSTP bit in the FMR0 register to 1 (flash memory operation stopped). Also, when the FMSTP bit is set to 1, do not set the FMR23 bit to 1.

FMR06 (Program Status Flag) (b6)

This bit indicates the auto-program operation state.

Condition to become 0:

Execute the clear status command.

Condition to become 1:

• Refer to 30.8.5.4 "Full Status Check".

The following commands cannot be accepted when the FMR06 bit is 1:

Program, block erase, lock bit program, read lock bit status, and block blank check.

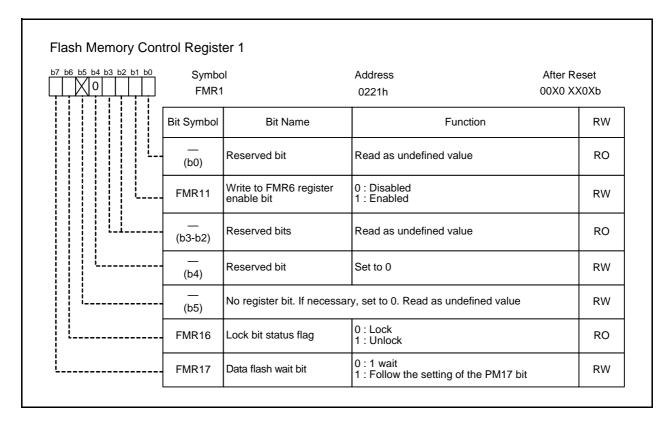
FMR07 (Erase Status Flag) (b7)

This bit indicates the auto-erase operation state.

Condition to become 0:

Execute the clear status command

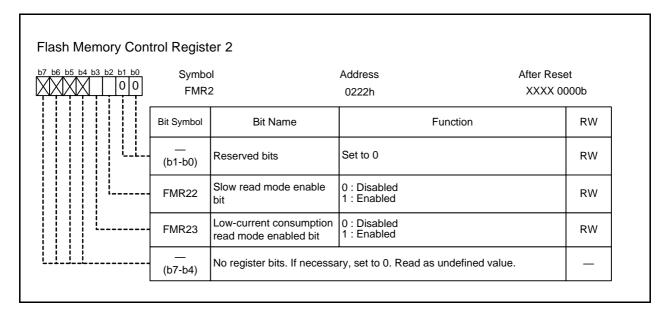
Condition to become 1:


• Refer to 30.8.5.4 "Full Status Check".

The following commands cannot be accepted when the FMR07 bit is 1:

Program, block erase, lock bit program, read lock bit status, and block blank check.

30.3.2 Flash Memory Control Register 1 (FMR1)

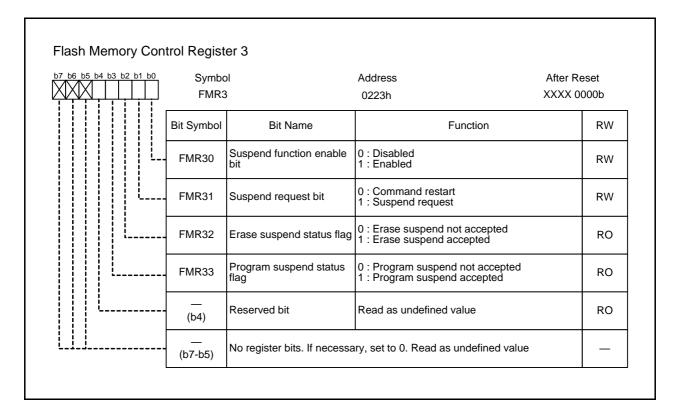

FMR16 (Lock Bit Status Flag) (b6)

This bit indicates the execution result of the read lock bit status command.

FMR17 (Data Flash Wait Bit) (b7)

This bit is used to select the number of wait states for data flash.

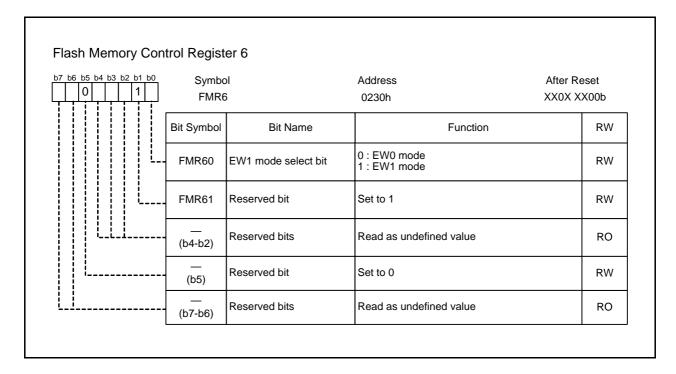
30.3.3 Flash Memory Control Register 2 (FMR2)


FMR22 (Slow Read Mode Enable Bit) (b2)

Refer to 9.4 "Power Control in Flash Memory".

FMR23 (Low-current Consumption Read Mode Enable Bit) (b3)

Refer to 9.4 "Power Control in Flash Memory".


30.3.4 Flash Memory Control Register 3 (FMR3)

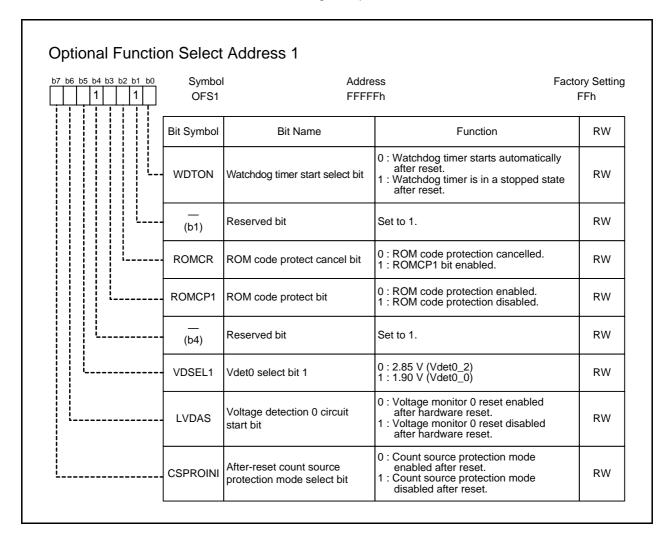
FMR30 (Suspend Function Enable Bit) (b0)

To set the FMR30 bit to 1, write 0 and then 1 in succession. Make sure no interrupts or DMA transfers will occur before writing 1 after writing 0.

30.3.5 Flash Memory Control Register 6 (FMR6)

FMR60 (EW1 Mode Select Bit) (b0)

To set the FMR60 bit to 1, write 1 when both bits FMR01 and FMR11 are 1.


FMR61 (b1)

Set the FMR61 bit to 1 when using CPU rewrite mode.

Optional Function Select Address 1 (OFS1) 30.4

In an option function select area, the MCU state after reset and the function to prevent rewrite in parallel I/ O mode are selected.

The option function select area is not a special function register (SFR), and therefore cannot be rewritten by a program. Set a proper value when writing a program in the flash memory. The whole option function select area is set to FFh when the block including the option function select area is erased.

ROMCR (ROM Code Protect Disable Bit) (b2) ROMCP1 (ROM Code Protect Bit) (b3)

These bits are used to inhibit the flash memory from being read or rewritten during parallel I/O mode.

Table 30.5 ROM Code Protect

Bit Setting		ROM Code Protect
ROMCR bit	ROMCP1 bit	NOW Code Protect
0	0	Disabled
0	1	Disabled
1	0	Enabled
1	1	Disabled

30.5 **Flash Memory Rewrite Disable Function**

This function inhibits the flash memory from being read, written, and erased. The details are shown for each mode.

Parallel I/O mode

ROM code protect function

Standard serial I/O mode

ID code check function, forced erase function, and standard serial I/O mode disable function

30.6 **Boot Mode**

A hardware reset occurs while a low-level signal is applied to the P5_5 pin and a high-level signal is applied to pins CNVSS and P5_0. After reset, the MCU enters boot mode. In boot mode, user boot mode or standard serial I/O mode is selected in accordance with the content of a user boot code area.

User Boot Function 30.7

User boot mode can be selected by the status of a port when the MCU starts in boot mode. Table 30.6 shows the User Boot Function Specifications.

Table 30.6 User Boot Function Specifications

Item	Specification
Entry pin	None or select a port from P0 to P14
	Select high or low
User boot start address	Address 10000h (the start address of program ROM 2)

Set "UserBoot" in ASCII code to the addresses 13FF0h to 13FF7h in the user boot code area, select a port for entry from addresses 13FF8h to 13FF9h and 13FFAh, and select the start level with the address 13FFBh. After starting boot mode, user boot mode or standard serial I/O mode is selected in accordance with the level of the selected port.

In addition, if addresses 13FF0h to 13FF7h are set to "UserBoot" in ASCII code and addresses 13FF8h to 13FFBh are set to "00h", user boot mode is selected.

In user boot mode, the program of address 10000h (the start address of program ROM2) is executed. The content of the OFS1 address is valid.

Figure 30.2 shows User Boot Code Area, Table 30.7 lists Start Mode (When the Port Pi_j is Selected for Entry) (1), Table 30.8 lists "UserBoot" in ASCII Code, and Table 30.9 lists Addresses of Selectable Ports for Entry.

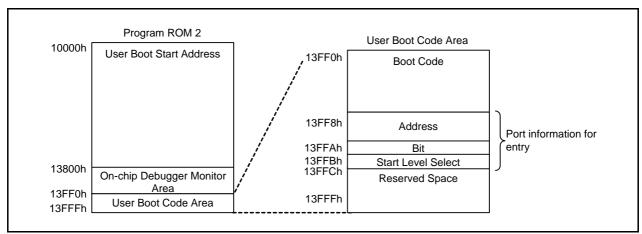


Figure 30.2 User Boot Code Area

Table 30.7 Start Mode (When the Port Pi_j is Selected for Entry) (1)

Boot Code	,		Port	Start Mode	
(13FF0h to 13FF7h)	Address (13FF8h to 13FF9h)	Bit (13FFAh)	Start level Select (13FFBh)	Pi_j input level	
"UserBoot" in	0000h	00h	00h	_	User boot mode
ASCII code (2)	Pi register 00h to 07h address (3) (value of j)	00h	high	Standard serial I/O mode	
			low	User boot mode	
	Pi register	00h to 07h	01h	high	User boot mode
	address (3)	(value of j)		low	Standard serial I/O mode
Other than "UserBoot" in ASCII code	_	_	_	_	Standard serial I/O mode

i=0 to 14, j=0 to 7 (when i=14, j=0, 1)

Notes:

- 1. Do not use the combinations of values not listed in Table 30.7.
- 2. Refer to Table 30.8 ""UserBoot" in ASCII Code"
- Refer to Table 30.9 "Addresses of Selectable Ports for Entry"

Table 30.8 "UserBoot" in ASCII Code

Address	ASCII Code
13FF0h	55h (upper-case U)
13FF1h	73h (lower-case s)
13FF2h	65h (lower-case e)
13FF3h	72h (lower-case r)
13FF4h	42h (upper-case B)
13FF5h	6Fh (lower-case o)
13FF6h	6Fh (lower-case o)
13FF7h	74h (lower-case t)

Table 30.9 Addresses of Selectable Ports for Entry

Port	Address	Port	Address	Port	Address
P0	03E0h	P6	03ECh	P12	03F8h
P1	03E1h	P7	03EDh	P13	03F9h
P2	03E4h	P8	03F0h	P14	03FCh
P3	03E5h	P9	03F1h		
P4	03E8h	P10	03F4h	-	-
P5	03E9h	P11	03F5h		

CPU Rewrite Mode 30.8

In CPU rewrite mode, the flash memory can be rewritten when the CPU executes software commands. Program ROM 1, program ROM 2, and data flash can be rewritten with the MCU mounted on a board and without using a ROM programmer.

The program and block erase commands are executed only in individual block areas of program ROM 1, program ROM 2, and data flash.

Erase-write 0 mode (EW0 mode) and erase-write 1 mode (EW1 mode) are available in CPU rewrite mode. Table 30.10 lists the differences between EW0 mode and EW1 mode.

Table 30.10 EW0 Mode and EW1 Mode

Item	EW0 Mode	EW1 Mode
Operating mode	Single-chip mode	Single-chip mode
	Memory expansion mode	
Rewrite control	Program ROM 1	Program ROM 1
Program allocatable	Program ROM 2	Program ROM 2
area	External area	
Rewrite Control	The rewrite control program must be	The rewrite control program can be
Program Executable	transferred to an area other than the	executed in program ROM 1 and
Area	flash memory (e.g., RAM) before being	program ROM 2.
	executed.	
Rewritable area	Program ROM 1	Program ROM 1
	Program ROM 2	Program ROM 2
	Data flash	Data flash
		Excluding blocks with the rewrite control
		program
Software command	None	Program and block erase commands
restriction		Do not execute in a block with the
		rewrite control program.
		 Read status register command
		Do not execute.
Mode after program	Read status register mode	Read array mode
or erase		
State during auto	Hold state is not maintained.	Hold state is maintained. (I/O ports
write and auto erase		maintains the state before the command
		execution) (1)
Flash memory	 Read bits FMR00, FMR06, and 	Read bits FMR00, FMR06, and FMR07
status detection	FMR07 in the FMR0 register by a	in the FMR0 register by a program.
	program.	
	Execute the read status register	
	command, and then read bits SR7,	
	SR5 and SR4 in the status register.	

Note:

Do not generate an interrupt (except NMI interrupt) or start a DMA transfer.

M16C/65 Group 30. Flash Memory

30.8.1 **Operating Speed**

Set a CPU clock frequency of 10 MHz or less by the CM06 bit in the CM0 register and bits CM17 and CM16 in the CM1 register before entering CPU rewrite mode (EW0 or EW1 mode). Also, set the PM17 bit in the PM1 register to 1 (wait state).

30.8.2 **Data Protect Function**

Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit to 0 (lock bit enabled). The lock bit allows blocks to be individually protected (locked) against programming and erasure. This prevents data from being inadvertently written to or erased from the flash memory. Table 30.11 lists Lock Bit and Block State.

Table 30.11 Lock Bit and Block State

FMR02 Bit in the FMR0 Register	Lock Bit	Block State
0 (enabled)	0 (locked)	Protected against programming and erasure
	1 (unlocked)	Can be programmed or erased
1 (disabled)	0 (locked)	Can be programmed or erased
	1 (unlocked)	

Condition to become 0:

Execute the lock bit command

Condition to become 1:

• Execute the block erase command while the FMR02 bit in the FMR0 register is set to 1 (lock bit disabled).

If the block erase command is executed while the FMR02 bit is set to 1, the target block is erased regardless of lock bit status. The lock bit data can be read by the read lock bit status command. Refer to 30.8.4 "Software Command", for details on each command.

Suspend Function (under review) 30.8.3

The suspend function suspends automatic programming and erasure. It can be used for an interrupt operation because program ROM1, program ROM2, and data flash can be read while automatic programming or erasure is suspended. Enable the interrupts used to enter suspend mode beforehand. The program command, erase command, and lock bit program command are subjects for suspend. Suspend operation is the same for the program command and lock bit program command, so both commands are described together as program suspend.

Do not suspend again in suspend mode. Table 30.12 lists Operation after the Program, Erase, or Lock Bit Program Command is Issued during Suspend.

Operation after the Program, Erase, or Lock Bit Program Command is Issued during Table 30.12 Suspend

		Operation					
Suspend	Command	Blocks erased or programmed before the suspend mode is entered	Other blocks				
Erase	Program command	Commands are not executed.	Program command is executed.				
suspend		Command sequence error occurs.	Program suspend does not start or				
			an error does not occur even				
			when the FMR31 bit is set to 1				
			(suspend request).				
	Erase command	Commands are not executed. Command sequence error occurs.					
	Lock bit program	Commands are not executed.	Lock bit program can be executed.				
	command	Command sequence error occurs.					
Program	Program command	Commands are not executed. Comm	and sequence error occurs.				
suspend	Erase command						
	Lock bit program command						

Software Command 30.8.4

Table 30.13 and show Software Commands. Read or write commands and data in 16-bit units. When command code is written, the 8 high-order bits (D15 to D8) are ignored.

Table 30.13 Software Commands (Program ROM 1 is not over 512 Kbytes)

	Fir	First Bus Cycle			Second Bus Cycle			Third Bus Cycle		
Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)	
Read array	Write	Х	xxFFh							
Read status register	Write	Х	xx70h	Read	Х	SRD				
Clear status register	Write	Х	xx50h							
Program	Write	WA	xx41h	Write	WA	WD0	Write	WA	WD1	
Block erase	Write	Х	xx20h	Write	BA	xxD0h				
Lock bit program	Write	BA	xx77h	Write	BA	xxD0h				
Read lock bit status	Write	Х	xx71h	Write	BA	xxD0h				
Block blank check	Write	х	xx25h	Write	BA	xxD0h				

SRD : Data in the status register (D7 to D0)

WA : Write address (Set the end of the address to 0, 4, 8, or C (hexadecimal).)

WD0 : Write data low-order word (16 bits) : Write data high-order word (16 bits) WD1 : Highest-order block address (even address) BA

: Any even address in program ROM 1, program ROM 2, or data flash Х

: Eight high-order bits of command code (ignored) XX

Table 30.14 Software Commands (Program ROM 1 is over 512 Kbytes)

	Fi	rst Bus Cy	cle	Sec	Second Bus Cycle		Third Bus Cycle			Fourth Bus Cycle		
Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)
Read array	Write	B0-7	xxFFh	Write	B8	xxFFh	-	-	-	-	-	-
Read status register	Write	ВА	xx70h	Read	Х	SRD	-	-	-	-	-	-
Clear status register	Write	B0-7	xx50h	Write	B8	xx50h	-	-	-	-	-	-
Program	Write	BX	xx70h	Write	WA	xx41h	Write	WA	WD0	Write	WA	WD1
Block erase	Write	BX	xx70h	Write	BA	xx20h	Write	BA	xxD0h	-	-	-
Lock bit program	Write	ВА	xx77h	Write	ВА	xxD0h	-	-	-	-	-	-
Read lock bit status	Write	ВА	xx71h	Write	BA	xxD0h	-	-	-	-	-	-
Block blank check	Write	BX	xx70h	Write	ВА	xx25h	Write	ВА	xxD0h	-	-	-

SRD: Data in the status register (D7 to D0)

WA: Write address (Make sure 0, 4, 8 or C (hexadecimal) comes at the end of the write address, e.g. xxxx0h.)

WD0: Write data low-order word (16 bits) WD1: Write data high-order word (16 bits)

BA : Highest-order block address (even address)

: Any even address in program ROM 1, program ROM 2, or data flash B0-7: Any even address in blocks 0 to 7, program ROM 2, or data flash

B8 : Any even address in blocks after 8.

xx : Eight high-order bits of command code (ignored)

BX : Any even address in blocks after block 8 when the target blocks are blocks 0 to 7, program ROM 2, or data flash. Any even address in blocks 0 to 7, program ROM 2, or data flash when the target blocks are blocks after 8.

Software commands when program ROM1 is not over 512 Kbytes are described below. Refer to 30.8.3 "Suspend Function (under review)" for program, block erase, and lock bit program commands when using suspend function.

30.8.4.1 **Read Array Command**

The read array command is used to read the flash memory.

By writing the command code xxFFh in the first bus cycle, the flash memory enters read array mode. The content of the specified address can be read in 16-bit units by entering the address to be read after the next bus cycle.

The flash memory remains in read array mode until another command is written. Therefore, the contents of multiple addresses can be read consecutively.

30.8.4.2 **Read Status Register Command**

The read status register command is used to read the status register.

By writing the command code xx70h in the first bus cycle, the status register can be read in the second bus cycle. (Refer to 30.8.5 "Status Register"). To read the status register, read an even address in the program ROM 1, program ROM 2, or data flash.

Do not execute this command in EW1 mode.

30.8.4.3 **Clear Status Register Command**

The clear status register command is used to clear the status register.

By writing the command code xx50h in the first cycle, bits FMR07 and FMR06 in the FMR0 register are set to 00b, and bits SR5 and SR4 in the status register are set to 00b.

30.8.4.4 **Program Command**

The program command is used to write two words (4 bytes) of data to the flash memory.

By writing xx41h in the first bus cycle and data to the write address in the second and third bus cycles, auto-program operation (data program and verify) is started. Make sure 0, 4, 8 or C (hexadecimal) comes at the end of the write address, e.g. xxxx0h.

The FMR00 bit in the FMR0 register indicates whether the auto-program operation has been completed. The FMR00 bit is set to 0 (busy) during the auto-program operation and to 1 (ready) after the auto-program operation is completed.

After the auto-program operation is completed, the FMR06 bit in the FMR0 register indicates whether or not the auto-program operation has been completed as expected. (Refer to 30.8.5.4 "Full Status Check").

Do not rewrite the addresses already programmed. Figure 30.3 shows a Flow Chart of the Program Command Programming (Suspend Function Disabled).

The lock bit protects individual blocks from being programmed inadvertently. (Refer to 30.8.2 "Data Protect Function".)

In EW1 mode, do not execute this command on a block to which the rewrite control program is allocated.

In EW0 mode, the flash memory enters read status register mode as soon as the auto-program operation starts. The status register can be read. The SR7 bit in the status register is set to 0 at the same time the auto-program operation starts. It is set to 1 when the auto-program operation is completed. The flash memory remains in read status register mode until the read array command is written. After the auto-program operation is completed, the status register indicates whether or not the auto-program operation has been completed as expected.

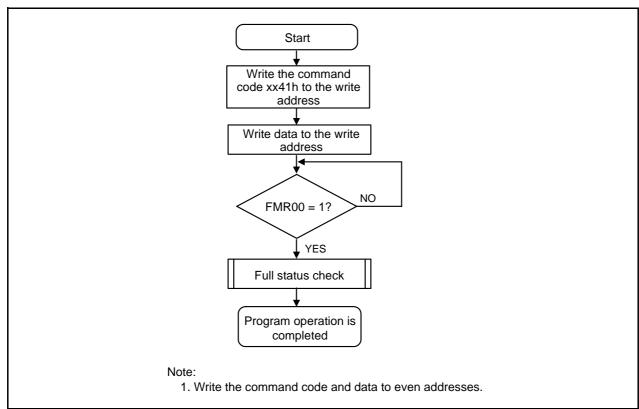


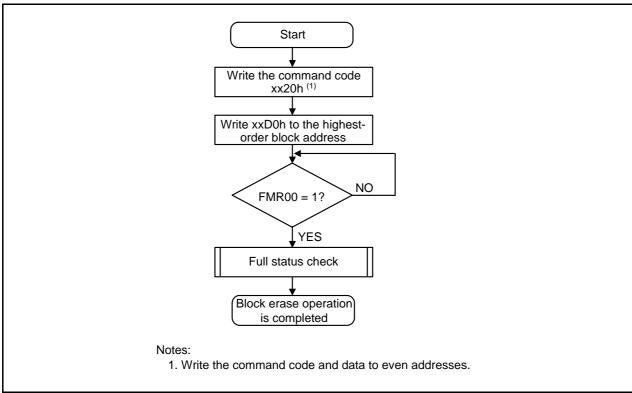
Figure 30.3 Program Command (Suspend Function Disabled)

30.8.4.5 **Block Erase Command**

By writing xx20h in the first bus cycle and xxD0h to the highest-order even address of a block in the second bus cycle, an auto-erase operation (erase and verify) is started on the specified block.

The FMR00 bit in the FMR0 register indicates whether the auto-erase operation has been completed. The FMR00 bit is set to 0 (busy) during the auto-erase operation and to 1 (ready) when the autoerase operation is completed.

After the auto erase operation is completed, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected. (Refer to 30.8.5.4 "Full Status


Figure 30.4 shows a Flow Chart of the Block Erase Command Programming (Suspend Function Disabled).

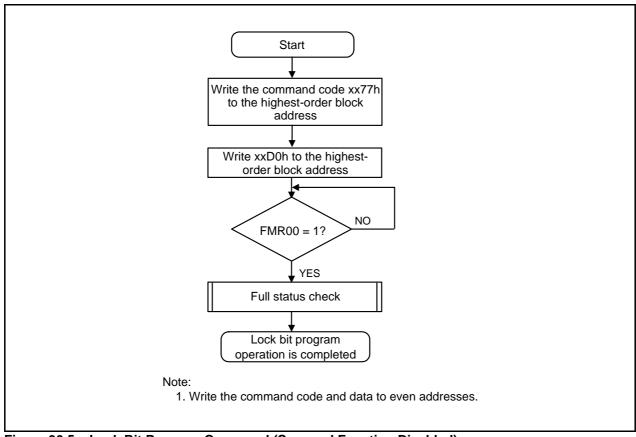
The lock bit protects individual blocks from being erased inadvertently. (Refer to 30.8.2 "Data Protect Function".)

In EW1 mode, do not execute this command on the block to which the rewrite control program is allocated.

In EW0 mode, the flash memory enters read status register mode as soon as the auto-erase operation starts. The status register can be read. The SR7 bit in the status register is set to 0 at the same time an auto erase operation starts. It is set to 1 when the auto-erase operation is completed. The flash memory remains in read status register mode until the read array command or read lock bit status command is written.

If an erase error occurs, execute the clear status register command and then block erase command at least three times until the erase error is not generated.

Block Erase Command (Suspend Function Disabled) Figure 30.4


30.8.4.6 **Lock Bit Program Command**

The lock bit program command is used to set the lock bit for a specified block to 0 (locked).

By writing xx77h in the first bus cycle and xxD0h to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to 0. The address value specified in the first bus cycle must be the same highest-order address of a block specified in the second bus cycle. Figure 30.5 shows a Flow Chart of the Lock Bit Program Command Programming (Suspend Function Disabled). Execute the read lock bit status command to read the lock bit state (lock bit data).

The FMR00 bit in the FMR0 register indicates whether a lock bit program operation has been

Refer to 30.8.2 "Data Protect Function", for details on lock bit functions and how to set it to 1 (unlocked).

Lock Bit Program Command (Suspend Function Disabled) Figure 30.5

30.8.4.7 **Read Lock Bit Status**

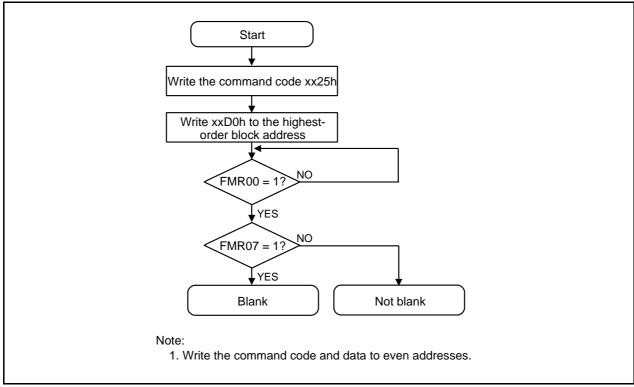
The read lock bit status command is used to read the lock bit state of a specified block.

By writing xx71h in the first bus cycle and xxD0h to the highest-order even address of a block in the second bus cycle, the FMR16 bit in the FMR1 register stores information on the lock bit status of a specified block. Read the FMR16 bit after the FMR00 bit in the FMR0 register is set to 1 (ready).

Figure 30.6 shows a Flow Chart of the Read Lock Bit Status Command Programming.

Figure 30.6 **Read Lock Bit Status Command**

Block Blank Check Command 30.8.4.8


The block blank check command is used to check whether or not a specified block is blank (state after erase).

By writing xx25h in the first bus cycle and xxD0h in the second bus cycle to the highest-order even address of a block, the check result is stored in the FMR07 bit in the FMR0 register. Read the FMR07 bit after the FMR00 bit in the FMR0 register is set to 1 (ready).

The block blank check command is valid for unlocked blocks.

If the block blank check command is executed on a block whose lock bit is 0 (locked), the FMR07 bit (SR5) is set to 1 (not blank) regardless of the FMR02 bit state.

Figure 30.7 shows a Flow Chart of the Block Blank Check Command Programming.

Block Blank Check Command Figure 30.7

M16C/65 Group

30.8.5 **Status Register**

The status register indicates flash memory operating state and whether or not an erase or program operation has completed as expected.

Bits FMR00, FMR06, and FMR07 in the FMR0 register indicate status register states.

In EW0 mode, the status register can be read in one of the following cases.

- Any even address in program ROM 1, program ROM 2, or data flash is read after the read status register command is written.
- Any even address in the program ROM 1, program ROM 2, or data flash is read from when the program command, block erase command, lock bit program command, or block blank check command is executed until when the read array command is executed.

Table 30.15 shows Status Register.

Table 30.15 Status Register

Bits in Status	Bit in FMR0	Status	Defir	Value after		
Register	Register	J.a.u.c	0	1	Reset	
SR0 (D0)	-	Reserved bit	-	-	-	
SR1 (D1)	-	Reserved bit	-	-	-	
SR2 (D2)	-	Reserved bit	-	-	-	
SR3 (D3)	-	Reserved bit	-	-	-	
SR4 (D4)	FMR06	Program status	Completed as expected	Completed in error	0	
SR5 (D5)	FMR07	Erase status	Completed as expected	Completed in error	0	
SR6 (D6)	-	Reserved bit	-	-	-	
SR7 (D7)	FMR00	Sequencer status	Busy	Ready	1	

D0 to D7: The data buses read when the read status register command is executed.

Sequencer Status (Bits SR7 and FMR00) 30.8.5.1

The sequencer status indicates flash memory operating state.

Condition to become 0:

• During the following commands execution:

Program, block erase, lock bit program, read lock bit status, block blank check

Condition to become 1:

Other than those above

30.8.5.2 Erase Status (Bits SR5 and FMR07)

The erase status indicates auto erase state.

Condition to become 0:

Execute the clear status command

Condition to become 1:

• Refer to 30.8.5.4 "Full Status Check".

When the FMR07 bit is 1, the following commands cannot be accepted:

Program, block erase, lock bit program, read lock bit status, block blank check

Program Status (Bits SR4 and FMR06) 30.8.5.3

The program status indicates auto-program operating state.

Condition to become 0:

Execute the clear status command

Condition to become 1:

• Refer to 30.8.5.4 "Full Status Check".

When the FMR06 bit is 1, the following commands cannot be accepted:

Program, block erase, lock bit program, read lock bit status, block blank check

30.8.5.4 **Full Status Check**

If an error occurs, bits FMR06 and FMR07 in the FMR0 register are set to 1, indicating the occurrence of an error. Therefore, the execution results can be confirmed by checking these status bits (full status check).

Table 30.16 lists Errors and FMR0 Register States and Figure 30.8 shows Full Status Check and Handling Procedure for Errors.

Table 30.16 Errors and FMR0 Register States

FMR00 Register					
(Status Regis	ter) State	Error	Error Occurrence Conditions		
FMR07 bit	FMR06 bit	EIIOI	Effor Occurrence Conditions		
(SR5 bit)	(SR4 bit)				
		Command Sequence	Command is written incorrectly.		
1	4	error	Invalid data (data other than xxD0h or xxFFh)		
1	ı		is written in the second bus cycle of the lock bit		
			program or block erase command. (1)		
		Erase error	• The block erase command is executed on a		
	0		locked block. (2)		
			The block erase command is executed on an		
1			unlocked block, but the auto-erase operation is		
			not completed as expected.		
			The block blank check command is executed,		
			and the check result is not blank.		
		Program error	The program command is executed on a		
	1		locked block. (2)		
0			The program command is executed on an		
			unlocked block, but auto-program operation is		
			not completed as expected.		
			The lock bit program command is executed,		
			but the lock bit is not written as expected. (2)		

Notes:

- The flash memory enters read array mode by writing command code xxFFh in the second bus cycle of the command. The command code written in the first bus cycle becomes invalid.
- 2. When the FMR02 bit is set to 1 (lock bit disabled), no error occurs even under the conditions above.

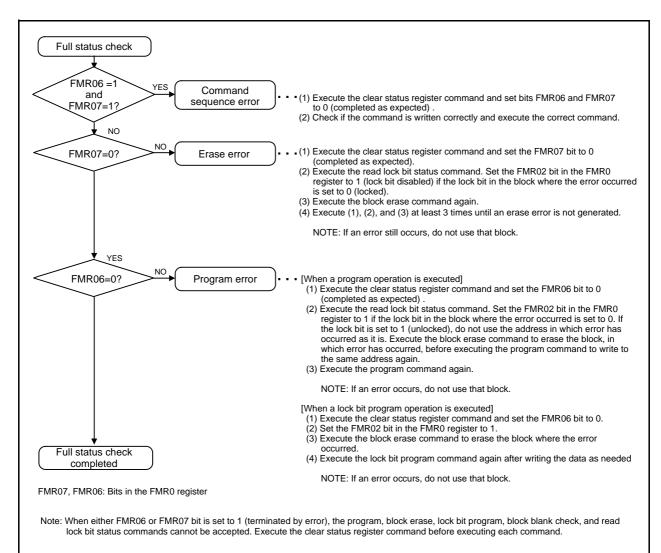
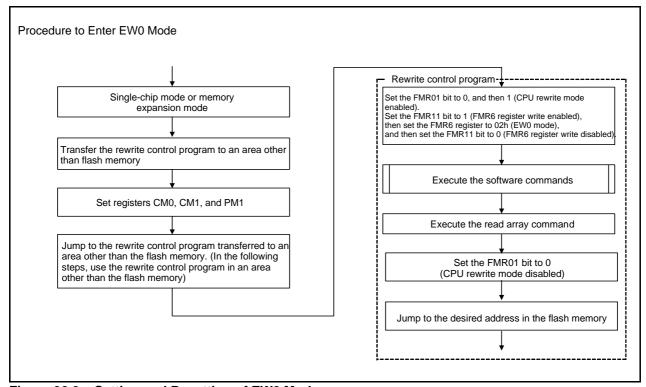



Figure 30.8 Full Status Check and Handling Procedure for Errors

30.8.6 **EW0 Mode**

The MCU enters CPU rewrite mode when the FMR01 bit in the FMR0 register is set to 1 (CPU rewrite mode enabled) and is ready to accept commands. EW0 mode is selected by setting the FMR60 bit in the FMR6 register to 0. Figure 30.9 shows Setting and Resetting of EW0 Mode

Software commands control programming and erasing. The FMR0 register or status register indicates whether a program or erase operation is completed as expected or not.

Setting and Resetting of EW0 Mode Figure 30.9

Do not execute the following instructions:

UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

The following are interrupts which can be used in EW0 mode and operations when the interrupts occur during auto-erase operation or auto-program operation:

- Maskable interrupt (suspend disabled) To use the interrupt, allocate a variable vector table in areas other than the flash memory.
- Maskable interrupt (suspend enabled) To use the interrupt, allocate a variable vector table in areas other than the flash memory. When the FMR00 bit in the FMR0 register is checked in the interrupt routine and the result is 0 (being written or erased), auto-erase operation or auto-program operation suspends after td(SR-SUS) elapses by setting the FMR31 bit in the FMR3 register to 1 (suspend request). Auto-erase operation or auto-program operation restarts by setting the FMR31 bit to 0 (command restart) at the completion of the interrupt.

 NMI, watchdog timer, oscillation stop/re-oscillation detect, voltage detect 1, and voltage detect 2 interrupts

Auto-erase operation or auto-program operation forcibly stops as soon as the interrupt occurs, and the flash memory is reset. The flash memory restarts after a certain period of time, and then the interrupt process starts.

After the flash memory restart, execute auto-erase operation again and confirm that it is completed as expected in order to read the correct value.

The watchdog timer is not stopped during the command operation, and the interrupt request can be generated. Initialize the watchdog timer regularly.

Suspend Function (EW0 Mode) (under review) 30.8.6.1

When using suspend function in EW0 mode, check the status of the flash memory in the interrupt routine and enter suspend mode. Program suspend or erase suspend is not accepted until td (SR-SUS) elapses after the FMR31 bit is set to 1. Access to the flash memory after confirming the acceptance of program suspend or erase suspend by the FMR33 or FMR32 bit. Set the FMR31 bit to 0 (command restart) to restart auto-program and auto-erase operations at the completion of the access to the flash memory. Figure 30.10 to Figure 30.12 show a flow chart in EW0 mode when the suspend function is enabled, and Figure 30.13 shows Suspend Operation Example in EW0 Mode.

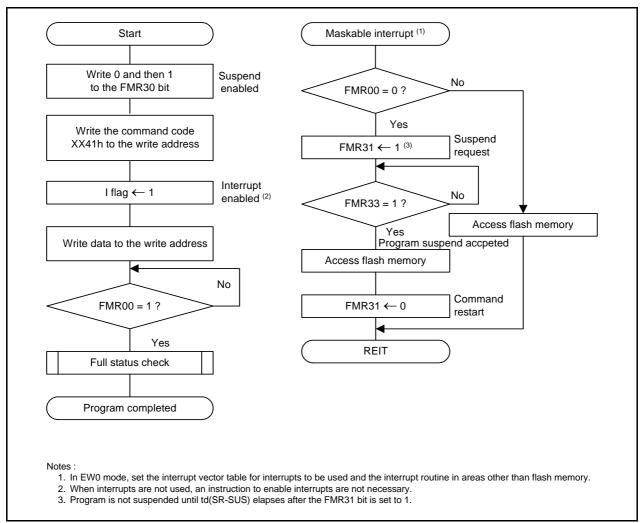


Figure 30.10 Program Flowchart in EW0 Mode (Suspend Function Enabled)

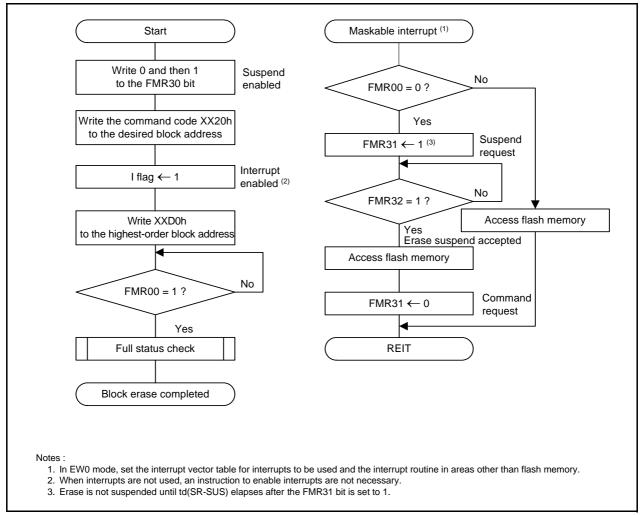


Figure 30.11 Block Erase Flowchart in EW0 Mode (Suspend Function Enabled)

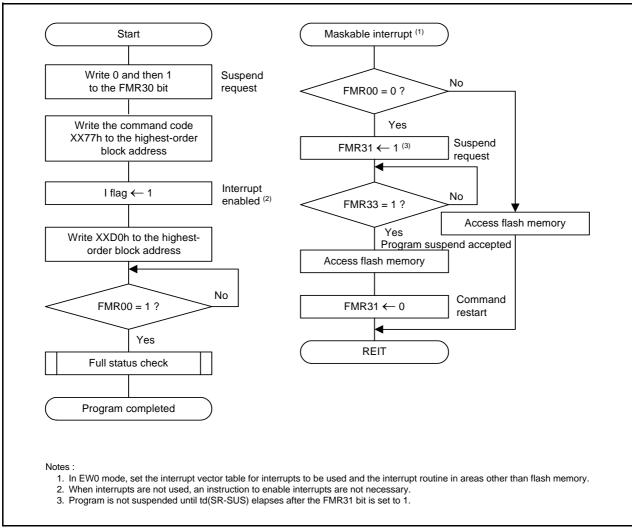


Figure 30.12 Lock Bit Program Flowchart in EW0 Mode (Suspend Function Enabled)

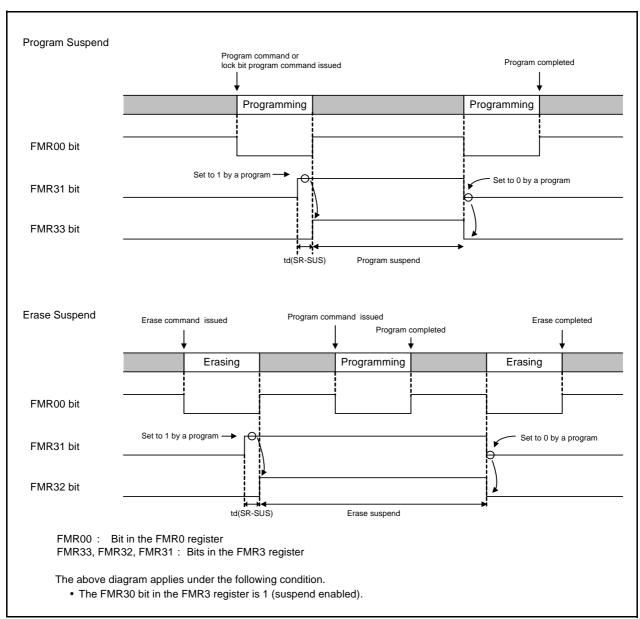


Figure 30.13 Suspend Operation Example in EW0 Mode

M16C/65 Group 30. Flash Memory

EW1 Mode 30.8.7

Under development

EW1 mode is selected by setting the FMR60 bit to 1 after setting the FMR01 bit to 1. Figure 30.14 shows Setting and Resetting of EW1 Mode.

The FMR0 register indicates whether or not a program or erase operation has completed as expected. The status register cannot be read in EW1 mode.

When a program or erase operation is initiated, the CPU halts all program execution until the operation is completed.

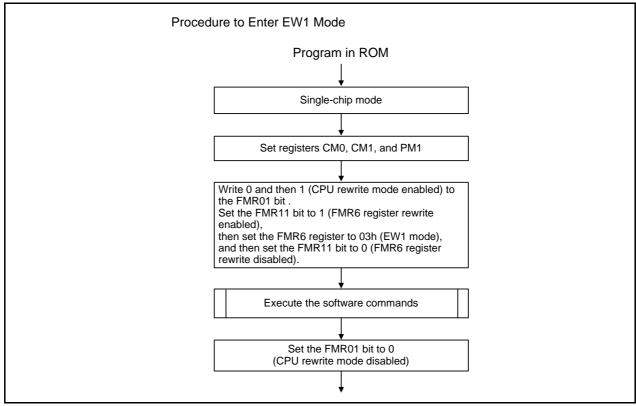


Figure 30.14 Setting and Resetting of EW1 Mode

The following are interrupts which can be used in EW1 mode and operations when the interrupts occur during auto-erase operation or auto-program operation:

- Maskable interrupt (suspend function enabled) Auto-erase operation or auto-program operation suspends after td(SR-SUS) elapses and the interrupt process is executed. Auto-erase operation or auto-program operation restarts by setting the FMR31 bit in the FMR3 register to 0 (command restart) after the interrupt process is completed.
- Maskable interrupt (suspend function disabled) Auto-erase operation or auto-program operation has a higher priority level and the interrupt request has to wait. The interrupt process is executed after auto-erase operation or auto-program operation is completed.
- NMI, watchdog timer, oscillation stop/re-oscillation detect, voltage detect 1, and voltage detect 2

Auto-erase operation or auto-program operation forcibly stops as soon as the interrupt occurs, and the flash memory is reset. The flash memory restarts after a certain period of time, and then the interrupt process starts.

After the flash memory restart, execute auto-erase operation again and confirm that it is completed as expected in order to read the correct value.

The watchdog timer stops its counting during auto-erasure or auto-programming, but counts during erase suspend or program suspend. The interrupt request can be generated. Initialize the watchdog timer regularly by using the suspend function.

30.8.7.1 Suspend Function (EW1 Mode) (under review)

When using suspend function in EW1 mode, an interrupt request is not accepted until td(SR-SUS) elapses after the interrupt request is generated. When the interrupt request is accepted, the flash memory enters erase suspend or program suspend. Set the FMR31 bit to 0 (command restart) to restart automatic program and erase operations at the completion of the interrupt. Figure 30.15 to Figure 30.17 show a flowchart in EW1 mode when the suspend function is enabled, and Figure 30.18 shows Suspend Operation Example in EW1 Mode.

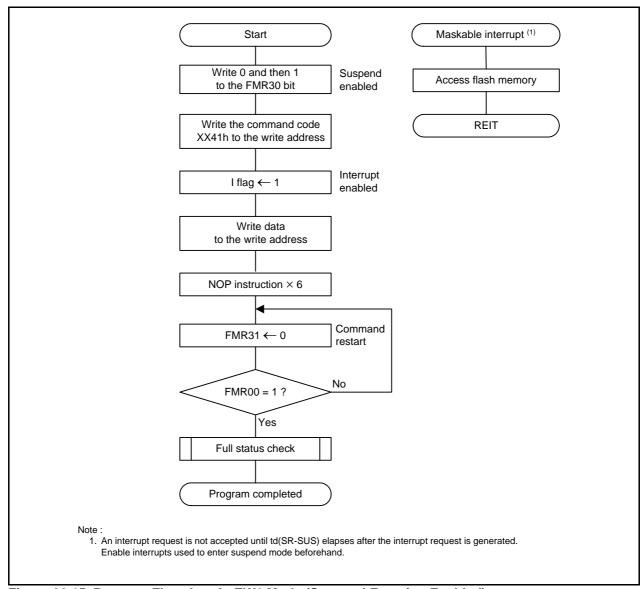


Figure 30.15 Program Flowchart in EW1 Mode (Suspend Function Enabled)

Under development

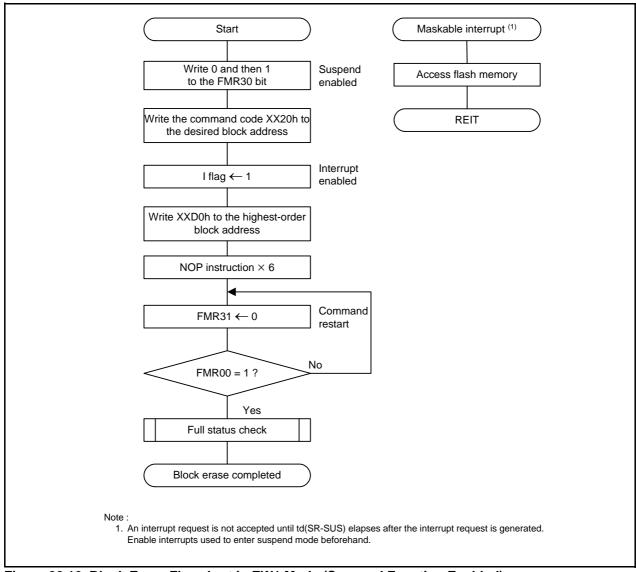


Figure 30.16 Block Erase Flowchart in EW1 Mode (Suspend Function Enabled)

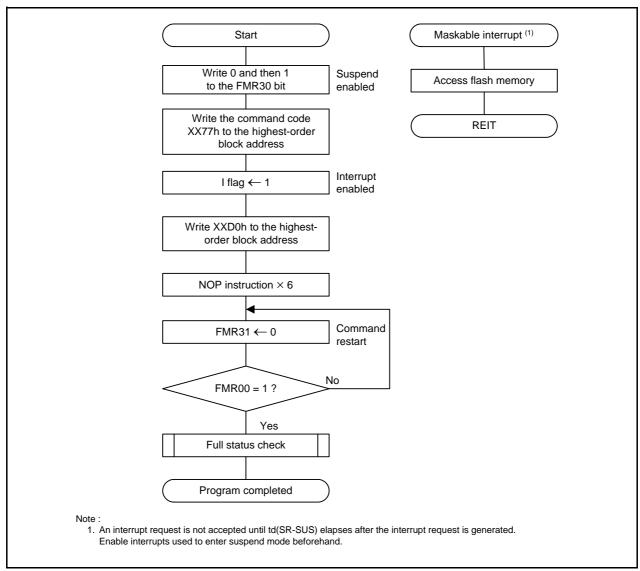


Figure 30.17 Lock Bit Program Flowchart in EW1 Mode (Suspend Function Enabled)

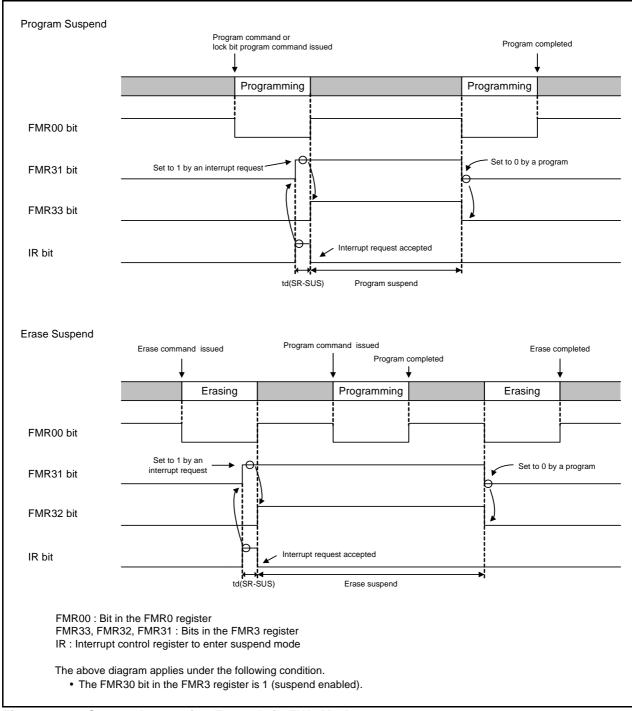


Figure 30.18 Suspend Operation Example in EW1 Mode

Under development

30.9 Standard Serial I/O Mode

In standard serial I/O mode, a serial programmer supporting the M16C/65 Group can be used to rewrite program ROM 1, program ROM 2, and data flash while the MCU mounted on a board. Standard serial I/O mode has the following two modes:

- Standard serial I/O mode 1: The MCU is connected to the serial programmer by using clock synchronous serial I/O
- Standard serial I/O mode 2: The MCU is connected to the serial programmer by using two-wire clock asynchronous serial I/O

For more information about the serial programmers, contact the serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

ID Code Check Function 30.9.1

Use the ID code check function in standard serial I/O mode. This function determines whether the ID codes sent from the serial programmer match those written in the flash memory. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFFFh", ID codes are not compared, allowing all commands to be accepted. The ID codes are 7-byte data stored consecutively, starting with the first byte, at addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFEFh, 0FFFF7h, and 0FFFFBh. The flash memory must have a program with the ID codes set in these addresses. Figure 30.19 shows ID Code Storage Addresses. The ID code of "ALERASE" in ASCII code is used for forced erase function. The ID code of "Protect" in ASCII code is used for standard serial I/O mode disable function. Table 30.17 lists Reserved Word of ID Code. All ID code storage addresses and data must match the combinations listed in Table 30.17. When the forced erase function or standard serial I/O mode disable function is not used, use another combination of ID codes.

Table 30.17 Reserved Word of ID Code

ID Code Storage Address		Reserved word of ID Code (ASCII)			
		ALeRASE	Protect		
FFFDFh	ID1	41h (upper-case A)	50h (upper-case P)		
FFFE3h	ID2	4Ch (upper-case L)	72h (lower-case r)		
FFFEBh	ID3	65h (lower-case e)	6Fh (lower-case o)		
FFFEFh	ID4	52h (upper-case R)	74h (lower-case t)		
FFFF3h	ID5	41h (upper-case A)	65h (lower-case e)		
FFFF7h	ID6	53h (upper-case S)	63h (lower-case c)		
FFFFBh	ID7	45h (upper-case E)	74h (lower-case t)		

All ID code storage addresses and data must match the combinations listed in Table 30.17.

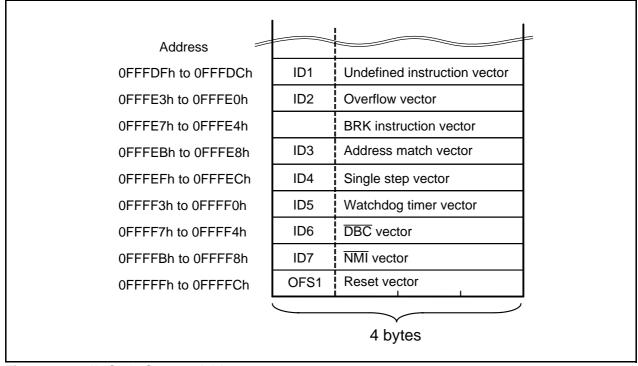


Figure 30.19 ID Code Storage Addresses

Forced Erase Function 30.9.2

Use the forced erase function in standard serial I/O mode. When the reserved word, "ALERASE" in ASCII code, are sent from the serial programmer as ID codes, the contents of program ROM 1 and program ROM 2 will be erased at once. However, if the ID codes stored in the ID code storage addresses are set to other than a reserved word "ALERASE" (other than the combination table listed in Table 30.17) when the ROMCP1 bit in the OFS1 address is set to 0 (ROM code protect enabled), forced erase function is ignored and ID code check is executed by ID code check function. Table 30.18 lists conditions and functions for forced erase function.

When both the ID codes sent from the serial programmer and the ID codes stored in the ID code storage addresses correspond to the reserved word "ALeRASE", program ROM 1 and program ROM 2 will be erased. However, when the serial programmer sends other than "ALERASE", even if the ID codes stored in the ID code storage addresses are "ALERASE", there is no ID match and any command is ignored. The flash memory cannot be operated.

Table 30.18 Forced Erase Function

	Condition		
ID code from serial	Code in ID code	ROMCP1 bit in the	Function
programmer	storage address	OFS1 address	
ALeRASE	ALeRASE	_	Program ROM 1 and program ROM 2
	Other than	1 (ROM code	all erase
	ALeRASE (1)	protect disabled)	(forced erase function)
		0 (ROM code protect	ID code check (ID code check function)
		enabled)	
Other than	ALeRASE	_	ID code check (ID code check function.
ALeRASE			No ID match)
	Other than	_	ID code check (ID code check function)
	ALeRASE (1)		

Note:

For the combination of the stored addresses is "Protect", refer to 30.9.3 "Standard Serial I/O Mode Disable Function".

30.9.3 Standard Serial I/O Mode Disable Function

Use the standard serial I/O mode disable function in standard serial I/O mode. When the ID codes in the ID code stored addresses are set to "Protect" in ASCII code (refer to Table 30.17 "Reserved Word of ID Code"), the MCU does not communicate with the serial programmer. Therefore, the flash memory cannot be read, written or erased by the serial programmer. User boot mode can be selected, when the ID codes are set to "Protect".

When the ID codes are set to "Protect" and the ROMCP1 bit in the OFS1 address is set to 0 (ROM code protect enabled), ROM code protection cannot be disabled by the serial programmer. Therefore, the flash memory cannot be read, written or erased by the serial or parallel programmer.

30.9.4 Standard Serial I/O Mode 1

In standard serial I/O mode 1, a serial programmer is connected to the MCU by using clock synchronous serial I/O.

Table 30.19 lists Pin Functions (Flash Memory Standard Serial I/O Mode 1) and Table 30.20 lists Setting of Standard Serial I/O Mode 1.

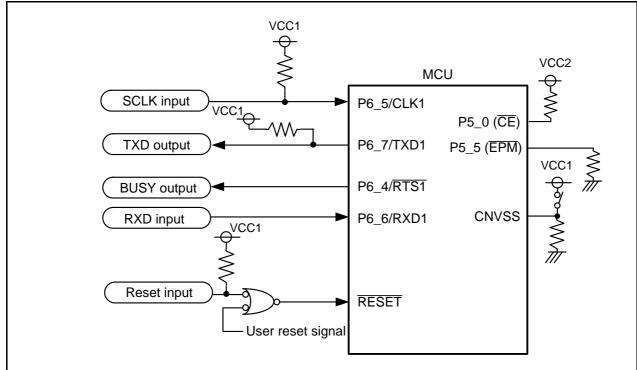

Figure 30.20 shows Circuit Application in Standard Serial I/O Mode 1. Control pins vary by programmer. For more information, refer to the programmer manual.

Table 30.19 Pin Functions (Flash Memory Standard Serial I/O Mode 1)

Pin	Name	I/O	Power Supply	Description
VCC1, VCC2, VSS	Power input		-	Apply the flash program and erase voltage to the VCC1 pin, and VCC2 to the VCC2 pin. The VCC application condition is that VCC2 \leq VCC1. Apply 0 V to the VSS pin.
CNVSS	CNVSS	I	VCC1	Connect to the VCC1 pin.
RESET	Reset input	I	VCC1	Reset input pin. During td(OCOS), input a low-level signal to the RESET pin.
XIN	Clock input	I	VCC1	Input a high-level signal to the XIN pin and open the XOUT pin
XOUT	Clock output	0		when a main clock is not used. Connect a ceramic resonator or crystal oscillator between pins XIN and XOUT when the main clock is used. To input an externally generated clock, input it to the XIN pin and open the XOUT pin.
BYTE	BYTE input	I	VCC1	Connect this pin to VSS or VCC1.
AVCC, AVSS	Analog power supply input			Connect AVCC to VCC1 and AVSS to VSS, respectively.
VREF	Reference voltage input	I		Reference voltage input pin for A/D converter.
P0_0 to P0_7	Input port P0	I	VCC2	Input a high- or low-level signal or leave open.
P1_0 to P1_7	Input port P1	I	VCC2	Input a high- or low-level signal or leave open.
P2_0 to P2_7	Input port P2	I	VCC2	Input a high- or low-level signal or leave open.
P3_0 to P3_7	Input port P3	I	VCC2	Input a high- or low-level signal or leave open.
P4_0 to P4_7	Input port P4	I	VCC2	Input a high- or low-level signal or leave open.
P5_1 to P5_4, P5_6, P5_7	Input port P5	I	VCC2	Input a high- or low-level signal or leave open.
P5_0	CE input	I	VCC2	Input a high-level signal.
P5_5	EPM input	I	VCC2	Input a low-level signal.
P6_0 to P6_3	Input port P6	I	VCC1	Input a high- or low-level signal or leave open.
P6_4 / RTS1	BUSY output	0	VCC1	BUSY signal output pin
P6_5/CLK1	SCLK input	I	VCC1	Serial clock input pin
P6_6 / RXD1	RXD input	I	VCC1	Serial data input pin.
P6_7 / TXD1	TXD output	0	VCC1	Serial data output pin.
P7_0 to P7_7	Input port P7	I	VCC1	Input a high- or low-level signal or leave open.
P8_0 to P8_7	Input port P8	Ī	VCC1	Input a high- or low-level signal or leave open.
P9_0 to P9_7	Input port P9	Ī	VCC1	Input a high- or low-level signal or leave open.
P10_0 to P10_7	Input port P10	I	VCC1	Input a high- or low-level signal or leave open.
P11_0 to P11_7	Input port P11	Ī	VCC1	Input a high- or low-level signal or leave open.
P12_0 to P12_7	Input port P12		VCC2	Input a high- or low-level signal or leave open.
P13_0 to P13_7	Input port P13	Ī	VCC2	Input a high- or low-level signal or leave open.
P14_0 to P14_1	Input port P14	Ī	VCC1	Input a high- or low-level signal or leave open.

Table 30.20 Setting of Standard Serial I/O Mode 1

Signal	Input Level
CNVSS	VCC1
EPM	VSS
RESET	VSS → VCC1
CE	VCC2
SCLK	VCC1

Notes:

- 1. Control pins and external circuitry will vary depending on the programmer. For more information, refer to the programmer manual.
- 2. In this example, modes are switched between single-chip mode and standard serial I/O mode by controlling the CNVSS input with a switch.
- 3. If in standard serial I/O mode 1 there is a possibility that the user reset signal will go low during serial I/O mode, break the connection between the user reset signal and RESET pin by using, for example, a jumper switch.

Figure 30.20 Circuit Application in Standard Serial I/O Mode 1

30.9.5 Standard Serial I/O Mode 2

In standard serial I/O mode 2, a serial programmer is connected to the MCU by using two-wire clock asynchronous serial I/O.

Table 30.21 lists Pin Functions (Flash Memory Standard Serial I/O Mode 2) and Table 30.22 lists Setting of Standard Serial I/O Mode 2.

Figure 30.21 shows Circuit Application in Standard Serial I/O Mode 2. Control pins vary by programmer. For more information, refer to the programmer manual.

Table 30.21 Pin Functions (Flash Memory Standard Serial I/O Mode 2)

Pin	Name	I/O	Power Supply	Description
VCC1, VCC2, VSS	Power input		-	Apply the flash program and erase voltage to the VCC1 pin, and VCC2 to the VCC2 pin. The VCC application condition is that VCC2 \leq VCC1. Apply 0 V to the VSS pin.
CNVSS	CNVSS	I	VCC1	Connect to the VCC1 pin.
RESET	Reset input	I	VCC1	Reset input pin. During td(OCOS), input a low-level signal to the RESET pin.
XIN	Clock input	1	VCC1	Input a high-level signal to the XIN pin and open the XOUT pin
XOUT	Clock output	0	VCC1	when a main clock is not used. Connect a ceramic resonator or crystal oscillator between pins XIN and XOUT when the main clock is used. To input an externally generated clock, input it to the XIN pin and open the XOUT pin.
BYTE	BYTE input	I	VCC1	Connect this pin to VSS or VCC1.
AVCC, AVSS	Analog power supply input			Connect AVCC to VCC1 and AVSS to VSS, respectively.
VREF	Reference voltage input	I		Reference voltage input pin for A/D converter.
P0_0 to P0_7	Input port P0	I	VCC2	Input a high- or low-level signal or leave open.
P1_0 to P1_7	Input port P1	I	VCC2	Input a high- or low-level signal or leave open.
P2_0 to P2_7	Input port P2	I	VCC2	Input a high- or low-level signal or leave open.
P3_0 to P3_7	Input port P3	I	VCC2	Input a high- or low-level signal or leave open.
P4_0 to P4_7	Input port P4	1	VCC2	Input a high- or low-level signal or leave open.
P5_1 to P5_4, P5_6, P5_7	Input port P5	I	VCC2	Input a high- or low-level signal or leave open.
P5_0	CE input	I	VCC2	Input a high-level signal.
P5_5	EPM input	I	VCC2	Input a low-level signal.
P6_0 to P6_3	Input port P6	I	VCC1	Input a high- or low-level signal or leave open.
P6_4 / RTS1	BUSY output	0	VCC1	Monitor signal output pin for checking the boot program operation.
P6_5/CLK1	SCLK input	I	VCC1	Input a low-level signal
P6_6 / RXD1	RXD input	I	VCC1	Serial data input pin.
P6_7 / TXD1	TXD output	0	VCC1	Serial data output pin.
P7_0 to P7_7	Input port P7	I	VCC1	Input a high- or low-level signal or leave open.
P8_0 to P8_7	Input port P8	1	VCC1	Input a high- or low-level signal or leave open.
P9_0 to P9_7	Input port P9	I	VCC1	Input a high- or low-level signal or leave open.
P10_0 to P10_7	Input port P10	I	VCC1	Input a high- or low-level signal or leave open.
P11_0 to P11_7	Input port P11	I	VCC1	Input a high- or low-level signal or leave open.
P12_0 to P12_7	Input port P12	I	VCC2	Input a high- or low-level signal or leave open.
P13_0 to P13_7	Input port P13		VCC2	Input a high- or low-level signal or leave open.
P14_0 to P14_1	Input port P14	I	VCC1	Input a high- or low-level signal or leave open.

Table 30.22 Setting of Standard Serial I/O Mode 2

Signal	Input Level
CNVSS	VCC1
EPM	VSS
RESET	VSS → VCC1
CE	VCC2
P6_5/CLK1	VSS

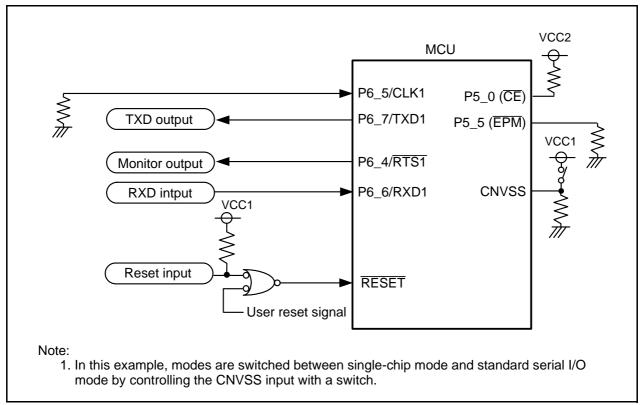


Figure 30.21 Circuit Application in Standard Serial I/O Mode 2

30.9.6 Parallel I/O Mode

In parallel I/O mode, program ROM 1, program ROM 2, and data flash can be rewritten using a parallel programmer supporting the M16C/65 Group. Contact the parallel programmer manufacturer for more information. Refer to the user's manual included with your parallel programmer for instructions.

30.9.6.1 **ROM Code Protect Function**

The ROM code protect function inhibits the flash memory from being read or rewritten during parallel I/O mode. Refer to 30.4 "Optional Function Select Address 1 (OFS1)". The OFS1 address is located in block 0 in program ROM 1.

The ROM code protect function is enabled when the ROMCP1 bit is set to 0.

To cancel ROM code protect, erase block 0 including the OFS1 address using standard serial I/O mode or CPU rewrite mode.

30.10 Notes on Flash Memory

30.10.1 Functions to Prevent Flash Memory from Being Rewritten

Addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFEFh, 0FFFF7h, and 0FFFFBh store ID codes. When the wrong data is written to these addresses, the flash memory is prevented from being read or written in standard serial I/O mode.

0FFFFh is OFS1 address. When the wrong data is written to this address, the flash memory is prevented from being read or written in parallel I/O mode.

These addresses correspond to the vector address (H) in fixed vector.

30.10.2 Reading of Data Flash

When 2.7 V \leq VCC1 \leq 3.0 V and f(BCLK) \geq 16 MHz, or 3.0 V < VCC1 \leq 5.5 V and f(BCLK) \geq 20 MHz, one wait state is necessary to execute the program on the data flash and read the data. Use the PM17 in the PM1 register or FMR17 bit in the FMR1 register to set one wait state.

30.10.3 CPU Rewrite Mode

30.10.3.1 Operating Speed

Set a CPU clock frequency of 10 MHz or less by the CM06 bit in the CM0 register and bits CM17 and CM16 in the CM1 register before entering CPU rewrite mode (EW0 or EW1 mode). Also, set the PM17 bit in the PM1 register to 1 (wait state).

30.10.3.2 Prohibited Instructions

Do not use the following instructions in EW0 mode: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

30.10.3.3 Interrupts (EW0 Mode and EW1 Mode)

- Do not use an address match interrupt during command execution because the address match interrupt vector is located in ROM.
- Do not use a non-maskable interrupt during block 0 erasure because fixed vector is located in block 0.

30.10.3.4 Rewrite (EW0 Mode)

If the power supply voltage drops while rewriting the block where the rewrite control program is stored, the rewrite control program is not correctly rewritten. This may prevent the flash memory from being rewritten. If this error occurs, use standard serial I/O mode or parallel I/O mode for rewriting.

30.10.3.5 Rewrite (EW1 Mode)

Do not rewrite any blocks in which the rewrite control program is stored.

30.10.3.6 DMA transfer

In EW1 mode, do not generate a DMA transfer while the FMR00 bit in the FMR0 register is set to 0 (auto programming or auto erasing).

30.10.3.7 Wait Mode

To enter wait mode, set the FMR01 bit to 0 (CPU rewrite mode disabled) before executing the WAIT instruction.

30.10.3.8 Stop Mode

To enter stop mode, set the FMR01 bit to 0 (CPU rewrite mode disabled), and then disable DMA transfer before setting the CM10 bit to 1 (stop mode).

30.10.3.9 Low Power Mode and On-Chip Oscillator Low Power Mode

When the CM05 bit is set to 1 (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Lock bit program
- Read lock bit status
- Block blank check

30.10.3.10 PM13 Bit

The PM13 bit in the PM1 register becomes 1 while the FMR01 bit in the FMR0 register is 1 (CPU rewrite mode enabled). The PM13 bit returns to the former value by setting the FMR01 bit to 0 (CPU rewrite mode disabled). When the PM13 bit is changed during CPU rewrite mode, the value of the PM13 bit after being changed is not reflected until the FMR01 bit is set to 0.

30.10.3.11 Area Where Rewrite Control Program is Executed

Bits PM10 and PM13 in the PM1 register become 1 in CPU rewrite mode. Execute the rewrite program in internal RAM or an external area which can be used when both bits PM10 and PM13 are 1. Do not use the area (40000h to BFFFFh) where accessible space is expanded when the PM13 bit is 0 and 4-Mbyte mode is set.

30.10.3.12 Program and Erase Cycles and Execution Time

Execution time of program, block erase and lock bit program command becomes longer as the number of programming and erasing increases.

30.10.3.13 Suspend of Auto-Erase Operation and Auto-Program Operation

When program, block erase, and lock bit program commands are suspended, the blocks for those commands must be erased. Execute program and lock bit program commands again after erasing. Those commands are suspended by the following reset or interrupts:

- Reset
- NMI, watchdog timer, oscillation stop/re-oscillation detection, voltage monitor 1, and voltage monitor 2 interrupts.

Under development

30.10.4 Standard Serial I/O Mode

30.10.4.1 User Boot Mode

To use user boot mode after standard serial I/O mode, turn off the power when exiting standard serial I/O mode, and then turn on the power again (cold start). The MCU enters user boot mode under the right conditions.

31. Precautions M16C/65 Group

31. Precautions

31.1 OFS1 Address and ID Code Storage Address

OFS1 address and ID code storage address are part of flash memory. When writing a program to flash memory, write an appropriate value to those addresses simultaneously.

In the OFS1 address, the MCU state after reset and the function to prevent rewrite in parallel I/O mode are selected. The OFS1 address is 0FFFFFh. This is the most significant address of block 0 in program ROM and upper address of reset vector. Also, the ID code storage address is in block 0 and upper address of interrupt vector.

When using a compiler to create a program, the reset vector of interrupt vector is created by the compiler and the OFS1 address or ID code storage address becomes FFh. Write the appropriate value to those addresses separately. The following is an example when writing to the OFS1 address by an assembler.

ex) Set FEh to the OFS1 address

When using an address control instruction and logical addition:

.org 0FFFCh

RESET:

.lword start | 0FE000000h

When using an address control instruction:

.org 0FFFCh

RESET:

.addr start

.byte 0FEh

31.2 **Notes on Noise**

Connect a bypass capacitor (approximately 0.1 µF) across pins VCC1 and VSS, and pins VCC2 and VSS using the shortest and thicker possible wiring. Figure 31.1 shows the Bypass Capacitor Connection.

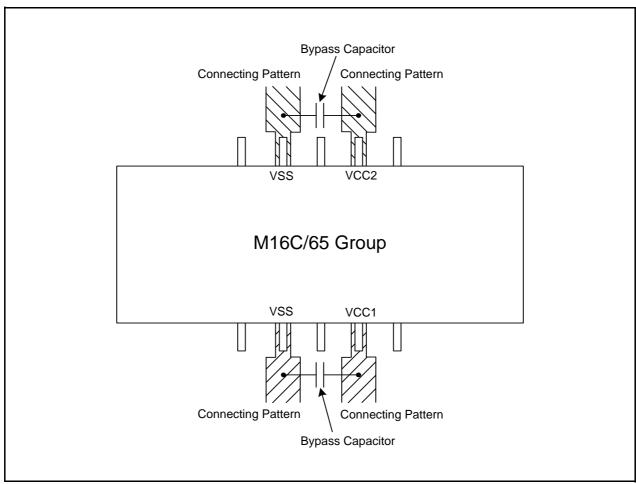


Figure 31.1 **Bypass Capacitor Connection**

31.3 **Notes on SFRs**

31.3.1 **Register Settings**

Table 31.1 lists Registers with Write-Only Bits and registers whose function differs between reading and writing. Set these registers with immediate values. When establishing the next value by altering the existing value, write the existing value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM.

Table 31.1 Registers with Write-Only Bits

Register	Symbol	Address
Watchdog Timer Reset Register	WDTR	037Dh
Watchdog Timer Start Register	WDTS	037Eh
Timer A0 Register	TA0	0327h to 0326h
Timer A1 Register	TA1	0329h to 0328h
Timer A2 Register	TA2	032Bh to 032Ah
Timer A3 Register	TA3	032Dh to 032Ch
Timer A4 Register	TA4	032Fh to 032Eh
Timer A1-1 Register	TA11	0303h to 0302h
Timer A2-1 Register	TA21	0305h to 0304h
Timer A4-1 Register	TA41	0307h to 0306h
Three-Phase Output Buffer Register 0	IDB0	XX11 1111b
Three-Phase Output Buffer Register 1	IDB1	XX11 1111b
Dead Time Timer	DTT	030Ch
Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	030Dh
UART0 Bit Rate Register	U0BRG	0249h
UART1 Bit Rate Register	U1BRG	0259h
UART2 Bit Rate Register	U2BRG	0269h
UART5 Bit Rate Register	U5BRG	0289h
UART6 Bit Rate Register	U6BRG	0299h
UART7 Bit Rate Register	U7BRG	02A9h
UART0 Transmit Buffer Register	U0TB	024Bh to 024Ah
UART1 Transmit Buffer Register	U1TB	025Bh to 025Ah
UART2 Transmit Buffer Register	U2TB	026Bh to 026Ah
UART5 Transmit Buffer Register	U5TB	028Bh to 028Ah
UART6 Transmit Buffer Register	U6TB	029Bh to 029Ah
UART7 Transmit Buffer Register	U7TB	02ABh to 02AAh
SI/O3 Bit Rate Register	S3BRG	0273h
SI/O4 Bit Rate Register	S4BRG	0277h
I2C0 Control Register 1	S3D0	02B6h
I2C0 Status Register 0	S10	02B8h

M16C/65 Group 31. Precautions

31.4 **Notes on Protection**

Under development

After setting the PRC2 bit to 1 (write enabled), by writing to a given SFR, the PRC2 bit becomes 0. Change the registers protected by the PRC2 bit in the next instruction after setting the PRC2 bit to 1. Make sure there are no interrupts or DMA transfers between the instruction that sets the PRC2 bit to 1 and the next instruction.

31. Precautions M16C/65 Group

31.5 **Notes on Resets**

31.5.1 **Power Supply Rising Gradient**

When supplying power to the MCU, make sure that the power supply voltage applied to the VCC1 pin meets the SVCC conditions.

Symbol	Parameter		Standard			
	r didilielei	Min.	Тур.	Max.	Unit	
SVcc	Power supply rising gradient (VCC1) (Voltage range: 0 to 2)	0.05			V/ms	

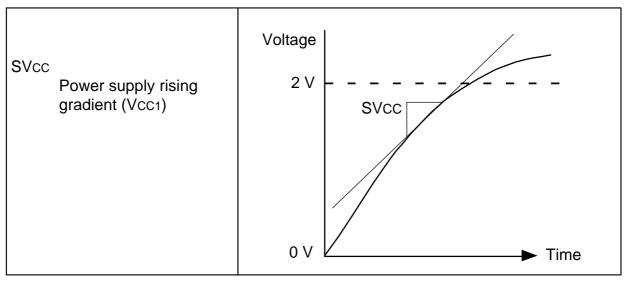


Figure 31.2 Timing of SVcc

31.5.2 **Power-On Reset**

Use the voltage monitor 0 reset together with the power-on reset. To use power-on reset, set the LVDAS bit in the OFS1 address to 0 (voltage monitor 0 reset enabled after hardware reset). In this case, the voltage monitor 0 reset is enabled (the VW0C0 bit and bit 6 in the VW0C register are 1, and the VC25 bit in the VCR2 register is 1) after power-on reset. Do not disable the bits by a program.

31.5.3 OSDR Bit (Oscillation Stop Detection Reset Detection Flag)

When the oscillation stop detection reset is generated, the MCU is reset and then stopped. This state is canceled by hardware reset or voltage monitor 0 reset.

Note that the OSDR bit remains unchanged at hardware reset, but is set to 0 (not detected) at voltage monitor 0 reset.

31.6 **Notes on Clock Generator**

31.6.1 Oscillation Circuit Using an Oscillator

To connect an oscillator, follow these instructions:

- The oscillation characteristics are tied closely to the user's board design. Perform a careful evaluation of the board before connecting an oscillator.
- Oscillation circuit structure depends on the oscillator. The M16C/65 Group contains a feedback resistor, but an external feedback resistor may be required. Contact the oscillator manufacturer regarding circuit constants, as they are dependent on the oscillator or stray capacitance of the mounted circuit.
- Check output from the CLKOUT pin to confirm that the clock generated by the oscillation circuit is properly transmitted to the MCU. Procedures for outputting a clock from the CLKOUT pin are listed below. Set the clock output from the CLKOUT pin to 25 MHz or below.

Outputting the main clock

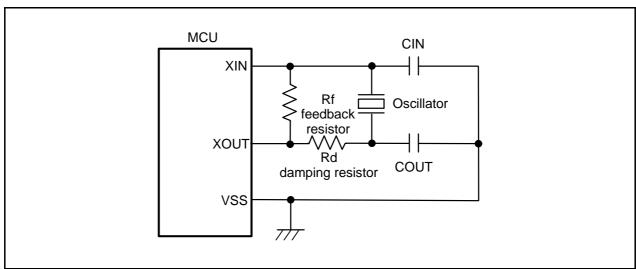

- (1) Set the PRC0 bit in the PRCR register to 1 (write enabled).
- (2) Set the CM11 bit in the CM1 register to 0, the CM07 bit in the CM0 register to 0, and the CM21 bit in the CM2 register to 0 (main clock selected).
- (3) Select the clock output from the CLKOUT pin (refer to the following table).
- (4) Set the PRC0 bit in the PRCR register to 0 (write disabled)

Table 31.2 Output from CLKOUT Pin When Selecting Main Clock

Bit S	etting			
PCLKR Register CM0 Register		Output from CLKOUT Pin		
PCLK5 Bit Bits CM01 to CM00				
1 00b		Clock with the same frequency as the main clock		
0 10b		Main clock divided by 8		
0 11b		Main clock divided by 32		

Outputting the sub clock

- (1) Set the PRC0 bit in the PRCR register to 1 (write enabled).
- (2) Set the CM07 bit in the CM0 register to 1 (sub clock selected).
- (3) Set the PCLK5 bit in the PCLKR register to 0, and bits CM01 to CM00 in the CM0 register to 01b (fC output from CLKOUT pin).
- (4) Set the PRC0 bit in the PRCR register to 0 (write disabled)

Oscillation Circuit Example

31. Precautions M16C/65 Group

31.6.2 **Noise Countermeasure**

31.6.2.1 Clock I/O Pin Wiring

- Connect the shortest possible wiring to the clock I/O pin.
- Connect (a) the capacitor's ground lead connected to the oscillator, and (b) the MCU's VSS pin, with the shortest possible wiring (maximum 20 mm).

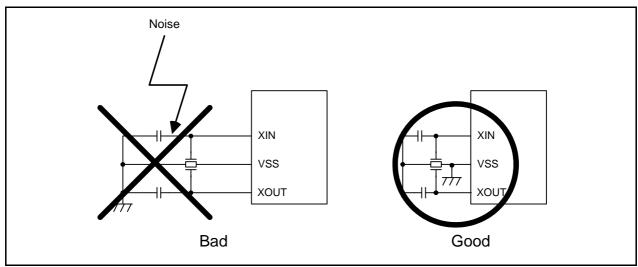


Figure 31.4 Clock I/O Pin Wiring

Reason

If noise enters the clock I/O pin, the clock waveform becomes unstable, which causes an error in operation or a program runaway. Also, if a potential difference attributed to the noise occurs between the VSS level of the MCU and the VSS level of the oscillator, an accurate clock is not input to the MCU.

31.6.2.2 **Large Current Signal Line**

For large currents that go above the MCU's current range, wire the signal lines as far away from the MCU as possible (especially the oscillator).

Reason

In the system using the MCU, there are signal lines for controlling motors, LEDs, and thermal heads. When a large current flows through these signal lines, noise is generated due to mutual inductance.

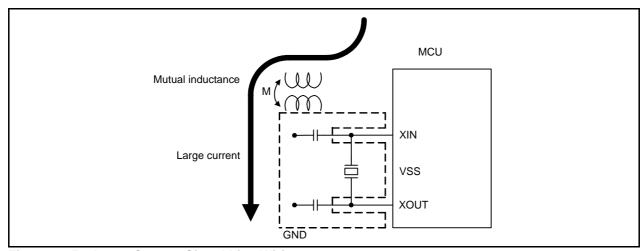
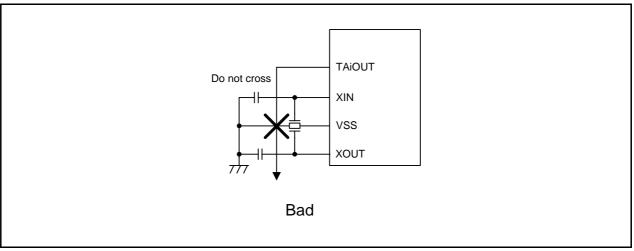


Figure 31.5 Large Current Signal Line Wiring


M16C/65 Group 31. Precautions

31.6.2.3 Signal Line Whose Level Changes at a High-Speed

For a signal line whose level changes at a high-speed, wire it as far away from the oscillator and the oscillator wiring pattern as possible. Do not wire it across or extend it parallel to a clock-related signal line or other signal lines which are sensitive to noise.

Reason

A signal whose level changes at a high-speed (such as the signal from the TAOUT pin) affects other signal lines due to the level change at rising or falling edges. Specially when the signal line crosses the clock-related signal line, the clock waveform becomes unstable, which causes an error in operation or a program runaway.

Wiring of Signal Line Whose Level Changes at High-Speed Figure 31.6

31.6.3 CPU ClockW

 When the external clock is entered from the XIN pin and the main clock is used as the CPU clock, do not stop the external clock.

31.6.4 Oscillation Stop, Re-Oscillation Detect Function

• In the following cases, set the CM20 bit to 0 (oscillation stop/re-oscillation detect function disabled), and then change the status of each bit.

When the CM05 bit is set to 1 (main clock stopped)

When the CM10 bit is set to 1 (stop mode)

- To enter wait mode while using the oscillation stop/re-oscillation detection function, set the CM02 bit to 0 (peripheral function clock f1 not turned off during wait mode).
- This function cannot be used if the main clock frequency is 2 MHz or below. In that case, set the CM20 bit to 0 (oscillation stop/re-oscillation detect function disabled).
- While the CM27 bit is 1 (oscillation stop/re-oscillation detect interrupt), when the FRA01 bit is 1 (40 MHz on-chip oscillator selected), set the FRA00 bit to 1 (40 MHz on-chip oscillator on). (Do not set the FRA00 bit to 0 while FRA01 bit is 1, and vice versa.)

PLL Frequency Synthesizer 31.6.5

To use the PLL frequency synthesizer, stabilize the supply voltage to meet the power supply ripple standard.

Symbol	Parameter		Standard			Unit
Symbol	Falailletei			Тур.	Max.	Offic
f (ripple)	Power supply ripple allowable frequency (VCC1)				10	kHz
VP-P (ripple)	P (ripple) Power supply ripple allowable amplitude voltage				0.5	V
					0.3	V
VCC (ΔV /ΔT)	Power supply ripple rising/falling	(VCC1 = 5 V)			0.3	V/ms
	gradient				0.3	V/ms

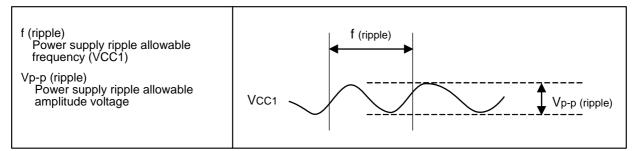


Figure 31.7 Voltage Fluctuation Timing

31.7 **Notes on Power Control**

31.7.1 **CPU Clock**

 When switching clock sources of the CPU clock, wait until the clock oscillation switched to is stabilized.

31.7.2 **Wait Mode**

 After the WAIT instruction, insert at least four NOP instructions. When entering wait mode, the instruction queue reads ahead the instructions following WAIT. Thus, depending on timing, some of the instructions may be executed before the MCU enters wait mode.

Program example when entering wait mode is shown below.

Program Example: **FSET**

> WAIT ; Enter wait mode

NOP ; More than four NOP instructions

NOP NOP NOP

 Do not enter wait mode when the FMR23 bit in the FMR2 register is 1 (low current consumption read mode enabled). Set the FMR23 bit to 0 (low current consumption read mode disabled) and the FMR01 bit to 0 (CPU rewrite mode disabled), and disable DMA transfer before entering wait mode.

M16C/65 Group 31. Precautions

31.7.3 **Stop Mode**

- When exiting stop mode by hardware reset, drive the RESET pin low until main clock oscillation is stabilized.
- Set the MR0 bit in the TAiMR register (i = 0 to 4) to 0 (pulse not output) when using timer A to exit stop mode.
- When entering stop mode, insert a JMP.B instruction immediately after executing an instruction that sets the CM10 bit in the CM1 register to 1, and then insert at least four NOP instructions. When entering stop mode, the instruction queue reads ahead the instructions following the instruction which sets the CM10 bit to 1 (all clock stop). Thus, some of the instructions may be executed before the MCU enters stop mode or before the interrupt routine for returning from stop mode.

Program example when entering stop mode

Program Example: FSET

BSET 0, CM1; Enter stop mode

JMP.B L2 ; Insert a JMP.B instruction

L2:

NOP ; At least four NOP instructions

NOP NOP NOP

 The CLKOUT pin outputs a high-level signal in stop mode. Thus, if stop mode is entered right after output on the CLKOUT pin changes state from high to low, the high-level durations of the output signal to the CLKOUT pin becomes shorter.

 When the FMR23 bit in the FMR2 register is 1 (low current consumption read mode enabled), do not enter stop mode. To enter stop mode, execute an instruction to set the CM10 bit in the CM1 register to 1 (stop mode) after setting the FMR23 bit to 0 (low current consumption read mode disabled), setting the FMR01 bit to 0 (CPU rewrite mode disabled), and disabling DMA transfer.

31.7.4 **Low Current Consumption Read Mode**

- Enter low current consumption read mode through slow read mode (refer to Figure 9.4 "Setting and Canceling of Low Current Consumption Read Mode").
- When the FMR23 bit in the FMR2 register is 1 (low current consumption read mode enabled), do not set the FMSTP bit to 1 (flash memory stopped). Also, when the FMSTP bit is 1, do not set the FMR23 bit to 1.

31.8 **Notes on Processor Mode**

Note =

Under development

Do not use memory expansion mode and microprocessor mode in the 80-pin package.

31.9 **Notes on Bus**

Note •

Do not use bus control pins for the 80-pin package.

31.9.1 Reading Data Flash

When 2.7 V \leq VCC1 \leq 3.0 V and f(BCLK) \geq 16 MHz, or when 3.0 V < VCC1 \leq 5.5 V and f(BCLK) \geq 20 MHz, one wait state is necessary to read data flash. Use the PM17 bit or the FMR17 bit to specify one wait state.

31.9.2 **External Bus**

When a hardware reset, power-on reset or voltage monitor 0 reset is performed with a high-level input on the CNVSS pin, contents of internal ROM cannot be read.

31.9.3 **External Access Soon After Writing to the SFRs**

When writing to the SFRs is followed by accessing to an external device, the write signal and CSi signal switch simultaneously. Thus, adjust the capacity of individual signal not to make a write signal delay.

Under development

31.10 Notes on Memory Space Expansion Function

Note =

Do not use this function for the 80-pin package.

31.11 Notes on Programmable I/O Ports

Note =

P1, P4 4 to P4 7, P7 2 to P7 5, and P9 1 of the 80-pin package have no external connections. Program the direction bits of these ports to 1 (output mode) and the output data to 0 (low level). For the 80-pin and 100-pin packages, do not access the addresses of registers P11 to P14, PD11 to PD14 and PUR3.

31.11.1 Influence of the SD Input

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on the \overline{SD} pin enabled), pins P7_2 to P7_5 and P8_0 and P8_1 go to the high-impedance state.

31.11.2 Influence of SI/O3 and SI/O4

Setting the SM32 bit in the S3C register to 1 causes the P9_2 pin to go to the high-impedance state. Similarly, setting the SM42 bit in the S4C register to 1 causes the P9_6 pin to go to the high-impedance state.

31.11.3 100-Pin Package

Do not access to the addresses assigned to registers P11 to P14 and the PUR register.

31.11.4 80-Pin Package

Do not access to the addresses assigned to registers P11 to P14 and the PUR register. Set the direction bits of the ports corresponding to P1, P4_4 to P4_7, P7_2 to P7_5 and P9_1 to 1 (output mode). Set the output data to 0 (low-level signal).

M16C/65 Group

31.12 Notes on Interrupts

Note •

Do not use INT3 to INT5 for the 80-pin package.

31.12.1 Reading Address 00000h

Do not read the address 00000h by a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from address 00000h during the interrupt sequence. At this time, the IR bit of the accepted interrupt is cleared to 0. If the address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. Thus, some problems may be caused: interrupts may be canceled, and an unexpected interrupt request may be generated.

31.12.2 SP Setting

Set a value in the SP (USP, ISP) before accepting an interrupt. The SP (USP, ISP) is set to 0000h after reset. Therefore, if an interrupt is accepted before setting a value in the SP (USP, ISP), the program may go out of control.

Especially when using the $\overline{\text{NMI}}$ interrupt, set a value in the ISP at the beginning of the program. For the first instruction after reset only, all interrupts including the NMI interrupt are disabled.

31.12.3 NMI Interrupt

- When the NMI interrupt is not used, set the PM24 bit in the PM2 register to 0 (NMI interrupt dis-
- Stop mode cannot be entered while the 24 bit is 1 (NMI interrupt enabled) and input on the NMI pin is low. When input on the NMI pin is low, the CM10 bit in the CM1 register is fixed to 0.
- Do not enter wait mode while the 24 bit is 1 (NMI interrupt enabled) and input on the NMI pin is low because the CPU clock remains active even though the CPU stops, and therefore, the current consumption of the chip does not drop. In this case, the normal condition is restored by the next interrupt generated.
- Set the low- and high-level durations of the input signal to the NMI pin to 2 CPU clock cycles + 300 ns or more.

M16C/65 Group 31. Precautions

31.12.4 Changing an Interrupt Source

If the interrupt source is changed, the IR bit in the interrupt control register may inadvertently be set to 1 (interrupt requested). To use an interrupt, change the interrupt source, and then set the IR bit to 0 (interrupt not requested).

In this section, the changing of an interrupt source refers to all elements (e.g. changing the mode of a peripheral function) used in changing the interrupt source, polarity, and timing assigned to each software interrupt number. When using an element to change the interrupt source, polarity, or timing, make the change before setting the IR bit to 0 (interrupt not requested). Refer to the descriptions of the individual peripheral functions for details of the peripheral function interrupts.

Figure 31.8 shows the Procedure for Changing the Interrupt Generate Factor.

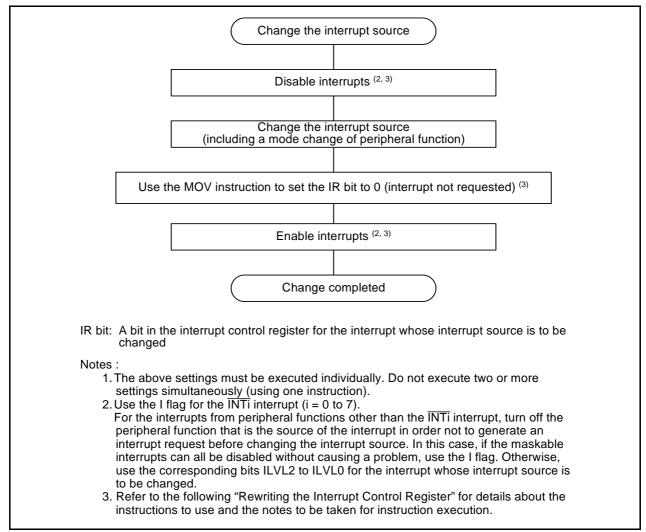


Figure 31.8 Procedure for Changing the Interrupt Generate Factor

31.12.5 Rewriting the Interrupt Control Register

- (a) The interrupt control register for any interrupt should be modified in places where no requests for that register may occur. If an interrupt request generation is a possibility, disable an interrupt and then rewrite the contents of the interrupt control register.
- (b) When rewriting the contents of the interrupt control register after disabling an interrupt, be careful with the instruction used.
 - · Changing bits other than the IR bit

When interrupts corresponding to the register occur, the IR bit may not be set to 1 (interrupt requested) and the interrupts may be ignored. If this causes a problem, use one of the following instructions to change the registers.

Instructions: AND, OR, BCLR, or BSET.

- · Changing the IR bit
 - Depending on the instruction used, the IR bit may not always be set to 0 (interrupt not requested). Therefore, use the MOV instruction to set the IR bit to 0.
- (c) When using the I flag to disable an interrupt, set the I flag as shown in the sample program code shown below. (Refer to (b) regarding rewriting the contents of the interrupt control registers using the sample program code.)

Examples 1 through 3 show how to prevent the I flag from being set to 1 (interrupt enabled) before the contents of the interrupt control register are rewritten, owing to the effects of the internal bus and the instruction queue buffer.

Example 1: Using the NOP instruction to pause the program until the interrupt control register is modified INT SWITCH1:

```
FCLR
                           ; Disable interrupts.
```

AND.B #00h, 0055h ; Set the TA0IC register to 00h.

NOP

NOP

FSET 1 ; Enable interrupts.

The number of the NOP instructions is as follows.

```
PM20 = 1 (1 wait): 2, PM20 = 0 (2 waits): 3, when using the \overline{HOLD} function: 4.
```

Example 2: Using a dummy read to delay the FSET instruction

INT SWITCH2:

FCLR ; Disable interrupts.

AND.B ; Set the TA0IC register to 00h. #00h, 0055h

MOV.W MEM, R0 ; Dummy read. **FSET** ; Enable interrupts.

Example 3: Using the POPC instruction to change the I flag

INT_SWITCH3:

PUSHC FLG

FCLR ; Disable interrupts.

AND.B #00h, 0055h ; Set the TA0IC register to 00h.

POPC FLG ; Enable interrupts.

M16C/65 Group

31.12.6 INT Interrupt

- Either a low level of at least tw (INL) width or a high level of at least tw (INH) width is necessary for the signal input to pins $\overline{\text{INT0}}$ through $\overline{\text{INT7}}$ regardless of the CPU operation clock.
- If the POL bit in registers INT0IC to INT7IC, bits IFSR7 to IFSR0 in the IFSR register, or bits IFSR31 to IFSR30 in the IFSR3A register are changed, the IR bit may inadvertently be set to 1 (interrupt requested). Be sure to set the IR bit to 0 (interrupt not requested) after changing any of these register bits.

Under development

31.13 Notes on Watchdog Timer

After the watchdog timer interrupt occurs, use the WDTR register to refresh the watchdog timer counter.

31.14 Notes on DMAC

31.14.1 Write to the DMAE Bit in the DMiCON Register (i = 0 to 3)

When both of following conditions are met, follow steps (1) and (2) below.

- Write a 1 (DMAi is in active state) to the DMAE bit when it is 1.
- A DMA request may occur simultaneously when the DMAE bit is being written.

Steps

- (1) Write a 1 to the DMAE bit and DMAS bit in the DMiCON register simultaneously (1).
- (2) Make sure that the DMAi is in an initialized state (2) in a program. If the DMAi is not in an initialized state, repeat these two steps.

Notes:

- 1. The DMAS bit remains unchanged even if a 1 is written. However, if a 0 is written to this bit, it is set to 0 (DMA not requested). In order to prevent the DMAS bit from being modified to 0, 1 should be written to the DMAS bit when 1 is written to the DMAE bit. In this way, the state of the DMAS bit immediately before being written can be maintained. Similarly, when writing to the DMAE bit with a read-modify-write instruction, write a 1 to the DMAS bit to maintain a DMA request which is generated during execution.
- 2. Read the TCRi register to verify whether the DMAi is in an initialized state. If the read value is equal to a value that was written to the TCRi register before DMA transfer start, the DMAi is in an initialized state. (When a DMA request occurs after writing to the DMAE bit, the read value is a value written to the TCRi register minus one.) If the read value is a value in the middle of a transfer, the DMAi is not in an initialized state.

31.14.2 Changing DMA Request Source

When the DMS bit or bits DSEL4 to DSEL0 in the DMiSL register are changed, the DMAS bit in the DMiCON sometimes becomes 1 (DMA requested). Set the DMAS bit to 0 (DMA not requested) after the DMS bit or bits DSEL4 to DSEL0 in the DMiSL register are changed.

31.15 Notes on Timer A

Note •

The 80-pin package does not have pins TA1IN, TA1OUT, TA2IN and TA2OUT. Do not use functions associated with these pins.

31.15.1 Timer A (Timer Mode)

31.15.1.1 Register Setting

The timer stops after reset. Set the mode, count source, counter value, etc., using registers TAiMR, TAi, TACS0 to TACS2, TAPOFS, TCKDIVC0, and PCLKR before setting the TAiS bit in the TABSR register to 1 (count starts) (i = 0 to 4).

Always make sure registers TAiMR, TACS0 to TACS2, TAPOFS, TCKDIVC0, and PCLKR are modified while the TAiS bit is 0 (count stops), regardless of whether after reset or not.

31.15.1.2 Read from Timer

While counting is in progress, the counter value can be read at any time by reading the TAi register. However, if the counter is read at the same time as it is reloaded, the value FFFFh is read. Also, if the counter is read before it starts counting and after a value is set in the TAi register while not counting, the set value is read.

31.15.1.3 Influence of SD

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on the SD pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to the high-impedance state.

31.15.2 Timer A (Event Counter Mode)

31.15.2.1 Register Setting

The timer is stopped after reset. Set the mode, count source, counter value, etc., using the TAiMR register, the TAi register, the UDF register, bits TAZIE, TA0TGL, and TA0TGH in the ONSF register, the TRGSR register, and the TAPOFS register before setting the TAiS bit in the TABSR register to 1 (count starts) (i = 0 to 4).

Always make sure the TAiMR register, the UDF register, bits TAZIE, TA0TGL, and TA0TGH in the ONSF register, the TRGSR register, and the TAPOFS register are modified while the TAIS bit is 0 (count stops), regardless of whether after reset or not.

31.15.2.2 Read from Timer

While counting is in progress, the counter value can be read at any time by reading the TAi register. However, while reloading, FFFFh can be read in underflow, and 0000h in overflow. When the counter is read before it starts counting and after a value is set in the TAi register while not counting, the set value is read.

31.15.2.3 Influence of SD

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on SD pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to the high-impedance state.

31.15.3 Timer A (One-Shot Timer Mode)

31.15.3.1 Register Setting

The timer is stopped after reset. Set the mode, count source, counter value, etc., using the TAiMR register, the TAi register, bits TA0TGL and TA0TGH in the ONSF register, the TRGSR register, registers TACS0 to TACS2, the TAPOFS register, the TCKDIVC0 register, and the PCLKR register before setting the TAiS bit in the TABSR register to 1 (count starts) (i = 0 to 4).

Always make sure the TAiMR register, bits TA0TGL and TA0TGH in the ONSF register, the TRGSR register, registers TACS0 to TACS2, the TAPOFS register, the TCKDIVC0 register, and the PCLKR register are modified while the TAiS bit is 0 (count stops), regardless of whether after reset or not.

31.15.3.2 Stop While Counting

When setting the TAiS bit to 0 (count stops), the following occurs:

- The counter stops counting and the contents of the reload register are reloaded.
- The TAiOUT pin outputs a low-level signal when the POFSi bit in the TAPOFS register is 0 and outputs a high-level signal when it is 1.
- After one cycle of the CPU clock, the IR bit in the TAilC register is set to 1 (interrupt requested).

31.15.3.3 Delay between the Trigger Input and Timer Output

One-shot timer output synchronizes with a count source generated internally. When an external trigger is selected, a maximum 1.5 cycle delay of the count source occurs between the trigger input to the TAilN pin and timer output.

31.15.3.4 Operating Mode Change

The IR bit is set to 1 when timer operating mode is set with any of the following procedures:

- Selecting one-shot timer mode after reset
- Changing the operating mode from timer mode to one-shot timer mode
- Changing the operating mode from event counter mode to one-shot timer mode To use the timer Ai interrupt (IR bit), set the IR bit to 0 after the changes listed above are made.

31.15.3.5 Re-Trigger

When a trigger occurs while counting, the counter reloads the reload register to continue counting after generating a re-trigger and counting down once. To generate a trigger while counting, generate a re-trigger after more than one cycle of the timer count source has elapsed following the previous trigger.

When an external trigger occurs, do not generate a re-trigger for 300 ns before the count value becomes 0000h.

The one-shot timer may stop counting.

31.15.3.6 Influence of SD

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on the SD pin enabled), pins TA1OUT, TA2OUT, and TA4OUT enter a high-impedance state.

31.15.4 Timer A (Pulse Width Modulation Mode)

31.15.4.1 Register Setting

The timer is stopped after reset. Set the mode, count source, counter value, etc., using the TAiMR register, the TAi register, bits TA0TGL and TA0TGH in the ONSF register, the TRGSR register, registers TACS0 to TACS2, the TAPOFS register, TCKDIVC0 register, the PWMFS register, and the PCLKR register before setting the TAIS bit in the TABSR register to 1 (count starts) (i = 0 to 4). Always make sure the TAiMR register, bits TA0TGL and TA0TGH in the ONSF register, the TRGSR register, registers TACS0 to TACS2, the TAPOFS register, TCKDIVC0 register, the PWMFS register, and the PCLKR register are modified while the TAiS bit is 0 (count stops), regardless of whether after reset or not.

31.15.4.2 Operating Mode Change

The IR bit is set to 1 when setting a timer operating mode with any of the following procedures:

- Selecting PWM mode or programmable output mode after reset
- Changing the operating mode from timer mode to PWM mode or programmable output mode
- Changing the operating mode from event counter mode to PWM mode or programmable output mode

To use the timer Ai interrupt (IR bit), set the IR bit to 0 by a program after the changes listed above are made.

31.15.4.3 Stop While Counting

When setting the TAiS bit to 0 (count stops) during PWM pulse output, the following actions occur. When the POFSi bit in the TAPOFS register is 0:

- · Counting stops.
- When the TAiOUT pin is high, the output level goes low and the IR bit is set to 1.
- When the TAiOUT pin is low, both the output level and the IR bit remain unchanged.

When the POFSi bit in the TAPOFS register is 1:

- Stop counting.
- If the TAiOUT pin output is low, the output level goes high and the IR bit is set to 1.
- If the TAiOUT pin output is high, both the output level and the IR bit remain unchanged.

31.15.4.4 Influence of SD

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on the SD pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to the high-impedance state.

31.15.5 Timer A (Programmable Output Mode)

31.15.5.1 Register Setting

The timer is stopped after reset. Set the mode, count source, counter value, etc., using the TAiMR register, the TAi register, the TRGSR register, registers TACS0 to TACS2, the TAPOF register, TCKDIVC0 register, the PWMFS register, the PCLKR register, and the TAi1 register before setting the TAiS bit in the TABSR register to 1 (count starts) (i = 1, 2, 4).

Always make sure the TAiMR register, the TRGSR register, registers TACS0 to TACS2, the TAPOFS register, TCKDIVC0 register, the PWMFS register, and the PCLKR register are modified while the TAiS bit is 0 (count stops), regardless of whether after reset or not.

31.15.5.2 Operating Mode Change

The IR bit is set to 1 when setting a timer operating mode with any of the following procedures:

- Selecting PWM mode or programmable output mode after reset
- Changing the operating mode from timer mode to PWM mode or programmable output mode
- Changing the operating mode from event counter mode to PWM mode or programmable output

To use the timer Ai interrupt (IR bit), set the IR bit to 0 by a program after the changes listed above are made.

31.15.5.3 Stop While Counting

When setting the TAiS bit to 0 (count stops) during pulse output, the following actions occur. When the POFSi bit in the TAPOFS register is 0:

- Counting stops.
- When the TAiOUT pin is high, the output level goes low and the IR bit is set to 1.
- When the TAiOUT pin is low, both the output level and the IR bit remain unchanged.

When the POFSi bit in the TAPOFS register is 1:

- Stop counting.
- If the TAiOUT pin output is low, the output level goes high and the IR bit is set to 1.
- If the TAiOUT pin output is high, both the output level and the IR bit remain unchanged.

31.15.5.4 Influence of SD

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on the SD pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to the high-impedance state.

M16C/65 Group

31.16 Notes on Timer B

Note •

The 80-pin package does not have the TB1IN pin. Do not use functions associated with this pin.

31.16.1 Timer B (Timer Mode)

31.16.1.1 Register Setting

The timer is stopped after reset. Set the mode, count source, counter value, etc., using registers TBiMR, TBi, TBCS0 to TBCS3, TCKDIVC0, and PCLKR before setting the TBiS bit in the TABSR or the TBSR register to 1 (count starts) (i = 0 to 5).

Always make sure registers TBiMR, TBCS0 to TBCS3, TCKDIVC0, and PCLKR are modified while the TBiS bit is 0 (count stops), regardless of whether after reset or not.

31.16.1.2 Read from Timer

The value of the counter while counting can be read from the TBi register at any time. FFFFh is read while reloading. If the counter is read before it starts counting and after a value is set in the TBi register while not counting, the set value is read.

31.16.2 Timer B (Event Counter Mode)

31.16.2.1 Register Setting

The timer is stopped after reset. Set the mode, count source, counter value, etc., using the TBiMR register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to 1 (count starts) (i = 0 to 5).

Always make sure the TBiMR register is modified while the TBiS bit is 0 (count stops), regardless of whether after reset or not.

31.16.2.2 Read from Timer

While counting is in progress, the counter value can be read out at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always FFFFh. If the TBi register is read after setting a value in it while not counting but before the counter starts counting, the read value is the value set in the register.

31.16.3 Timer B (Pulse Period/Pulse Width Measurement Modes)

31.16.3.1 Register Setting

The timer is stopped after reset. Set the mode, count source, etc., using registers TBiMR, TBCS0 to TBCS3, TBi, TCKDIVC0, PCLKR, PPWFS1, and PPWFS2 before setting the TBiS bit in the TABSR or TBSR register to 1 (count starts) (i = 0 to 5).

Always make sure registers TBiMR, TBCS0 to TBCS3, TCKDIVC0, PCLKR, PPWFS1, and PPWFS2 are modified while the TBiS bit is 0 (count stops), regardless of whether after reset or not. To clear the MR3 bit to 0 by writing to the TBiMR register while the TBiS bit is 1 (count starts), be sure to write the same value as previously written to bits TMOD0, TMOD1, MR0, MR1, TCK0, and TCK1 and a 0 to bit 4.

31.16.3.2 Interrupts

The IR bit in the TBiIC register is set to 1 (interrupt requested) when an active edge of a measurement pulse is input or timer Bi overflows (i = 0 to 5). The source of an interrupt request can be determined by using the MR3 bit in the TBiMR register within the interrupt routine.

Use the IR bit in the TBilC register to detect overflows only. Use the MR3 bit only to determine the interrupt source.

31.16.3.3 Operations between Count Start and the First Measurement

When a count is started and the first active edge is input, an undefined value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.

The value of the counter is undefined after reset. If count is started in this state, the MR3 bit may be set to 1 and timer Bi interrupt request may be generated after count start before an effective edge is input. When a value is set in the TBi register while the TBiS bit is 0 (count stops), the same value is written to the counter.

31.16.3.4 Pulse Period Measurement Mode

When an overflow occurs at an active edge, an input is not recognized at the effective edge because an interrupt request is generated only once. Use this mode where an overflow does not occur, or use pulse width measurement.

31.16.3.5 Pulse Width Measurement Mode

In pulse width measurement, pulse widths are measured successively. Use a program to check whether the measurement result is a high-level width or a low-level width.

When an interrupt request is generated, read the TBiIN pin level inside the interrupt routine, and check whether it is the edge of an input pulse or an overflow. The TBiIN level can be read from bits in the P9 register of corresponding ports.

M16C/65 Group

31.17 Notes on Three-Phase Motor Control Timer Function

Note =

Do not use this function for the 80-pin package.

31.17.1 Timer A, Timer B

Refer to 17.5 "Notes on Timer A" and 18.5 "Notes on Timer B".

31.17.2 Forced Cutoff Input

The following pins are affected by the three-phase forced cutoff due to the $\overline{\text{SD}}$ pin input: P7_2/CLK2/TA1OUT/V, P7_3/CTS2/RTS2/TA1IN/V, P7_4/TA2OUT/W, P7_5/TA2IN/W, P8_0/TA4OUT/RXD5/SCL5/U, P8_1/TA4IN/CTS5/RTS5/U

31.18 Notes on Real-Time Clock

31.18.1 Starting and Stopping Count

Real-time clock has the TSTART bit for instructing the count to start or stop, and the TCSTF bit, which indicates count start or stop. Bits TSTART and TCSTF are in the RTCCR1 register.

Real-time clock starts counting and the TCSTF bit becomes 1 (count starts) when the TSTART bit is set to 1 (count starts). It takes up to two cycles of the count source until the TCSTF bit becomes 1 after setting the TSTART bit to 1. During this time, do not access registers associated with real-time clock (1) other than the TCSTF bit.

Also, real-time clock stops counting when setting the TSTART bit to 0 (count stops) and the TCSTF bit becomes 0 (count stops). It takes up to three cycles of the count source until the TCSTF bit becomes 0 after setting the TSTART bit to 0. During this time, do not access registers associated with real-time clock other than the TCSTF bit.

Note:

1. Registers associated with real-time clock: RTCSEC, RTCMIN, RTCHR, RTCWK, RTCCR1, RTCCR2, RTCCSR, RTCCSEC, RTCCMIN, and RTCCHR.

31.18.2 Register Setting (Time Data etc.)

Write to the following registers or bits while real-time clock is stopped.

- Registers RTCSEC, RTCMIN, RTCHR, RTCWK, and RTCCR2
- Bits H12H24 and RTCPM in the RTCCR1 register
- Bits RCS0 to RCS4 in the RTCCSR register

Real-time clock is stopped when bits TSTART and TCSTF in the RTCCR1 register are 0 (real-time clock stopped).

Also, set all above-mentioned registers and bits (immediately before real-time clock count starts) before setting the RTCCR2 register.

Figure 20.4 shows Time and Day Change Procedure (No Compare Mode or Compare 1 Mode), and Figure 20.5 shows Time and Day Change Procedure (Compare 2 Mode or Compare 3 Mode).

31.18.3 Register Setting (Compare Data)

Write to the following registers when the BSY bit in the RTCSEC register is 0 (not while data is updated).

Registers RTCCSEC, RTCCMIN, and RTCCHR

M16C/65 Group 31. Precautions

31.18.4 Time Reading Procedure of Real-Time Clock Mode

In real-time clock mode, read time data bits (1) when the BSY bit in the RTCSEC register is 0 (not while data is updated).

When reading multiple registers, if data is rewritten between reading registers, an errant time will be

In order to prevent this, use the reading procedure shown below.

Using an interrupt

Read necessary contents of time data bits in the real-time clock interrupt routine.

Monitoring by a program 1

Monitor the IR bit in the RTCTIC register by a program and read necessary contents of time data bits after the IR bit in the RTCTIC register becomes 1 (periodic interrupt request generated).

- Monitoring by a program 2
- (1)Monitor the BSY bit.
- (2)Monitor until the BSY bit becomes 0 after the BSY bit becomes 1 (the BSY bit is set to 1 for approximately 62.5 ms).
- (3)Read necessary contents of time data bits after the BSY bit becomes 0.
- Using read results if they are the same value twice
- (1)Read necessary contents of time data bits.
- (2)Read the same bit as (1) and compare the contents.
- (3)Recognize as the correct value if the contents match. If the contents do not match, repeat until the read contents match with the previous contents.

Also, when reading several registers, read them as continuously as possible.

Note:

1. Time data bits are shown below.

> Bits SC12 to SC10 and SC03 to SC00 in the RTCSEC register Bits MN12 to MN10 and MN03 to MN00 in the RTCMIN register Bits HR11 to HR10 and HR03 to HR00 in the RTCHR register Bits WK2 to WK0 in the RTCWK

The RTCPM bit in the RTCCR1 register

31.19 Notes on Pulse Width Modulator

Note =

Under development

The 80-pin package does not have pins P4_6 and P4_7. Use pins P9_3 and P9_4 for PWM0 and PWM1 output.

M16C/65 Group 31. Precautions

31.20 Notes on Remote Control Signal Receiver

Note

The 80-pin package does not have the PMC1 pin. Use the PMC0 pin for external pulse input.

31.20.1 Start/Stop of PMCi

The EN bit in the PMCiCON0 register controls start/stop of PMCi. The ENFLG bit in the PMCiCON2 register indicates that the operation starts or stops.

The PMCi circuit starts operating by setting the EN bit to 1 (operation starts) and the ENFLG bit becomes 1. It takes up to two cycles of the count source until the ENFLG bit becomes 1 after setting the EN bit to 1. During this period, do not access registers associated with PMCi (registers listed in Table 22.3 and Table 22.4 "register structure (PMCi circuit)") excluding the ENFLG bit.

When the EN bit is set to 0 (operation stops), PMCi circuit stops operating and the ENFLG bit becomes 0 (operation stops). It takes up to one cycle of the count source until the ENFLG bit becomes 0 after setting the EN bit to 0.

31.20.2 Register Reading Procedure

If reading the following registers when the data changes, undefined value may be read.

Each flag in registers PMCiCON2 and PMCiSTS

Registers PMCiTIM, PMC0DAT0 to PMC0DAT5, PMCiBC, and PMC0RBIT

Read above registers as follows to avoid reading the undefined value.

In pattern match mode

Using interrupt

Set the DRINT bit in the PMCiINT register to 1 (data reception complete interrupt enabled) and read the registers within PMCi interrupt routine.

Monitoring by a program 1

Set the DRINT bit in the PMCiINT register to 1 (data reception complete interrupt enabled) and monitor the IR bit in the PMCiIC register by a program. Read the registers when the IR bit becomes 1 (interrupt request is generated).

- Monitoring by a program 2
- (1) Monitor the DRFLG bit in the PMCiSTS register
- (2) When the DRFLG bit becomes 1, monitor the DRFLG bit until it becomes 0.
- (3) Read the necessary content of the registers when the DRFLG bit becomes 0.

In input capture mode

Using interrupt

Set the TIMINT bit in the PMCiINT register to 1 (timer measure interrupt enabled) and read the registers within PMCi interrupt routine.

Monitoring by a program 1

Set the TIMINT bit in the PMCiINT register to 1 (timer measure interrupt enabled) and monitor the IR bit in the PMCilC register by a program. Read the registers when the IR bit becomes 1 (interrupt request is generated).

31.21 Notes on Serial Interface UARTi (i = 0 to 2, 5 to 7)

Note

The 80-pin package does not have pins CLK2 and CTS2/RTS2 for UART2. Do not use functions associated with these pins. UART6 and UART7 are not included.

If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is 1 (threephase output forcible cutoff by input on SD pin enabled), the following pins go to high-impedance state:

P7_2/CLK2/TA1OUT/V, P7_3/CTS2/RTS2/TA1IN/V, P7_4/TA2OUT/W, P7_5/TA2IN/W, P8_0/ TA4OUT/RXD5/SCL5/U, P8_1/TA4IN/CTS5/RTS5/U

31.21.1 Clock Synchronous Serial I/O

31.21.1.1 Transmission/Reception

When the RTS function is used with an external clock, RTSi pin (i = 0 to 2, 5 to 7) outputs a low-level signal, which informs the transmitting side that the MCU is ready for a receive operation. The RTSi pin outputs a high-level signal when a receive operation starts. Therefore, a transmit timing and receive timing can be synchronized by connecting the RTSi pin to the CTSi pin of the transmitting side. The RTS function is disabled when an internal clock is selected.

31.21.1.2 Transmission

If an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the UiC0 register (i = 0 to 2, 5 to 7) is set to 0 (transmit data output at the falling edge and receive data input at the rising edge of the transmit and receive clock), or while the external clock is held low when the CKPOL bit is set to 1 (transmit data output at the rising edge and receive data input at the falling edge of the transmit and receive clock).

- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).
- When CTS function is selected, input on the CTSi pin is low.

31.21.1.3 Reception

In clock synchronous serial I/O mode, the shift clock is generated by activating a transmitter. Set the UARTi-associated registers for a transmit operation even if the MCU is used for receive operation only. Dummy data is output from the TXDi pin (i = 0 to 2, 5 to 7) while receiving.

When an internal clock is selected, the shift clock is generated by setting the TE bit in the UiC1 register to 1 (transmission enabled) and placing dummy data in the UiTB register. When an external clock is selected, set the TE bit to 1 (transmission enabled), place dummy data in the UiTB register, and input an external clock to the CLKi pin to generate the shift clock.

If data is received consecutively, an overrun error occurs when the RI bit in the UiC1 register is set to 1 (data present in the UiRB register) and the next receive data is received in the UARTi receive register. And then, the OER bit in the UiRB register is set to 1 (overrun error occurred). At this time, the UiRB register is undefined. When an overrun error occurs, program the transmitting and receiving sides to retransmit the previous data. If an overrun error occurs, the IR bit in the SiRIC register remains unchanged.

To receive data consecutively, set dummy data in the low-order byte in the UiTB register per each receive operation.

When an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit is 0 (transmit data output at the falling edge and receive data input at the rising edge of the serial clock), or while the external clock is held low when the CKPOL bit is 1 (transmit data output at the rising edge and receive data input at the falling edge of the serial clock).

- The RE bit in the UiC1 register is 1 (reception enabled).
- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).

31.21.2 UART (Clock Asynchronous Serial I/O) Mode

31.21.2.1 Transmission/Reception

When the \overline{RTS} function is used with an external clock, the \overline{RTSi} pin (i = 0 to 2, 5 to 7) outputs a lowlevel signal, which informs the transmitting side that the MCU is ready for a receive operation. The RTSi pin outputs a high-level signal when a receive operation starts. Therefore, a transmit timing and receive timing can be synchronized by connecting the RTSi pin to the CTSi pin of the transmitting side. The RTS function is disabled when an internal clock is selected.

31.21.2.2 Transmission

When an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the UiC0 register (i = 0 to 2, 5 to 7) is 0 (transmit data output at the falling edge and receive data input at the rising edge of the transmit and receive clock), or while the external clock is held low when the CKPOL bit is 1 (transmit data output at the rising edge and receive data input at the falling edge of the transmit and receive clock).

- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).
- When CTS function is selected, input on the CTSi pin is low.

31.21.3 Special Mode 1 (I²C Mode)

31.21.3.1 Generation of Start and Stop Conditions

When generating start, stop and restart conditions, set the STSPSEL bit in the UiSMR4 register (i = 0 to 2, 5 to 7) to 0 and wait for more than half cycle of the transmit and receive clock. Then set each condition generation bit (STAREQ, RSTAREQ and STPREQ) from 0 to 1.

31.21.3.2 IR Bit

Set the following bits first, and then set the IR bit in the UARTi interrupt control registers to 0 (interrupt not requested).

Bits SMD2 to SMD0 in the UiMR register, the IICM bit in the UiSMR register, the IICM2 bit in the UiSMR2 register, the CKPH bit in the UiSMR3 register

31.21.4 Special Mode 4 (SIM Mode)

After reset, a transmit interrupt request is generated by setting bits U2IRS and U2ERE in the U2C1 register to 1 (transmission completed) and 1 (error signal output), respectively. Therefore, when using SIM mode, make sure to set the IR bit to 0 (interrupt not requested) after setting these bits.

31.22 Notes on SI/O3 and SI/O4

Note •

The 80-pin package does not have the SIN3 pin for SI/O3. SI/O3 is used for transmission only. No reception is possible.

31.22.1 SOUTi Pin Level When SOUTi Output Disabled

When the SMi2 bit in the SiC register is set to 1 (SOUTi output disabled), the target pin goes to highimpedance state regardless of which function of the pin is being used.

31.22.2 External Clock Control

The data written into the SiTRR register is shifted every time the external clock is input. When completing data transmission/reception of the 8th bit, read or write into the SiTRR register before inputting the clock for the next data transmission/reception.

31.22.3 Register Access When Using External Clock

When the SMi6 bit in the SiC register is set to 0 (external clock), write into the SMi7 bit in the SiC register and the SiTRR register under the following conditions:

- When the SMi4 bit in the SiC register is set to 0 (transmit data is output at falling edge of transmit/ receive clock and receive data is input at rising edge): CLKi input is high level.
- When the SMi4 bit in the SiC register is set to 1 (transmit data is output at rising edge of transmit/ receive clock and receive data is input at falling edge): CLKi input is low level.

31.22.4 SiTRR Register Access

Write transmit data into the SiTRR register while transmission/reception stops. Read receive data from the SiTRR register while transmission/reception stops.

The IR bit in the SiIC register becomes 1 (interrupt request) during output of the 8th bit.

If the SM26 bit (SOUT3) or SM27 bit (SOUT4) in the S32C2 register is set to 0 (high-impedance after transmission), SOUTi pin becomes high-impedance when the transmit data is written into the SiTRR register immediately after an interrupt request is generated, and hold time of the transmit data becomes shorter.

31.22.5 Pin Function Switch When Using Internal Clock

If the SMi3 bit in the SiC register (i = 3, 4) changes from 0 (I/O port) to 1 (SOUTi output, CLK function) when setting the SMi2 bit to 0 (SOUTi output) and the SMi6 bit to 1 (internal clock), SOUTi initial value set to the SOUTi pin by the SMi7 bit may be output about for 10 ns. After that, the SOUTi pin becomes high-impedance.

If the output level from the SOUTi pin when the SMi3 bit changes from 0 to 1 becomes a problem, set the SOUTi initial value by the SMi7 bit.

31.22.6 Operation After Reset When Selecting External Clock

When the SMi6 bit in the SiC register is set to 0 (external clock) after reset, the IR bit in the SiIC register becomes 1 (interrupt request) by inputting the external clock for 8 bits to the CLKi pin. This will also happen even when the SMi3 bit in the SiC register is 0 (serial interface disabled) or before the value is written into the SiTRR register.

Under development

31.23 Notes on Multi-Master I²C-bus Interface

31.23.1 Limitation on CPU Clock

When the CM07 bit in the CM0 register is 1 (CPU clock is a sub clock), do not access the registers listed in Table 25.4 "Register Configuration". Set the CM07 bit to 0 (main clock, PLL clock, or on-chip oscillator clock) to access these registers.

31.23.2 Register Access

Notes are described to access the I2C interface control registers. The period from the rising edge of 1st clock of slave address or one-byte data transmission/reception to the falling edge of an ACK clock is considered as "period of transmission/reception". When the ACKCLK bit is 0 (no ACK clock), the period of transmission/reception is from the rising edge of 1st clock of slave address or one-byte data transmission/reception to the falling edge of 8th clock.

31.23.2.1 S00 Register

Do not write to the S00 register during transmission/reception.

31.23.2.2 S10 Register

Do not change bits other than the IHR bit in the S10 register during transmission/reception.

31.23.2.3 S20 Register

Do not change bits other than the ACKBIT bit in the S20 register during transmission/reception.

31.23.2.4 S3D0 Register

- Do not use the bit managing instruction (read-modify-write instruction) to access the S3D0 register.
- Bits ICK1 and ICK0 should be changed when the ES0 bit in the S1D0 register is 0 (I2C interface disabled).

31.23.2.5 S4D0 Register

Bits ICK4 to ICK2 should be changed when the ES0 bit in the S1D0 register is 0 (I2C interface disabled).

31.23.2.6 S10 Register

- Do not use the bit managing instruction (read-modify-write instruction) to access the S10 register.
- Do not write to the S10 register when bits MST and TRX change their values.

Figure 25.13 "Start Condition Detection" to Figure 25.15 "Operation After Completion of Slave Address/ Data Transmit/Receive" shows when bits MST and TRX change.

31.24 Notes on CEC (Consumer Electronics Control)

31.24.1 Registers and Bit Operation

The registers and the bits of the CEC function are synchronized with the count source. Therefore, the internal circuit starts to operate from the next count source timing, while the contents of the register is changed immediately after rewriting the value of the register.

When changing the value of the same bit successively or reading the bit changed under the influence of another bit, wait for one or more cycles of the count source.

Example: when changing the value of the same bit successively

- (1) Change the bit to 0.
- (2) Wait for one or more cycles of the count source.
- (3) Change the same bit to 1.

Example: when reading the bit changed under the influence of another bit (after the reception is disabled, to ensure that the CRERRFLG bit in the CECFLG register becomes 0 (no reception error detected)).

- (1) Set the CRXDEN bit in the CECC3 register to 0 (reception disabled)
- (2) Wait for one or more cycles of the count source
- (3) Read the CRERRFLG bit in the CECFLG register.

M16C/65 Group 31. Precautions

31.25 Notes on A/D Converter

31.25.1 Analog Input Pin

When VCC1 ≥ VCC2, set analog input voltage as follows: analog input voltage (AN_0 to AN_7, ANEX0, and ANEX1) ≤ VCC1 analog input voltage (AN0 0 to AN0 7 and AN2 7 to AN2 7) ≤ VCC2

Do not use any of four pins AN4 to AN7 as analog input pins if a key input interrupt is to be used (key input interrupt request is generated when analog input voltage becomes low level).

31.25.2 \$\phiAD Frequency

Set ϕ AD to 2 MHz or more, but an upper limit is set as follows:

 $4.0 \le VCC1 \le 5.5V$: $\phi AD \le 25 \text{ MHz}$ $3.2 \le VCC1 \le 4.0V$: $\phi AD \le 16 \text{ MHz}$ $3.0 \le VCC1 \le 3.2V$: $\phi AD \le 10 \text{ MHz}$

31.25.3 Pin Configuration

Three capacitors should be respectively put between pins AVCC, VREF, analog input (ANi (i = 0 to 7), ANEXi, ANO_i, and AN2_i) and the AVSS pin to protect from error operations caused by noise, latchup, or to reduce conversion errors. Also, a capacitor between the VCC1 pin and the VSS pin. Figure 31.9 shows Example of Pin Configuration.

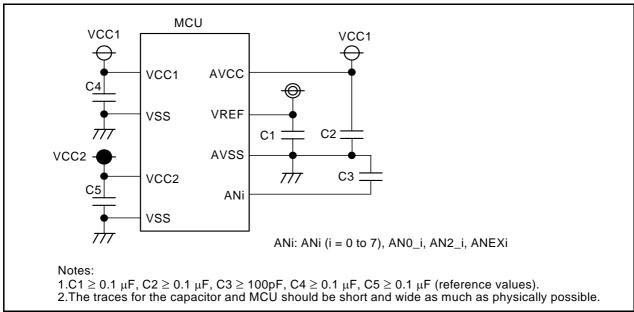


Figure 31.9 Example of Pin Configuration

31.25.4 Register Access

Set registers ADCON0 (exclude bit 6), ADCON1, and ADCON2 when A/D conversion stops (before trigger is generated).

Set the ADSTBY bit which is 1 to 0 after A/D conversion stops.

31.25.5 A/D Conversion Start

If the ADSTBY bit in the ADCON1 is changed from 0 (A/D operation stopped) to 1 (A/D operation enabled), wait for 1 ϕ A/D cycle or more before starting A/D conversion.

31.25.6 A/D Operation Mode Change

When A/D operation mode has been changed, re-select analog input pins by using bits CH2 to CH0 in the ADCON0 register or bits SCAN1 to SCAN0 in the ADCON1 register.

31.25.7 State When Forcibly Terminated

If A/D conversion in progress is halted by setting the ADST bit in the ADCON0 register to 0, the conversion result is undefined. In addition to that, the unconverted ADi register may also become undefined. Do not use any ADi registers when setting the ADST bit to 0 by a program during A/D conversion.

31.25.8 A/D Open-Circuit Detection Assist Function

The conversion result in open-circuit depends on the external circuit. Use this function only after careful evaluation for the system. Do not use this function when VCC1 > VCC2.

When A/D conversion starts after changing the AINRST register, follow these procedures:

- (1) Change bits AINRST1 to AINRST0 in the AINRST register.
- (2) Wait for one cycle of ϕ AD.
- (3) Set the ADST bit in the ADCON0 register to 1 (A/D conversion start).

31.25.9 Detection of Completion of A/D Conversion

In one-shot mode and single sweep mode, use the IR bit in the ADIC register to detect completion of A/D conversion. When not using interrupt, set the IR bit to 0 by a program after the detection.

When 1 is written to the ADST bit in the ADCON0 register, the ADST bit becomes 1 (A/D conversion start) after start processing time (refer to Table 27.7 "Cycles of A/D Conversion Item") elapses. When reading the ADST bit shortly after writing 1, 0 (A/D conversion stop) may be read.

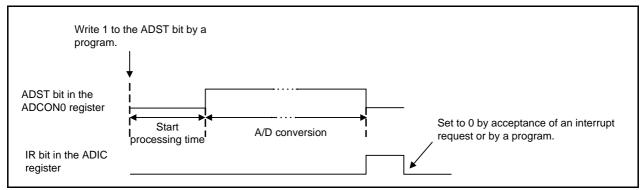


Figure 31.10 ADST Bit Operation

31.25.10 Register Settings

Set the CKS3 bit, and then set other A/D converter related registers. Also, after changing the CKS3 bit, set the A/D converter related registers again. Note that bits in the ADCON2 register and the CKS3 bit can be set simultaneously.

31.26 Notes on D/A Converter

Under development

31.26.1 Not Using D/A Converter

When the D/A converter is not used, set the DAiE bit (i = 0 to 1) to 0 (output disabled) and the DAi register to 00h in order to minimize unnecessary current consumption and prevent the flow of a current to R-2R resistor.

31.27 Notes on Flash Memory

Note =

P1, P4 4 to P4 7, P7 2 to P7 5, P9 1 of the 80-pin package have no external connections. There are no P11 to P14 in the 80-pin and 100-pin packages. For the 80-pin and 100-pin packages, do not use these pins for the entry of user boot function.

31.27.1 Functions to Prevent Flash Memory from Being Rewritten

Addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFEFh, 0FFFF7h, and 0FFFFBh store ID codes. When the wrong data is written to these addresses, the flash memory is prevented from being read or written in standard serial I/O mode.

0FFFFh is OFS1 address. When the wrong data is written to this address, the flash memory is prevented from being read or written in parallel I/O mode.

These addresses correspond to the vector address (H) in fixed vector.

31.27.2 Reading of Data Flash

When 2.7 V \leq VCC1 \leq 3.0 V and f(BCLK) \geq 16 MHz, or 3.0 V < VCC1 \leq 5.5 V and f(BCLK) \geq 20 MHz, one wait state is necessary to execute the program on the data flash and read the data. Use the PM17 in the PM1 register or FMR17 bit in the FMR1 register to set one wait state.

31.27.3 CPU Rewrite Mode

31.27.3.1 Operating Speed

Set a CPU clock frequency of 10 MHz or less by the CM06 bit in the CM0 register and bits CM17 and CM16 in the CM1 register before entering CPU rewrite mode (EW0 or EW1 mode). Also, set the PM17 bit in the PM1 register to 1 (wait state).

31.27.3.2 Prohibited Instructions

Do not use the following instructions in EW0 mode:

UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

31.27.3.3 Interrupts (EW0 Mode and EW1 Mode)

- Do not use an address match interrupt during command execution because the address match interrupt vector is located in ROM.
- Do not use a non-maskable interrupt during block 0 erasure because fixed vector is located in block

31.27.3.4 Rewrite (EW0 Mode)

If the power supply voltage drops while rewriting the block where the rewrite control program is stored, the rewrite control program is not correctly rewritten. This may prevent the flash memory from being rewritten. If this error occurs, use standard serial I/O mode or parallel I/O mode for rewriting.

31.27.3.5 Rewrite (EW1 Mode)

Do not rewrite any blocks in which the rewrite control program is stored.

31.27.3.6 DMA transfer

In EW1 mode, do not generate a DMA transfer while the FMR00 bit in the FMR0 register is set to 0 (auto programming or auto erasing).

31.27.3.7 Wait Mode

To enter wait mode, set the FMR01 bit to 0 (CPU rewrite mode disabled) before executing the WAIT instruction.

31.27.3.8 Stop Mode

To enter stop mode, set the FMR01 bit to 0 (CPU rewrite mode disabled), and then disable DMA transfer before setting the CM10 bit to 1 (stop mode).

31.27.3.9 Low Power Mode and On-Chip Oscillator Low Power Mode

When the CM05 bit is set to 1 (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Lock bit program
- Read lock bit status
- Block blank check

31.27.3.10 PM13 Bit

The PM13 bit in the PM1 register becomes 1 while the FMR01 bit in the FMR0 register is 1 (CPU rewrite mode enabled). The PM13 bit returns to the former value by setting the FMR01 bit to 0 (CPU rewrite mode disabled). When the PM13 bit is changed during CPU rewrite mode, the value of the PM13 bit after being changed is not reflected until the FMR01 bit is set to 0.

31.27.3.11 Area Where Rewrite Control Program is Executed

Bits PM10 and PM13 in the PM1 register become 1 in CPU rewrite mode. Execute the rewrite program in internal RAM or an external area which can be used when both bits PM10 and PM13 are 1. Do not use the area (40000h to BFFFFh) where accessible space is expanded when the PM13 bit is 0 and 4-Mbyte mode is set.

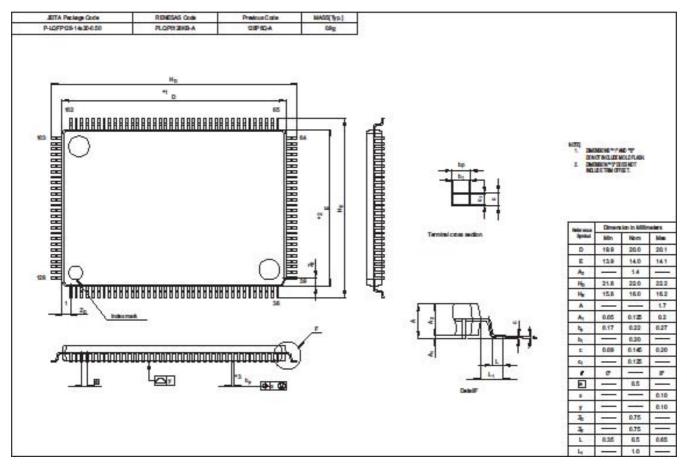
31.27.3.12 Program and Erase Cycles and Execution Time

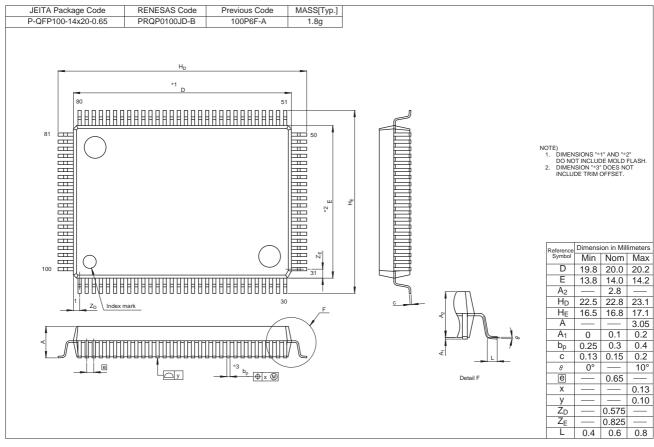
Execution time of program, block erase and lock bit program command becomes longer as the number of programming and erasing increases.

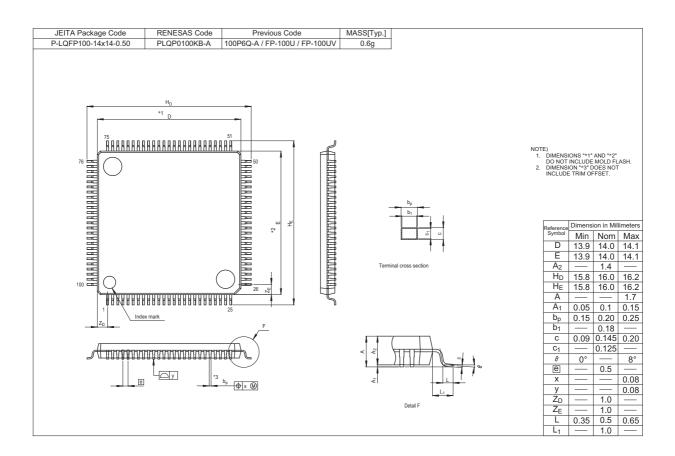
31.27.3.13 Suspend of Auto-Erase Operation and Auto-Program Operation

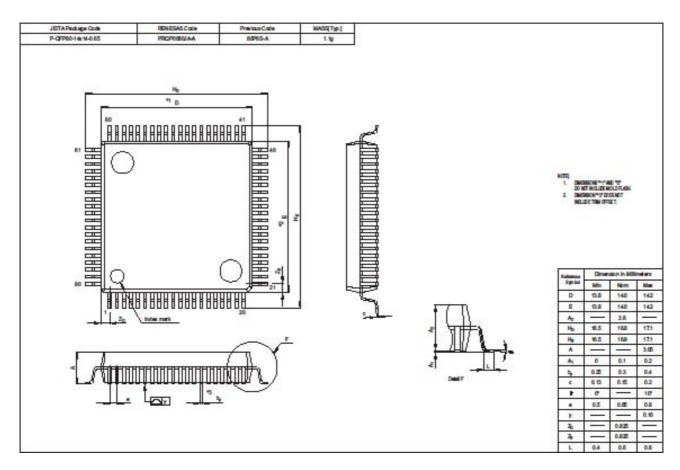
When program, block erase, and lock bit program commands are suspended, the blocks for those commands must be erased. Execute program and lock bit program commands again after erasing. Those commands are suspended by the following reset or interrupts:

- Reset
- NMI, watchdog timer, oscillation stop/re-oscillation detection, voltage monitor 1, and voltage monitor 2 interrupts.


Under development


31.27.4 Standard Serial I/O Mode


31.27.4.1 User Boot Mode


To use user boot mode after standard serial I/O mode, turn off the power when exiting standard serial I/O mode, and then turn on the power again (cold start). The MCU enters user boot mode under the right conditions.

Appendix 1. Package Dimensions

	[A]		FMR1	701
ΛD0 to ΛD7	r., 1	656 661	FMR2	131. 702
			FMR3	
			FMR6	
	658, 667, 670, 6		FRA0	
	660, 668, 671, 6		110AU	1 12
ADIC		223		
AIER		228	[1]	
AIER2		228	ICTB2	374
			IDB0, IDB1	
			IFSR	
	[B]		IFSR2A	
BCNIC		223	IFSR3A	
			IICIC	
			INT0IC to INT2IC	
	1 0 1		INT3IC	224
	[C]		INT6IC	
CCRB1		632	INT7IC	
CCRB2		632	INVC0	
			INVC1	371
			[K]	
				200
CECC4		627	KUPIC	223
CECFLG		629		
CISEL		630		
			[N]	
				040 004
			NMIDF	213, 231
			[0]	
CRADRI2		633		2 200 705
CRCD		689	OFS16	
CRCIN		689	ONSF	297
CRCMR		690		
			[P]	
				046
			P0 to P10	
CSR		161	PCLKR109, 288, 339, 49	
			PCR209, 23	
			PD0 to PD14	212
	[D]		PDRF	376
D.1.0. D.1.1		005	PFCR	
			PLC0	
			PM06	
DAR0 to DAR3	3	268		
DBR		183	PM1	
DM0CON to DI	M3CON	270	PM2	
	IC		PMC0BC, PMC1BC	
	BSL		PMC0CON0, PMC1CON0	445
			PMC0CON1, PMC1CON1	447
		373	PMC0CON2, PMC1CON2	
			PMC0CON3, PMC1CON3	
			PMC0CPC	
	[E]			
EM/C		400	PMC0CPD	
			PMC0D0PMAX, PMC1D0PMAX	
EWR		164	PMC0D0PMIN, PMC1D0PMIN	457
			PMC0D1PMAX, PMC1D1PMAX	457
			PMC0D1PMIN, PMC1D1PMIN	
	[[]		PMC0DAT0 to PMC0DAT5	
	[F]	400 000	PMC0HDPMAX, PMC1HDPMAX	
FMR0		130 698	I MOULDLIMAX, FING HIDEMAX	430

PMC0HDPMIN, PMC1HDPMIN4		0 to TA4 2	
PMC0INT, PMC1INT 4	55 TA1	1, TA2, TA4 3	368
PMC0RBIT 4	58 TA1	11, TA21, TA41295, 3	368
PMC0STS, PMC1STS 4	52 TAE	3SR296, 3	345
PMC0TIM, PMC1TIM 4		CS0 to TACS2	
PPWFS1, PPWFS2 3		OW2	
PRCR		POFS2	
PRG2C1		OIC to TB2IC	
PUR0		OMR to TB5MR	
PUR1		0 to TB5 3	
PUR2 2		11 to TB513	
PUR3		2	
PWMCON04		2SC 3	
PWMCON14		3IC/U0BCNIC	
PWMFS 2		4IC/U1BCNIC	
PWMPRE0, PWMPRE1 4		5IC	
PWMREG0, PWMREG1 4		CS0 to TBCS3	
FWWINEGO, FWWINEGT4		SR	
		KDIVC0289, 3	
[R]		R0 to TCR32	
RMAD0 to RMAD32		RC3	
RSTFR	61 IRC	GSR2	190
RTCCR1 4	10		
RTCCSEC 4	15		
RTCCSR 4	14	[U]	
RTCHR 4	08 U0E	BRG to U2BRG, U5BRG to U7BRG 4	198
RTCMIN 4		C0 to U2C0, U5C0 to U7C04	
RTCSEC 4		C1 to U2C1, U5C1 to U7C15	
RTCWK 4		MR to U2MR, U5MR to U7MR4	
		RB to U2RB, U5RB to U7RB4	
		SMR2 to U2SMR2, U5SMR2 to U7SMR2 5	
[S]		SMR3 to U2SMR3, U5SMR3 to U7SMR3 5	
	1109	SMR4 to U2SMR4, U5SMR4 to U7SMR4 5	
500	13	SMR to U2SMR, U5SMR to U7SMR 5	
S0D0 to S0D2	/4	TB to U2TB, U5TB to U7TB4	
SORIC to S2RIC	²³	BCNIC/CEC1IC2	
SOTIC to S2TIC		BCNIC/RTCTIC2	
S105	09	BCNIC/PMC0IC2	
S11 5	9 4	LKSEL04	
S1D05	73	ON 5	
S20 5	וחוו	F	
S2D05	81		
S34C2 5			
S3BRG, S4BRG 5		۲ ۱/ ۱	
S3C, S4C 5		[V]	
S3D0		R1	
S3IC/INT4IC		R2	
S3TRR, S4TRR 5		1LS	
S4D0		/0C	_
S4IC/INT5IC		/1C	
S5RIC to S7RIC		/2C85, 2	
S5TIC/CEC2IC		/CE	80
S6TIC/RTCCIC			
S7TIC/PMC1IC	23		
SAR0 to SAR3			
	68	[W]	
SCLDAIC2	68 33	[W])50
SCLDAIC2	68 23 _{WD}	OC2	
SCLDAIC2	68 23 WD WD	DC2 DTR2	258
	68 23 WD WD	OC2	258
[T] TA0IC to TA4IC	68 23 WD WD WD	DC2 DTR2	258

Revision History	M16C/65 Group Hardware Manual
------------------	-------------------------------

Rev.	Date	Description		
		Page	Summary	
0.30	Sep 09, 2008	-	First Edition issued.	

M16C/65 Group Hardware Manual

Publication Date: Sep 09, 2008 Rev.0.30

Sep 09, 2008 Rev.0.30

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

2-6-2, Otemachi, Chiyoda-ku, Tokyo 100-0004

© 2008. Renesas Technology Corp., All rights reserved. Printed in Japan.

M16C/65 GROUP HARDWARE MANUAL

