

C85E.pdf May 17,2016

Safety Standard Certified Ceramic Capacitors/ High Voltage Ceramic Capacitors

EU RoHS Compliant

- All the products in this catalog comply with EU RoHS.
- EU RoHS is "the European Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment."
- For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/eneu/support/compliance/rohs).

1

2

3

5

6

Contents

Product specifications are as of March 2016.

Part Numbering	р2
Safety Standard Certified Ceramic Capacitors	
1 Type KY (Basic Insulation) -Class X1, Y2- (Recommend)	р5
2 Type KX New Small Size (Reinforced Insulation) -Class X1, Y1- (Recommend) p8
Type KY/KX Specifications and Test Methods	p11
AC250V Ceramic Capacitor Non Safety Certified Type	
3 DEJ Series (Based on the Electrical Appliance and Material Safety Law of Jap DEJ Series Specifications and Test Methods	ɔan) p15 p16
Safety Certified Ceramic Capacitors Characteristics Data (Typical Example)	
Safety Certified Ceramic Capacitors Packaging	
Safety Certified Ceramic Capacitors 🖄 Caution	
Safety Certified Ceramic Capacitors Notice	p26
 High Voltage Ceramic Capacitors DEH Series (125°C Guaranteed/Low-dissipation Factor/DC2kV, 3.15kV) ···· DEH Series Specifications and Test Methods ····· 	
5 DEA Series (125°C Guaranteed/Class 1/DC2k-3.15kV) ····· DEA Series Specifications and Test Methods ·····	
6 DEB Series (Class 2/DC2k-3.15kV)	p35
DEB Series Specifications and Test Methods	p37
7 DEC Series (Class 1, 2/DC6.3kV)	p39
DEC Series Specifications and Test Methods	p41
8 DEF Series (Only for LCD Backlight Inverter Circuit/6.3kVp-p)	·····p43
DEF Series Specifications and Test Methods	
High Voltage Ceramic Capacitors Characteristics Data (Typical Example)	p47
High Voltage Ceramic Capacitors Packaging	·····p48
High Voltage Ceramic Capacitors 🖞 Caution	p50
High Voltage Ceramic Capacitors Notice	p55
Safety Standard Certified Ceramic Capacitors for Automotive	
9 Type KJ -Class X1, Y2- (For Automotive Use/AC Line Filter of PHEV/EV Cha	
📖 Lyde KJ -Class X L, Y Z- (For Automotive Use/AC Line Filter of PHEV/EV Cha	rgeri Dob

Type KJ Specifications and Test Methods p57 Safety Certified Ceramic Capacitors for Automotive Characteristics Data (Typical Example) p61 Safety Certified Ceramic Capacitors for Automotive Packaging p62 Safety Certified Ceramic Capacitors for Automotive Action for Automotive Packaging p63 Safety Certified Ceramic Capacitors for Automotive Notice p64

Safety Certified Ceramic Capacitors/High Voltage Ceramic Capacitors ISO9000 Certifications … p67

Please check the MURATA website (http://www.murata.com/) if you cannot find a part number in this catalog.

8

Part Numbering

Safety Standard Certified Ceramic Capacitors

Product ID 2 Series Category

Product ID	Code	Outline	Contents		
	1	Safety Standard	IEC60384-14 Class X1, Y1		
	2	Certified	IEC60384-14 Class X1, Y2		
DE	L	AC250V (r.m.s.)	-Products based on the Electrical Appliance and Material Safety Law of Japan-		

For Electrical Appliance and Material Safety Law of Japan, the first three digits (①Product ID and ②Series Category) express "Series Name."

For Safety Certified Capacitors, the first three digits express product code. The fourth figure expresses certified type shown in @Safety Standard Certified Type column.

Temperature Characteristics

Code	Temperature Characteristics	Cap. Change or Temp. Coeff.	Temperature Range	
В3	В	±10%		
E3 E		+20%, -55% -25 to +85		
F3	F	+30%, -80%	%	
1X	SL	+350 to -1000ppm/°C	+20 to +85°C	

Ated Voltage/Safety Standard Certified Type

Code	Rated Voltage		
кх	X1, Y1; AC250V (r.m.s.), AC300V (r.m.s.) (Safety Standard Certified Type KX)		
KY	X1, Y2; AC250V (r.m.s.), AC300V (r.m.s.) (Safety Standard Certified Type KY)		
E2	AC250V (r.m.s.)		

GCapacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two numbers.

©Capacitance Tolerance

Code	Capacitance Tolerance			
J	±5%			
к	±10%			
М	±20%			
Z	+80%, -20%			

Lead Style

		Dimensions (mm)			
Code	Lead Style	Lead Spacing	Lead Diameter	Pitch of Components	
A2		5			
A3	Vertical Crimp Long	7.5	ø0.6±0.05	_	
A4	Long	10			
B2/J2	Vertical Crimp	5	ø0.6±0.05	_	
B3/J3		7.5			
B4/J4	Shore	10			
C3	Straight Long	7.5	ø0.6±0.05	_	
D3	Straight Short	7.5	ø0.6±0.05	_	
N2		5	ø0.6±0.05	12.7	
N3	Vertical Crimp Taping	7.5		15	
N4	i aping	10		25.4	
P3	Straight Taping	7.5	ø0.6±0.05	15	

8Packaging

Code	Packaging		
Α	Ammo Pack Taping		
В	B Bulk		

Individual Specification Code

For part number that cannot be identified without "Individual Specification," it is added at the end of part number, expressed by three-digit alphanumerics.

Halogen-free Compatible Product

High Voltage Ceramic Capacitors (2kV-6.3kV)

1 Product ID 2 Series Category

(Part Number)

3 ,					
Product ID	Code	Outline	Contents		
DE C F	А		Class 1 (Char. SL) DC2-3.15kV Rated		
		Class 2 DC2-3.15kV Rated			
	с	High Voltage	Class 1, 2 DC6.3kV Rated		
	F		LCD Backlight Inverter Circuit 6.3kVp-p		
	н		High Temperature Guaranteed, Low-dissipation Factor (Char. R) DC2-3.15kV Rated		

The first three digits (**1**Product ID and **2**Series Category) express "Series Name."

Temperature Characteristics

Code	Temperature Characteristics		
В3	В	±10%	
E3	E	+20%, -55%	–25 to +85°C
F3	F	+30%, -80%	
R3	R	±15%	–25 to +85°C
	ĸ	+15%, -30%	+85 to +125°C
D3	D	+20%, -30%	–25 to +125°C
1X	SL	+350 to –1000ppm/°C	+20 to +85°C
2C	CH 0±60ppm/°C		+20 to +85°C

4 Rated Voltage

Code	Rated Voltage		
ЗD	DC2kV		
ЗF	DC3.15kV		
3J	DC6.3kV		
LH	6.3kVp-p		

Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two numbers.

GCapacitance Tolerance

Code	Capacitance Tolerance			
С	±0.25pF			
D	±0.5pF			
J	±5%			
к	±10%			
z	+80%, -20%			

Clead Style

_						
		Dimensions (mm)				
Code	Lead Style	Lead	Lead	Pitch of		
		Spacing	Diameter	Components		
A2	Vertical Crimp	5				
A3	Long	7.5	ø0.6±0.05	-		
A4	5	10				
B2		5				
B3/J3	Vertical Crimp Short	7.5	ø0.6±0.05	-		
B4	enere	10				
C1	Straight Long	5	ø0.5±0.05			
СЗ		7.5	ø0.6±0.05	-		
C4		10				
CD		7.5	ø0.5±0.05			
D1		5	ø0.5±0.05			
D3	Straight Short	7.5	ø0.6±0.05	_		
DD		7.5	ø0.5±0.05			
N2		5	ø0.6±0.05	12.7		
N3	Vertical Crimp Taping	7.5		15		
N7	i aping	7.5		30		
P2	Straight Taning	5		12.7		
P3	Straight Taping	7.5	ø0.6±0.05	15		

8Packaging

Code	Packaging
А	Ammo Pack Taping
В	Bulk
В	Bulk

Individual Specification Code

For part number that cannot be identified without "Individual Specification," it is added at the end of part number, expressed by three-digit alphanumerics.

5 6 7 8 9

Safety Standard Certified Ceramic Capacitors for Automotive

0 0 0 0

DE 6 E3 KJ 102 M N3 A

(Part Number)	

	•••	-	-
Product ID	2 Series Category		

Product ID	Code Outline		Contents	
DE	6 Safety Standard Certified IE		IEC60384-14 Class X1, Y2	

The first three digits express product code. The fourth figure expresses certified type shown in @Safety Standard Certified Type column.

Temperature Characteristics

Code Temperature Characteristics		Cap. Change or Temp. Coeff.	Temperature Range
В3	В	±10%	
E3	E	+20%, -55%	-25 to +85°C

A Rated Voltage/Safety Standard Certified Type

Code	Rated Voltage	
КJ	X1, Y2; AC300V (r.m.s.) (Safety Standard Certified Type KJ)	

GCapacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two numbers.

GCapacitance Tolerance

Code	Capacitance Tolerance	
к	±10%	
М	±20%	

Lead Style

		Dimensions (mm)		
Code	Lead Style	Lead Spacing	Lead Diameter	Pitch of Components
A3	Vertical Crimp Long			_
В3	Vertical Crimp Short	7.5	ø0.6±0.05	_
N3	Vertical Crimp Taping			15

8Packaging

Code	Packaging	
А	Ammo Pack Taping	
В	Bulk	

Individual Specification Code

For part number that cannot be identified without "Individual Specification," it is added at the end of part number, expressed by three-digit alphanumerics.

Safety Standard Certified Ceramic Capacitors

Type KY (Basic Insulation) -Class X1, Y2- (Recommend)

Features

- 1. Compact size; diameter 25% less than Type KH.
- 2. Operating temperature range guaranteed up to 125 degrees C.
- 3. Dielectric strength: AC2000V (for lead spacing F=5mm) AC2600V (for lead spacing F=7.5mm)
- 4. Class X1/Y2 capacitors certified by UL/CSA/VDE/BSI/SEMKO/DEMKO/FIMKO/NEMKO/ ESTI/NSW/CQC.
- 5. Coated with flame-retardant epoxy resin (conforming to UL94V-0 standard). We recommend a halogen-free product* as our standard item.
 - * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
- 6. Taping available for automatic insertion.
- 7. AC300V Rated Voltage item are newly added.

Applications

- 1. Ideal for use as X/Y capacitors for AC line filters and primary-secondary coupling on switching power supplies and AC adapters.
- 2. Ideal for use on D-A isolation and noise absorption for DAA modems without transformers.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

Standard Certification

	Standard No.	Certified No.	Rated Voltage
UL	UL60384-14	E37921	
CSA	CSA E60384-14	1283280	
VDE	IEC 60384-14	40006273	
VDE	EN 60384-14	40000273	
	EN 60065 (8.8, 14.2)		
BSI	IEC 60384-14	KM 37901	
	EN 60384-14		
SEMKO		1207848	250Vac (r.m.s.)
DEMKO	IEC 60384-14 EN 60384-14	D01002	250 Vac (1.111.3.)
FIMKO		24197	
NEMKO		P12215094	
ESTI		12.0102	
NSW	IEC 60384-14	6824	
VVCVI	AS3250	0024	
CQC	GB/T14472	CQC06001017446	
cqc	00/114472	CQC06001017447	

The certification number might change due to revision of the application standard and changes in the range of acquisition.
 Please contact us when the certification of South Korean Safety Standard

 Please contact us when the certification of South Korean Safety Standard is necessary.

[Bulk] Vertical Crimp Short (B2, B3)

		· · · ·
Lead Code	Coating Extension e	ød
B2, B3	Up to the end of crimp	0.6±0.05

(in mm)

	Standard No.	Certified No.	Rated Voltage
UL	UL60384-14	E37921	
CSA	CSA E60384-14	1283280	
VDE	IEC 60384-14 EN 60384-14	40006273	
BSI	EN 60065 (8.8, 14.2) IEC 60384-14 EN 60384-14	KM 37901	
SEMKO		1207848	
DEMKO	150 60294 14	D01002	300Vac (r.m.s.)
FIMKO	EC 60384-14 EN 60384-14	24197	
NEMKO		P12215094	
ESTI		12.0102	
NSW	IEC 60384-14 AS3250	6824	
cqc	IEC 60384-14	CQC12001079706 CQC12001079940	

The certification number might change due to revision of the application
 standard and changes in the range of acquisition.

Note • Please read rating and ⁽/₂CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Marking

1

Rated Voltage 250Vac

Lead Spacing F=7.5mm

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE21XKY100J	250Vac(r.m.s.)	SL	10pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE21XKY150J	250Vac(r.m.s.)	SL	15pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE21XKY220J	250Vac(r.m.s.)	SL	22pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE21XKY330J	250Vac(r.m.s.)	SL	33pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE21XKY470J	250Vac(r.m.s.)	SL	47pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE21XKY680J	250Vac(r.m.s.)	SL	68pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY101K	250Vac(r.m.s.)	В	100pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY151K	250Vac(r.m.s.)	В	150pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY221K	250Vac(r.m.s.)	В	220pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY331K	250Vac(r.m.s.)	В	330pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY471K	250Vac(r.m.s.)	В	470pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY681K	250Vac(r.m.s.)	В	680pF±10%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY102M	250Vac(r.m.s.)	E	1000pF±20%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY152M	250Vac(r.m.s.)	E	1500pF±20%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY222M	250Vac(r.m.s.)	E	2200pF±20%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY332M	250Vac(r.m.s.)	E	3300pF±20%	9.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY472M	250Vac(r.m.s.)	E	4700pF±20%	10.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2F3KY103M	250Vac(r.m.s.)	F	10000pF±20%	14.0mm max.	7.5	5.0mm max.	A3B	B3B	NЗA

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Individual specification code "M02" expresses "simplicity marking and guarantee of dielectric strength between lead wires: AC2600V."

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KY) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Lead Spacing F=5mm

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE21XKY100J	250Vac(r.m.s.)	SL	10pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE21XKY150J	250Vac(r.m.s.)	SL	15pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE21XKY220J	250Vac(r.m.s.)	SL	22pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE21XKY330J	250Vac(r.m.s.)	SL	33pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE21XKY470J	250Vac(r.m.s.)	SL	47pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE21XKY680J	250Vac(r.m.s.)	SL	68pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY101K	250Vac(r.m.s.)	В	100pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY151K	250Vac(r.m.s.)	В	150pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY221K	250Vac(r.m.s.)	В	220pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY331K	250Vac(r.m.s.)	В	330pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY471K	250Vac(r.m.s.)	В	470pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY681K	250Vac(r.m.s.)	В	680pF±10%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2E3KY102M	250Vac(r.m.s.)	E	1000pF±20%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A

Continued on the following page. earrow

muRata

1

Continued from the preceding page.

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE2E3KY152M	250Vac(r.m.s.)	E	1500pF±20%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2E3KY222M	250Vac(r.m.s.)	E	2200pF±20%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2E3KY332M	250Vac(r.m.s.)	E	3300pF±20%	9.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2E3KY472M	250Vac(r.m.s.)	E	4700pF±20%	10.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Individual specification code "M01" expresses "simplicity marking and guarantee of dielectric strength between lead wires: AC2000V."

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KY) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Rated Voltage 300Vac

Lead Spacing F=7.5mm

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE2B3KY101K	300Vac(r.m.s.)	В	100pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY151K	300Vac(r.m.s.)	В	150pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY221K	300Vac(r.m.s.)	В	220pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY331K	300Vac(r.m.s.)	В	330pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY471K	300Vac(r.m.s.)	В	470pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY681K	300Vac(r.m.s.)	В	680pF±10%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY102M	300Vac(r.m.s.)	Е	1000pF±20%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY152M	300Vac(r.m.s.)	Е	1500pF±20%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY222M	300Vac(r.m.s.)	Е	2200pF±20%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY332M	300Vac(r.m.s.)	Е	3300pF±20%	9.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY472M	300Vac(r.m.s.)	Е	4700pF±20%	10.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2F3KY103M	300Vac(r.m.s.)	F	10000pF±20%	14.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Individual specification code "U02" expresses "simplicity marking and guarantee of dielectric strength between lead wires: AC2600V." Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KY) and capacitance of

products in the parts list when it is required for applying safety standard of electric equipment.

Safety Standard Certified Ceramic Capacitors

Type KX New Small Size (Reinforced Insulation) -Class X1, Y1- (Recommend)

Features

- 1. We design capacitors much more compact in size than current Type KX, having reduced the diameter by 20% max.
- 2. Operating temperature range guaranteed up to 125 degrees C.
- 3. Dielectric strength: AC4000V
- 4. Class X1/Y1 capacitors certified by UL/CSA/VDE/BSI/SEMKO/DEMKO/FIMKO/NEMKO/ ESTI/IMQ/CQC.
- 5. Can be use with a component in appliances requiring reinforced insulation and double insulation based on UL1492, IEC60065 and IEC60950.
- 6. Coated with flame-retardant epoxy resin (conforming to UL94V-0 standard). We recommend a halogen-free product* as our standard item.
 - * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
- Taping available for automatic insertion.
- 8. AC300V Rated Voltage item are newly added.

Applications

- 1. Ideal for use as X/Y capacitors for AC line filters and primary-secondary coupling on switching power supplies and AC adapters.
- 2. Ideal for use on D-A isolation and noise absorption for DAA modems without transformers.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

*: Small sized Type KX differs from current Type KX in electrical characteristics, such as the voltage dependency, capacitance temperature dependency, and Dielectric strength. Therefore, before replacing current Type KX,

please make a performance check by equipment. Please also refer to Notice (Rating) item 2, "Performance Check by Equipment," below.

[Bulk] Vertical Crimp Short (B4)

		. ,
Lead Code	Coating Extension e	ød
B4	Up to the end of crimp	0.6±0.05

(in mm)

Note • Please read rating and ⁽/_LCAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

2

Standard Certification Rated Voltage (AC250V) B, E Char.

Standard No.	Certified No.				
UL60384-14	E37921				
CSA E60384-14	1343810				
IEC 60384-14	40002831				
EN 60384-14	40002831				
EN 60065 (8.8, 14.2)					
IEC 60384-14	KM 37901				
EN 60384-14					
	1200074				
150 60284 14	D01004				
	24191				
EN 60384-14	P12215096				
	12.0094				
EN 60384-14	V4069				
CD/T14472	CQC02001001556				
GB/114472	CQC04001011643				
	UL60384-14 CSA E60384-14 IEC 60384-14 EN 60384-14 EN 60065 (8.8, 14.2) IEC 60384-14 EN 60384-14 IEC 60384-14 EN 60384-14				

• The certification number might change due to revision of the application standard and changes in the range of acquisition.

• Please contact us when the certification of South Korean Safety Standard is necessary.

Standard Certification Rated Voltage (AC300V) B, E Char.

	······································				
Standard No.	Certified No.				
UL60384-14	E37921				
CSA E60384-14	1343810				
IEC 60384-14	40002831				
EN 60384-14	40002831				
EN 60065 (8.8, 14.2)					
IEC 60384-14	KM 37901				
EN 60384-14					
	1200074				
150 60384 14	D01004				
	24191				
EN 00384-14	P12215096				
	12.0094				
EN 60384-14	V4069				
150 60284 14	CQC12001079735				
IEC 00364-14	CQC12001079941				
	UL60384-14 CSA E60384-14 IEC 60384-14 EN 60384-14 EN 60065 (8.8, 14.2) IEC 60384-14 EN 60384-14 IEC 60384-14 EN 60384-14				

• The certification number might change due to revision of the application standard and changes in the range of acquisition.

Rated Voltage 250Vac

0									
Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE1B3KX101K	250Vac(r.m.s.)	В	100pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX151K	250Vac(r.m.s.)	В	150pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX221K	250Vac(r.m.s.)	В	220pF±10%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX331K	250Vac(r.m.s.)	В	330pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX471K	250Vac(r.m.s.)	В	470pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX681K	250Vac(r.m.s.)	В	680pF±10%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX102M	250Vac(r.m.s.)	E	1000pF±20%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX152M	250Vac(r.m.s.)	E	1500pF±20%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX222M	250Vac(r.m.s.)	E	2200pF±20%	9.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX332M	250Vac(r.m.s.)	E	3300pF±20%	10.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX472M	250Vac(r.m.s.)	E	4700pF±20%	12.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

muRata

Please contact us when less than 100pF capacitance product is necessary.

Marking Rated Voltage (AC250V) B, E Char.

Marking Rated Voltage (AC300V) B, E Char.

Example	Item
	① Type Designation KX
	② Nominal Capacitance (3 digit system)
	3 Capacitance Tolerance
① <i>十</i> KX300~ ∖	④ Company Name Code
X1Y1 HF	@18: Made in Taiwan @15: Made in Thailand
5 → 0D M8 / 0) (5) Manufactured Date Code
	Class Code X1Y1
	Rated Voltage Mark 300~
	Halogen Free Mark HF

9

Rated Voltage 300Vac

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE1B3KX101K	300Vac(r.m.s.)	В	100pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX151K	300Vac(r.m.s.)	В	150pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX221K	300Vac(r.m.s.)	В	220pF±10%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX331K	300Vac(r.m.s.)	В	330pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX471K	300Vac(r.m.s.)	В	470pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX681K	300Vac(r.m.s.)	В	680pF±10%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX102M	300Vac(r.m.s.)	E	1000pF±20%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX152M	300Vac(r.m.s.)	E	1500pF±20%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX222M	300Vac(r.m.s.)	E	2200pF±20%	9.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX332M	300Vac(r.m.s.)	E	3300pF±20%	10.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX472M	300Vac(r.m.s.)	E	4700pF±20%	12.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Operating Temperature Range: -40 to +125°C (Except for UL/VDE, -25 to +125°C)

No.	ltem	n		Specifications	Test Method	
1	Appearance and	Dimensions	No visible defeo specified range	ct, and dimensions are within	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.	
2	Marking		To be easily legible		The capacitor should be visually inspected.	
3	Capacitance		Within specifie	d tolerance		
4	4 Dissipation Factor (D.F.) Q		Char. B, E F SL	Specifications D.F.≦2.5% D.F.≦5.0% Q≧400+20C* ¹ (C<30pF) Q≧1000 (C≧30pF)	The capacitance, dissipation factor and Q should be measured at 20°C with 1±0.1kHz (char. SL: 1±0.1MHz) and AC5V(r.m.s.) max.	
5	Insulation Resista	ance (I.R.)	10000MΩ min.		The insulation resistance should be measured with DC500 \pm 50V within 60 \pm 5 sec. of charging. The voltage should be applied to the capacitor through a resistor of 1M Ω .	
	-	Between Lead Wires	No failure		The capacitor should not be damaged when the test voltages from Table 1 are applied between the lead wires for 60 sec. <table 1=""> Type Test Voltage KY For lead spacing F=5mm AC2000V(r.m.s.) For lead spacing F=7.5mm AC2600V(r.m.s.) KX AC4000V(r.m.s.)</table>	
6		Body Insulation	No failure		First, the terminals of the capacitor should be connected together. Then, as shown in the figure at right, a metal foil should be closely wrapped around the body of the capacitor to the distance of about 3 to 6mm from each terminal. Then, the capacitor should be inserted into a container filled with metal balls of about 1mm diameter. Finally, AC voltage from Table 2 is applied for 60 sec. between the capacitor lead wires and metal balls. <table 2=""> <u>Type Test Voltage</u> KY AC2600V(r.m.s.) KX AC4000V(r.m.s.)</table>	
7	7 Temperature Characteristics		Char. SL	Capacitance Change Within ±10% Within ±25% Within ±30% e: -25 to +85°C) Temperature Coefficient +350 to -1000ppm/°C e: +20 to +85°C)	The capacitance measurement should be made at each step specified in Table 3. <table 3=""> <u>Step Temperature (°C)</u> <u>1 20±2</u> <u>2 -25±2</u> <u>3 20±2</u> <u>4 85±2</u> <u>5 20±2</u></table>	
8	8 Solderability of Leads			ld be soldered with uniform coating ection over 3/4 of the l direction.	The lead wire of a capacitor should be dipped into molten solder for 2±0.5 sec. The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C	

 $^{\ast 1}$ "C" expresses nominal capacitance value (pF).

Continued on the following page. earrow

muRata

Continued from the preceding page.

No.	lte	em	Specifications	Test Method	
		Appearance	No marked defect	As shown in the figure, the lead	
	Soldering	Capacitance		wires should be immersed in solder Thermal Capacitor	
		Change	Within ±10%	of 350±10°C or 260±5°C up to 1.5 Screen	
		I.R.	1000MΩ min.	to 2.0mm from the root of terminal for 3.5±0.5 sec. (10±1	
9	Effect			sec. for 260±5°C).	
	(Non-Preheat)			Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at	
		Dielectric Strength	Per Item 6	room condition $*^2$ for 24±2 hrs. before initial measurements.	
		Strength		Post-treatment:	
				Capacitor should be stored for 1 to 2 hrs. at room condition.* ²	
		Appearance	No marked defect	First the capacitor should be stored at 120+0/-5°C for Thermal Capacitor	
		Capacitance Change	Within ±10%	60+0/-5 sec.	
		I.R.	1000MΩ min.	Then, as in the figure, the lead wires should be immersed in	
	Soldering			solder of 260+0/-5°C up to 1.5	
10	Effect (On-Preheat)			to 2.0mm from the root of terminal for 7.5+0/-1 sec.	
		Dielectric		Pre-treatment:	
		Strength	Per Item 6	Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* ² for 24±2 hrs. before initial measurements.	
				Post-treatment:	
				Capacitor should be stored for 1 to 2 hrs. at room condition.* ²	
		Appearance	No marked defect		
		Capacitance	Within the specified tolerance	The capacitor should be firmly soldered to the supporting lead	
	Vibration			wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1-minute rate of vibration change	
11	Resistance		Char.SpecificationsB, ED.F.≤2.5%	from 10Hz to 55Hz and back to 10Hz.	
		D.F.	B, L D.F.≦2.5 % F D.F.≦5.0%	Apply for a total of 6 hrs., 2 hrs. each in 3 mutually	
		Q	SL Q≧400+20C*¹(C<30pF)	perpendicular directions.	
			Q≧1000 (C≧30pF)		
		Appearance	No marked defect		
		Capacitance Change	Char. Capacitance Change		
			B Within ±10% E, F Within ±15%		
			SL Within ±13 %		
	Humidity			Set the capacitor for 500±12 hrs. at 40±2°C in 90 to 95%	
12	(Under Steady	D.F. Q	Char.SpecificationsB, ED.F.≦5.0%	relative humidity. Post-treatment:	
	State)		F D.F.≦7.5%	Capacitor should be stored for 1 to 2 hrs. at room condition.* ²	
			SL Q≧275+5/2C*1(C<30pF)		
			Q≧350 (C≧30pF)		
		I.R.	3000MΩ min.		
		Dielectric Strength	Per Item 6		
		Appearance	No marked defect		
			Char. Capacitance Change		
		Capacitance	Char.Capacitance ChangeBWithin ±10%		
		Change	E, F Within ±15%		
			SL Within ± 5%		
	Humidity		Char. Specifications	Apply the rated voltage for 500±12 hrs. at 40±2°C in 90 to 95% relative humidity.	
13	Loading	D.F.	B, E D.F.≦5.0%	Post-treatment:	
		Q	F D.F.≦7.5% Q≧275+5/2C*¹(C<30pF)	Capacitor should be stored for 1 to 2 hrs. at room condition.*^2 $% \left({{{\rm{Capacitor}}} \right) = {{\rm{Capacitor}}} \right)$	
			SL Q≧275+572C* (C<30pF) Q≧350 (C≧30pF)		
		I.R.	3000MΩ min.	_	
		Dielectric	Der Itom 6		
		Strength	Per Item 6		
↓ 1 II	"C" expresses por				

*1 "C" expresses nominal capacitance value (pF).

*2 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued from the preceding page. \searrow

No.	No. Item		Specifications	Test Method		
		Appearance	No marked defect	Impulse Voltage		
		Capacitance Change	Within ±20%	Each individual capacitor should be subjected to a 5kV (Type KX: 8kV) impulses for three times. Then the capacitors are applied to life test.		
		I.R.	3000MΩ min.	100 (%)		
14	Life	Dielectric	Per Item 6	Front time $(T_1) = 1.2 \mu s = 1.67T$ Time to half-value $(T_2) = 50 \mu s$ T_1 T_2 Apply a voltage from Table 4 for 1000 hrs. at 125+2/-0°C, and relative humidity of 50% max.		
		Strength		<table 4=""></table>		
				Applied Voltage 170% of Rated Voltage except that once each hour the voltage is increased to AC1000V(r.m.s.) for 0.1 sec.		
				Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*2		
15	Robustness	Tensile	Lead wire should not be cut off. Capacitor should not be broken.	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec.		
	Terminations	Bending	not de broken.	Each lead wire should be subjected to 5N of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.		
				The capacitor should be individually wrapped in at least one but not more than two complete layers of cheesecloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAc should be maintained for 2 min. after the last discharge. $\int_{Tr}^{T} \int_{S_2}^{T} \int_{UAC}^{T} \int_{L_2}^{L_2} \int_{C_3}^{R} \int_{C_4}^{R} \int_{C_4}^{C_4} \int_{C_4}^{U_4} \int_{C_4}^{U_4$		
16	Active Flammability		The cheesecloth should not be on fire.	$\begin{tabular}{ c c c c c c } \hline \hline Oscilloscope \\ \hline Oscilloscope$		

*² "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page. $ot\!\!\!/$

Continued from the preceding page. \searrow

No.	lte	m	Specifications	Test Method			
17	17 Passive Flammability		The burning time should not exceed 30 sec. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position that best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec. Length of flame : 12±1mm Gas burner : Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas : Butane gas Purity 95% min.			
	Appearance		No marked defect	The capacitor should be subjected to 5 temperature cycles, then consecutively to 2 immersion cycles.			
		Capacitance Change	Char.Capacitance ChangeBWithin ±10%E, FWithin ±20%SLWithin ± 5%	Step Temperature (°C) Time (min) 1 -40+0/-3 30 2 Room temp. 3			
	Temperature and	D.F. Q	$\begin{tabular}{ c c c c c } \hline Char. & Specifications \\ \hline B, E & D.F. \le 5.0\% \\ \hline F & D.F. \le 7.5\% \\ \hline SL & Q \ge 275 + 5/2C^{*1}(C < 30 pF) \\ Q \ge 350 & (C \ge 30 pF) \\ \hline \end{tabular}$	3 125+3/-0 30 4 Room temp. 3 Cycle time: 5 cycles			
18	Immersion Cycle	I.R.	3000MΩ min.	Step Temperature (°C) Time Immersion (min) Water			
	0,000			1 65+5/-0 15 Clean water			
		Dielectric Strength	Per Item 6	2 0±3 15 Salt water Cycle time: 2 cycles Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition*² for 24±2 hrs. Post-treatment: Capacitor should be stored for 24±2 hrs. at room condition.*²			

*1 "C" expresses nominal capacitance value (pF).
 *2 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

AC250V Ceramic Capacitor Non Safety Certified Type

DEJ Series (Based on the Electrical Appliance and Material Safety Law of Japan)

Features

- 1. This type is based on the electrical appliance and material safety law of Japan (separated table 4).
- 2. Coated with flame-retardant epoxy resin (conforming to UL94V-0 standard).
 - Please contact us when a halogen-free product* is necessary.
 - * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
- 3. Taping available for automatic insertion.

Applications

Ideal for use on AC line filters and primary-secondary coupling for switching power supplies and AC adapters.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

3.0 max.

0.6±0.05

Fig. 2

(in mm)

[Bulk] Vertical Crimp Long (A3) Straight Long (C3)

[Bulk]

Vertical Crimp Short (B3)

Straight Short (D3)

Lead Code

СЗ

ating Extensi Style Up to the end of crimp 0.6±0.05 Fig. 1 B3 D3 3.0 max. 0.6±0.05 Fig. 2

Marking

	Temp. Char.	E, F
Nominal Body Diameter	ø7-8mm	102Z 250~ 16
Nomina Body Di	ø9-11mm	332Z 250~ @16
Nor	ninal Capacitance	Marked with 3 figures
Capa	acitance Tolerance	Marked with code
	Rated Voltage	Marked with code
	1anufacturer's dentification	Marked with 🕑 (omitted for nominal body diameter ø8mm and under)
Manu	factured Date Code	Abbreviation

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping (1)	Lead Package Taping (2)
DEJE3E2102Z	250Vac(r.m.s.)	Е	1000pF+80/-20%	7.0mm max.	7.5	4.0mm max.	C3B	D3B	N2A	P3A
DEJE3E2222Z	250Vac(r.m.s.)	Е	2200pF+80/-20%	8.0mm max.	7.5	4.0mm max.	A3B	B3B	N2A	N3A
DEJE3E2332Z	250Vac(r.m.s.)	Е	3300pF+80/-20%	9.0mm max.	7.5	4.0mm max.	A3B	B3B	N2A	N3A
DEJE3E2472Z	250Vac(r.m.s.)	Е	4700pF+80/-20%	11.0mm max.	7.5	4.0mm max.	A3B	B3B	N2A	N3A
DEJF3E2472Z	250Vac(r.m.s.)	F	4700pF+80/-20%	8.0mm max.	7.5	4.0mm max.	A3B	B3B	N2A	N3A
DEJF3E2103Z	250Vac(r.m.s.)	F	10000pF+80/-20%	11.0mm max.	7.5	4.0mm max.	A3B	B3B	N2A	N3A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code. Taping (1): Lead spacing F=5.0mm, Taping (2): Lead spacing F=7.5mm.

DEJ Series Specifications and Test Methods

Operating Temperature Range: -25 to +85°C

No.	lte	em	Specifications	Test Method
1	Appearance and Dimensions		No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.
2	Marking		To be easily legible	The capacitor should be visually inspected.
з	Capacitance		Within specified tolerance	The capacitance should be measured at 20°C with 1±0.1kHz and AC5V(r.m.s.) max.
4	Dissipation Fac (D.F.)	tor	Char. Specifications E D.F.≦2.5% F D.F.≦5.0%	The dissipation factor should be measured at 20°C with 1±0.1kHz and AC5V(r.m.s.) max.
5	Insulation Resi	stance (I.R.)	10000MΩ min.	The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging.
		Between Lead Wires	No failure	The capacitor should not be damaged when AC1500V(r.m.s.) are applied between the lead wires for 60 sec.
6	Dielectric Strength	Body Insulation	No failure	First, the terminals of the capacitor should be connected together. Then, as shown in the figure at right, the capacitor should be immersed into 10% salt solution up to a position of about 3 to 4mm apart from the terminals. Finally, AC1500V(r.m.s.) is applied for 60 sec. between the capacitor lead wires and electrode plate.
7	Temperature Characteristics		Char. Capacitance Change E Within $^{+29}_{-59}\%$ F Within $^{+30}_{-80}\%$	The capacitance measurement should be made at each step specified in Table 1. <table 1=""></table>
		Appearance	No marked defect	As in Figure 1, discharge is made 50 times at 5 sec. intervals
		I.R.	1000MΩ min.	from the capacitor (Cd) charged at DC voltage of specified.
8	Discharge Test	Dielectric Strength	Per Item 6	$\begin{array}{c c} R_3 & S & R_1 \\ \hline V_S & \hline \\ \hline \\ Fig.1 \\ Ct: Capacitor under test \\ S: High-voltage switch \\ R_1: 1000\Omega \\ \hline \\ \hline Cd & 0.001 \mu F \\ \hline VS & DC10kV \\ \end{array}$
9	Solderability of	Leads	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into molten solder for 2±0.5 sec. The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C

Continued on the following page. earrow

3

3

DEJ Series Specifications and Test Methods

Continued from the preceding page. \searrow

No.	lte	em	Specifications	Test Method		
		Appearance	No marked defect	As shown in the figure, the lead Thermal Capacitor		
10		I.R.	1000MΩ min.	wires should be immersed in solder of 350±10°C up to 1.5 to		
	Soldering Effect (Non-Preheat)	Dielectric Strength	Per Item 6	2.0mm from the root of terminal for 3.5±0.5 sec. Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* ¹ for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.* ¹		
		Appearance	No marked defect	First the capacitor should be Thermal Capacitor		
		I.R.	1000MΩ min.	stored at 120+0/-5°C for Screen		
11	Soldering Effect (On-Preheat)	Dielectric Strength	Per Item 6	Then, as in the figure, the lead wires should be immersed in solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 sec. Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* ¹ for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.* ¹		
		Appearance	No marked defect	The capacitor should be firmly soldered to the supporting lead wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in		
		Capacitance	Within the specified tolerance			
12	Vibration Resistance	D.F.	Char.SpecificationsED.F.≦2.5%FD.F.≦5.0%	total amplitude, with about a 1-minute rate of vibration change from 10Hz to 55Hz and back to 10Hz. Apply for a total of 6 hrs., 2 hrs. each in 3 mutually perpendicular directions.		
13	Solvent Resistance	Appearance	No marked defect	The capacitor should be immersed into a isopropyl alcohol for 30 ± 5 sec.		
		Appearance	No marked defect			
	Humidity	Capacitance Change	Char.Capacitance ChangeEWithin ±20%FWithin ±30%	Set the capacitor for 500±12 hrs. at 40±2°C in 90 to 95% relative humidity.		
14	(Under Steady State)	D.F.	Char. Specifications E D.F.≦5.0% F D.F.≦7.5%	Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* ¹ for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.* ¹		
		I.R.	1000MΩ min.			
		Dielectric Strength	Per Item 6			
		Appearance	No marked defect			
		Capacitance Change	Char. Capacitance Change E Within ±20% F Within ±30%	The capacitor should be subjected to 40±2°C, relative humidity of 90 to 98% for 8 hrs., and then removed in room temperature for 16 hrs. until 5 cycles are completed.		
15	Humidity Insulation	D.F.	Char.SpecificationsED.F.≦5.0%FD.F.≦7.5%	Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* ¹ for 24±2 hrs. before initial measurements. Post-treatment:		
		I.R.	1000MΩ min.	Capacitor should be stored for 1 to 2 hrs. at room condition.* ¹		
		Dielectric Strength	Per Item 6			

*¹ "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page. $ot\!\!\!/$

DEJ Series Specifications and Test Methods

Continued from the preceding page. \searrow

No.	lte	em		Specifications	Test Method			
		Appearance	No marked def	fect				
	Humidity Loading	Capacitance Change	Char. E F	Capacitance Change Within ±20% Within ±30%	Apply the rated voltage for 500±12 hrs 95% relative humidity. Pre-treatment:	±12 hrs. at	40±2°C in 90 to	
16		D.F.	Char. E F	Specifications D.F.≦5.0% D.F.≦7.5%	room co Post-treat	ndition*1 for 24±2 hrs.		
		I.R.	1000MΩ min.				1 10 2 113	
		Dielectric Strength	Per Item 6					
		Appearance	No marked def	fect		ltage from Table 2 for	r 1500 hrs.	at 85±2°C, relative
17	Life	Capacitance Change	Char. E F	Capacitance Change Within ±20% Within ±30%		<tab< td=""><td></td><td></td></tab<>		
17	Life	I.R.	1000MΩ min.				n.s.) for 0.1	. sec.
		Dielectric Strength	Per Item 6		room co Post-treat	or should be stored at ndition*1 for 24±2 hrs. tment:	. before init	
18	Flame Test		The capacitor Cycle 1 to 2 3	flame discontinued as follows. Time (sec.) 15 max. 60 max.	The capacitor should be subjected to applied flame for 15 sec. and then removed for 15 sec. until 3 cycles are completed.			AO () / / ·
19	9 Robustness of Tensile Lead wire should not be cut off. Capacito not be broken.			capacitor, each lead capacitor Each lead 90° at the	in the figure at right, f apply a tensile weight wire in the radial direc up to 10N and keep it wire should be subjec	t gradually ction of the for 10±1 s ted to 5N o e direction,	to the sec. The sec. The sec. The section of the se	
					original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.			
		Appearance	No marked def	fect		itor should be subject		nperature cycles,
		Capacitance Change	Char. E F	Capacitance Change Within ±20% Within ±30%	Step		cure Cycle> re (°C)	Time (min)
					1	-25+0/- Room ter		30
		D.F.	Char. E	Specifications D.F.≦5.0%	3	85+3/-	0	30
			F	D.F.≦7.5%	4	Room ter	mp.	3 Cycle time: 5 cycles
	Temperature	I.R.	1000MΩ min.		-			
20	and				_	<immersi< th=""><th>on Cycle></th><th></th></immersi<>	on Cycle>	
	Immersion Cycle				Step	Temperature (°C)	Time (min)	Immersion Water Clean
					1	65+5/-0	15	water Salt
		Dielectric Strength	Per Item 6		2	0±3	15	water Cycle time: 2 cycles
					room co Post-treat	or should be stored at ndition*1 for 24±2 hrs. tment:		r 1 hr., then placed at rs. at room condition.*1

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Safety Certified Ceramic Capacitors Characteristics Data (Typical Example)

Capacitance - Temperature Characteristics

Safety Certified Ceramic Capacitors Characteristics Data (Typical Example)

Leakage Current Characteristics

Safety Certified Ceramic Capacitors Packaging

Taping Specifications

(in mm)

Continued on the following page. 🎢

 ANote
 • Please read rating and
 ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

C85E.pdf May 17,2016

Safety Certified Ceramic Capacitors Packaging

Continued from the preceding page. \searrow

Packaging Styles

Bulk	Taping
Polyethylene Bag	Ammo Pack
	Murata Products

Minimum Quantity (Order in Sets Only)

[Bulk]			(pcs./Bag)			
	Body Dia. D (mm)	Lead Code A□, C□	Lead Code B□, D□			
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Long	Short			
T	7	250 *	500			
Type KY	8 to 11	250	500			
Type KX (New Small Size)	12 to 14	200	250			
DEJ Series	15, 16	100	200			

* Lead Spacing F=5.0mm (Code: A2): 500pcs.

[Taping] (pcs./Ammo Pack						
Lead Code	N2	N3, P3	N4, N5, N7			
Туре КҮ	1,000	900	-			
Type KX (New Small Size)	-	-	500			
DEJ Series	1,500	1,000	-			

Safety Certified Ceramic Capacitors ACaution

Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p that contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature and Self-generated Heat (Apply to B/E/F Char.)

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may have self-generated heat due to dielectric loss. Applied voltage load should be such that self-generated heat is within 20°C under the condition where the capacitor is subjected to an atmospheric temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of ø0.1mm under conditions where the capacitor is not affected by radiant heat from other components or wind from surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. Test Condition for Withstanding Voltage

(1) Test Equipment

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

Continued on the following page. earrow

C85E.pdf May 17,2016

Safety Certified Ceramic Capacitors ACaution

Continued from the preceding page. \searrow

(2) Voltage Applied Method

When the withstanding voltage is applied, the capacitor's lead or terminal should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the zero cross.* At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the output of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may rise, and therefore, a defect may be caused.

*ZERO CROSS is the point where voltage sine wave passes 0V. See the figure at right.

4. Fail-Safe

When the capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure could result in an electric shock, fire or fuming.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Safety Certified Ceramic Capacitors ACaution

\triangle Caution (Storage and Operating Condition)

Operating and Storage Environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. Also, avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 degrees centigrade and 15 to 85%.

Use capacitors within 6 months after delivery. Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

\triangle Caution (Soldering and Mounting)

1. Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use. Excessive shock or vibration may cause fatigue destruction of lead wires mounted on the circuit board.

Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

2. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specifications of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Soldering the capacitor with a soldering iron should be performed in the following conditions.

Temperature of iron-tip: 400 degrees C. max. Soldering iron wattage: 50W max. Soldering time: 3.5 sec. max. 3. Bonding, Resin Molding and Coating For bonding, molding or coating this product, verify that these processes do not affect the quality of the capacitor by testing the performance of the bonded, molded or coated product in the intended equipment. When the amount of applications, dryness/hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc). are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit. The variation in thickness of adhesive, molding resin or coating may cause outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

 Treatment after Bonding, Resin Molding and Coating When the outer coating is hot (over 100 degrees C.) after soldering, it becomes soft and fragile. Therefore, please be careful not to give it mechanical stress.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

ACaution (Handling)

Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use. Excessive shock or vibration may cause fatigue

destruction of lead wires mounted on the circuit board.

Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

.....

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED. Note • Please read rating and (1)CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

C85E.pdf May 17,2016

Safety Certified Ceramic Capacitors Notice

Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning) To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min. maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue

destruction of the lead wires.

Notice (Rating)

1. Capacitance Change of Capacitors

(1) For SL char.

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use a strict constant time circuit.

(2) For B/E/F char.

Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. Therefore, it is not likely to be suitable for use in a constant time circuit.

Please contact us if you need detailed information.

2. Performance Check by Equipment Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 (B/E/F char.) ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance, so the capacitance value may change depending on the operating condition in the equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in the capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

High Voltage Ceramic Capacitors

DEH Series (125°C Guaranteed/Low-dissipation Factor/DC2kV, 3.15kV)

Features

- 1. Reduced heat dissipation permitted due to small dielectric loss of the ceramic material.
- 2. Operating temperature range is guaranteed up to 125 degrees C.
- 3. Coated with flame-retardant epoxy resin (equivalent to UL94V-0 standard). Please contact us when a halogen-free product* is necessary.
 - * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
- 4. Taping available for automatic insertion.

Applications

Ideal for use on high-frequency pulse circuits such as a horizontal resonance circuit for CTV and snubber circuits for switching power supplies.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

Marking

Rated Voltage	DC2kV, 3.15kV
Nominal Temp. Char. Body Diameter	R
ø7-9mm	HR R 102K 2KV 66
ø10-21mm	HR R 272K 3KV M66
High Temperature Guaranteed Code	HR
Temperature Characteristics	Marked with code (omitted for nominal body diameter ø6mm)
Nominal Capacitance	Marked with 3 figures
Capacitance Tolerance	Marked with code (omitted for nominal body diameter ø6mm)
Rated Voltage	Marked with code (for DC3.15kV, marked with 3KV)
Manufacturer's Identification	Marked with ${igoded}$ (omitted for nominal body diameter ø9mm and under)
Manufactured Date Code	Abbreviation

Vertical Crimp Long (Fig. 1)

[Bulk] Vertical Crimp Short (Fig. 1) Straight Short (Fig. 2)

ad Code	Coating Extension e	ød	Style
2, B3, B4	Up to the end of crimp	0.6±0.05	Fig. 1
D3	3.0 max.	0.6±0.05	Fig. 2

B2

DC2-3.15kV, R Characteristics

Part Number Oktage Capacitance Dis. D Spacing F Diskers 1 Package Package Package Package Package Package DEHR33D221K 2000vdc 220pF10% 7.0mm max. 7.5 5.0mm max. C3B D3B P3A DEHR33D231K 2000vdc 2300pF10% 8.0mm max. 7.5 5.0mm max. C3B D3B P3A DEHR33D31K 2000vdc 330pF10% 8.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D31K 2000vdc 560pF10% 9.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D561K 2000vdc 560pF10% 10.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D102K 2000vdc 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D12ZK 2000vdc 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D12ZK 2000vdc 12.0mm max. 7.5 5.0mm max. A3B <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
DEHR33D271k 2000Vdc 270pF±10% 7.0mm max. 7.5 5.0mm max. C3B D3B P3A DEHR33D331K 2000Vdc 330pF±10% 8.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D31K 2000Vdc 470pF±10% 8.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D51K 2000Vdc 660pF±10% 9.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D61K 2000Vdc 660pF±10% 10.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D62K 2000Vdc 1000pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D12K 2000Vdc 1200pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D12K 2000Vdc 1200pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D22XL 2000Vdc 1200pF±10% 12.0mm max.	Part Number		Capacitance	,	Spacing F	· · ·	Lead Package Long Bulk	Lead Package Short Bulk	
DEHR33D31K 2000Vdc 330pF±10% 8.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D391K 2000Vdc 470pF±10% 9.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D651K 2000Vdc 680pF±10% 9.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D621K 2000Vdc 680pF±10% 10.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D12K 2000Vdc 620pF±10% 12.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D12K 2000Vdc 1200pF±10% 12.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D12K 2000Vdc 1500pF±10% 12.0mm max. 7.5 5.0mm max. A38 B38 N7A DEHR33D22K 2000Vdc 1500pF±10% 12.0mm max. 7.5 5.0mm max. A38 B38 N7A DEHR33D22K 2000Vdc 1500pF±10% 17.0mm max.	DEHR33D221K	2000Vdc	220pF±10%	7.0mm max.	7.5	5.0mm max.	C3B	D3B	P3A
DEHR33D391K 2000Vdc 390pf±10% 8.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D61K 2000Vdc 470pf±10% 9.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D651K 2000Vdc 680pf±10% 10.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D621K 2000Vdc 1000pf±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D621K 2000Vdc 1200pf±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D12K 2000Vdc 1200pf±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D12K 2000Vdc 1500pf±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D32K 2000Vdc 2700pf±10% 15.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D32K 2000Vdc 3900pf±10% 10.0mm max. <th>DEHR33D271K</th> <th>2000Vdc</th> <th>270pF±10%</th> <th>7.0mm max.</th> <th>7.5</th> <th>5.0mm max.</th> <th>C3B</th> <th>D3B</th> <th>РЗА</th>	DEHR33D271K	2000Vdc	270pF±10%	7.0mm max.	7.5	5.0mm max.	C3B	D3B	РЗА
DEHR33D471K 2000Vdc 470pF±10% 9.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D561K 2000Vdc 560pF±10% 10.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D621K 2000Vdc 680pF±10% 11.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D621K 2000Vdc 1200pf±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D122K 2000Vdc 1200pf±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D122K 2000Vdc 1800pf±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D122K 2000Vdc 1800pf±10% 14.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D22ZK 2000Vdc 2700pf±10% 17.0mm max. 7.5 5.0mm max. A4B B4B - DEHR33D32XL 2000Vdc 3300pf±10% 20.0mm max.	DEHR33D331K	2000Vdc	330pF±10%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	NЗA
DEHR33D561K 2000Vdc 560pF±10% 9.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D681K 2000Vdc 680pF±10% 10.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D621K 2000Vdc 1000pF±10% 12.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D12ZK 2000Vdc 1200pF±10% 12.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D12ZK 2000Vdc 1500pF±10% 12.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D12ZK 2000Vdc 1800pF±10% 14.0mm max. 7.5 5.0mm max. A38 B38 N7A DEHR33D2ZL 2000Vdc 2700pF±10% 17.0mm max. 7.5 5.0mm max. A38 B38 N7A DEHR33D32K 2000Vdc 3900pF±10% 10.0 5.0mm max. A48 B48 - DEHR33D32K 2000Vdc 4700pF±10% 7.0mm max. 7.5	DEHR33D391K	2000Vdc	390pF±10%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	NЗA
DEHR33D681K 2000Vdc 680pF±10% 10.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D821K 2000Vdc 820pF±10% 11.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D122K 2000Vdc 1200pF±10% 12.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D122K 2000Vdc 1500pF±10% 12.0mm max. 7.5 5.0mm max. A38 B38 N3A DEHR33D122K 2000Vdc 1800pF±10% 12.0mm max. 7.5 5.0mm max. A38 B38 N7A DEHR33D122K 2000Vdc 2200pF±10% 15.0mm max. 7.5 5.0mm max. A38 B38 N7A DEHR33D32ZK 2000Vdc 2700pF±10% 17.0mm max. 7.5 5.0mm max. A48 B48 - DEHR33D32ZK 2000Vdc 3300pF±10% 20.0mm max. 10.0 5.0mm max. A48 B48 - DEHR33D32ZK 2000Vdc 3900P±10% 7.0mm max.<	DEHR33D471K	2000Vdc	470pF±10%	9.0mm max.	7.5	5.0mm max.	A3B	B3B	NЗA
DEHR33D821K 2000vdc 820pF±10% 11.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D102K 2000vdc 1000pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D122K 2000vdc 1200pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D182K 2000vdc 1800pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D182K 2000vdc 1800pF±10% 17.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D32ZL 2000vdc 3300pF±10% 17.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D32K 2000vdc 3300pF±10% 10.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D181K 3150vdc 150pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F131K 3150vdc 130pF±10% 7.0mm max.<	DEHR33D561K	2000Vdc	560pF±10%	9.0mm max.	7.5	5.0mm max.	A3B	B3B	NЗA
DEHR33D102K 2000Vdc 1000pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D122K 2000Vdc 1200pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D122K 2000Vdc 1500pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D122K 2000Vdc 1800pF±10% 14.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D222K 2000Vdc 2000P±10% 17.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D32K 2000Vdc 3300pF±10% 10.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D392K 2000Vdc 4700pF±10% 21.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D332K 2000Vdc 4700pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F31S1K 3150Vdc 220pF±10% 7.0mm max.	DEHR33D681K	2000Vdc	680pF±10%	10.0mm max.	7.5	5.0mm max.	A3B	B3B	NЗA
DEHR33D122K 2000Vdc 1200pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D152K 2000Vdc 1500pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D182K 2000Vdc 1800pF±10% 14.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D222K 2000Vdc 2000pF±10% 15.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D32K 2000Vdc 3300pF±10% 19.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D392K 2000Vdc 3900pF±10% 20.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D392K 2000Vdc 4700p±10% 21.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D32F151K 3150Vdc 150pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F151K 3150Vdc 220pF±10% 7.0mm max.	DEHR33D821K	2000Vdc	820pF±10%	11.0mm max.	7.5	5.0mm max.	A3B	B3B	NЗA
DEHR33D152K 2000Vdc 1500pF±10% 12.0mm max. 7.5 5.0mm max. A3B B3B N3A DEHR33D182K 2000Vdc 1800pF±10% 14.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D222K 2000Vdc 2200pF±10% 15.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D272K 2000Vdc 2700pF±10% 17.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D32K 2000Vdc 3300pF±10% 10.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D32K 2000Vdc 4700pF±10% 21.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33F18K 3150Vdc 150pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F21K 3150Vdc 220pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F21K 3150Vdc 330pF±10% 8.0mm max.	DEHR33D102K	2000Vdc	1000pF±10%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	ΝЗΑ
DEHR33D182K 2000Vdc 1800pF±10% 14.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D222K 2000Vdc 2200pF±10% 15.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D272K 2000Vdc 2700pF±10% 17.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D32X 2000Vdc 3300pF±10% 19.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D392K 2000Vdc 4700pF±10% 21.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33F151K 3150Vdc 150pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F221K 3150Vdc 120pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F231K 3150Vdc 270pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F331K 3150Vdc 330pF±10% 10.0mm max. <th>DEHR33D122K</th> <th>2000Vdc</th> <th>1200pF±10%</th> <th>12.0mm max.</th> <th>7.5</th> <th>5.0mm max.</th> <th>A3B</th> <th>B3B</th> <th>ΝЗΑ</th>	DEHR33D122K	2000Vdc	1200pF±10%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	ΝЗΑ
DEHR33D222K 2000Vdc 2200pF±10% 15.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D272K 2000Vdc 2700pF±10% 17.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D332K 2000Vdc 3300pF±10% 19.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D392K 2000Vdc 3900pF±10% 20.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D372K 2000Vdc 4700pF±10% 21.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33F151K 3150Vdc 150pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F151K 3150Vdc 220pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F21K 3150Vdc 270pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F331K 3150Vdc 300pF±10% 9.0mm max.	DEHR33D152K	2000Vdc	1500pF±10%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	NЗA
DEHR33D272K 2000Vdc 2700pF±10% 17.0mm max. 7.5 5.0mm max. A3B B3B N7A DEHR33D332K 2000Vdc 3300pF±10% 19.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D392K 2000Vdc 3900pF±10% 20.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33D472K 2000Vdc 4700pF±10% 21.0mm max. 10.0 5.0mm max. A4B B4B - DEHR33F151K 3150Vdc 150pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F151K 3150Vdc 220pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F271K 3150Vdc 270pF±10% 7.0mm max. 7.5 6.0mm max. C3B D3B P3A DEHR33F331K 3150Vdc 330pF±10% 9.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F391K 3150Vdc 470pF±10% 10.0mm max.	DEHR33D182K	2000Vdc	1800pF±10%	14.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEHR33D332K2000Vdc3300pF±10%19.0mm max.10.05.0mm max.A4BB4B-DEHR33D392K2000Vdc3900pF±10%20.0mm max.10.05.0mm max.A4BB4B-DEHR33D472K2000Vdc4700pF±10%21.0mm max.10.05.0mm max.A4BB4B-DEHR33F151K3150Vdc150pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F181K3150Vdc180pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F221K3150Vdc220pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F331K3150Vdc270pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F331K3150Vdc330pF±10%8.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F391K3150Vdc390pF±10%9.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F3561K3150Vdc560pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F61K3150Vdc680pF±10%11.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F61K3150Vdc820pF±10%12.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F61K3150Vdc1000pF±10%13.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F122K3150Vdc1200pF±10%13.0mm max.7.5	DEHR33D222K	2000Vdc	2200pF±10%	15.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEHR33D392K2000Vdc3900pF±10%20.0mm max.10.05.0mm max.A4BB4B-DEHR33D472K2000Vdc4700pF±10%21.0mm max.10.05.0mm max.A4BB4B-DEHR33F151K3150Vdc150pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F151K3150Vdc180pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F21K3150Vdc220pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F271K3150Vdc220pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F331K3150Vdc270pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F331K3150Vdc330pF±10%8.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F331K3150Vdc390pF±10%9.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F331K3150Vdc470pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F61K3150Vdc560pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F821K3150Vdc820pF±10%12.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F321K3150Vdc1200pF±10%13.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F102K3150Vdc1200pF±10%13.0mm max.7.56	DEHR33D272K	2000Vdc	2700pF±10%	17.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEHR33D472K2000Vdc4700pF±10%21.0mm max.10.05.0mm max.A4BB4B-DEHR33F151K3150Vdc150pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F181K3150Vdc180pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F21K3150Vdc220pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F271K3150Vdc270pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F331K3150Vdc270pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F391K3150Vdc330pF±10%8.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F391K3150Vdc390pF±10%9.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F471K3150Vdc470pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F561K3150Vdc560pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F621K3150Vdc680pF±10%11.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F102K3150Vdc1200pF±10%13.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F12K3150Vdc1200pF±10%13.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F12K3150Vdc1200pF±10%14.0mm max.7.56	DEHR33D332K	2000Vdc	3300pF±10%	19.0mm max.	10.0	5.0mm max.	A4B	B4B	-
DEHR33F151K3150Vdc150pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F181K3150Vdc180pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F21K3150Vdc220pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F21K3150Vdc270pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F331K3150Vdc270pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F331K3150Vdc330pF±10%8.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F391K3150Vdc390pF±10%9.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F61K3150Vdc390pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F61K3150Vdc560pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F61K3150Vdc680pF±10%11.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F102K3150Vdc820pF±10%12.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F102K3150Vdc1200pF±10%13.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F122K3150Vdc1500pF±10%15.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F122K3150Vdc1500pF±10%15.0mm max.7.56.0	DEHR33D392K	2000Vdc	3900pF±10%	20.0mm max.	10.0	5.0mm max.	A4B	B4B	-
DEHR33F181K3150Vdc180pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F221K3150Vdc220pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F21K3150Vdc270pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F31K3150Vdc330pF±10%8.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F391K3150Vdc390pF±10%9.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F61K3150Vdc390pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F61K3150Vdc560pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F681K3150Vdc560pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F621K3150Vdc680pF±10%11.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F102K3150Vdc1000pF±10%13.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F122K3150Vdc1200pF±10%14.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F122K3150Vdc1500pF±10%15.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F122K3150Vdc1500pF±10%15.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F122K3150Vdc1800pF±10%16.0mm max.7.5 <t< th=""><th>DEHR33D472K</th><th>2000Vdc</th><th>4700pF±10%</th><th>21.0mm max.</th><th>10.0</th><th>5.0mm max.</th><th>A4B</th><th>B4B</th><th>-</th></t<>	DEHR33D472K	2000Vdc	4700pF±10%	21.0mm max.	10.0	5.0mm max.	A4B	B4B	-
DEHR33F221K3150Vdc220pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F271K3150Vdc270pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F31K3150Vdc330pF±10%8.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F391K3150Vdc390pF±10%9.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F391K3150Vdc390pF±10%9.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F61K3150Vdc470pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F681K3150Vdc560pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F621K3150Vdc680pF±10%11.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F102K3150Vdc820pF±10%12.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F102K3150Vdc1200pF±10%13.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F122K3150Vdc1500pF±10%15.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F182K3150Vdc1800pF±10%15.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F122K3150Vdc1800pF±10%16.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F182K3150Vdc2200pF±10%17.0mm max.7.5	DEHR33F151K	3150Vdc	150pF±10%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEHR33F271K3150Vdc270pF±10%7.0mm max.7.56.0mm max.C3BD3BP3ADEHR33F331K3150Vdc330pF±10%8.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F391K3150Vdc390pF±10%9.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F471K3150Vdc470pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F561K3150Vdc560pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F681K3150Vdc560pF±10%11.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F621K3150Vdc820pF±10%12.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F102K3150Vdc1000pF±10%13.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F122K3150Vdc1200pF±10%14.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F182K3150Vdc1500pF±10%15.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F182K3150Vdc1500pF±10%15.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F182K3150Vdc1200pF±10%16.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F182K3150Vdc1200pF±10%16.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F182K3150Vdc2200pF±10%16.0mm max.7.	DEHR33F181K	3150Vdc	180pF±10%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEHR33F331K3150Vdc330pF±10%8.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F391K3150Vdc390pF±10%9.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F471K3150Vdc470pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F561K3150Vdc560pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F681K3150Vdc560pF±10%10.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F681K3150Vdc680pF±10%11.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F621K3150Vdc1000pF±10%12.0mm max.7.56.0mm max.A3BB3BN3ADEHR33F102K3150Vdc1000pF±10%13.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F122K3150Vdc1500pF±10%14.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F182K3150Vdc1500pF±10%15.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F182K3150Vdc1800pF±10%16.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F222K3150Vdc2200pF±10%17.0mm max.7.56.0mm max.A3BB3BN7ADEHR33F222K3150Vdc2200pF±10%17.0mm max.7.56.0mm max.A3BB3BN7A	DEHR33F221K	3150Vdc	220pF±10%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEHR33F391K 3150Vdc 390pF±10% 9.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F471K 3150Vdc 470pF±10% 10.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F61K 3150Vdc 560pF±10% 10.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F61K 3150Vdc 560pF±10% 10.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F61K 3150Vdc 680pF±10% 11.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F821K 3150Vdc 820pF±10% 12.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F102K 3150Vdc 1200pF±10% 13.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F122K 3150Vdc 1200pF±10% 14.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 1500pF±10% 16.0mm max. <th>DEHR33F271K</th> <th>3150Vdc</th> <th>270pF±10%</th> <th>7.0mm max.</th> <th>7.5</th> <th>6.0mm max.</th> <th>C3B</th> <th>D3B</th> <th>P3A</th>	DEHR33F271K	3150Vdc	270pF±10%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEHR33F471K 3150Vdc 470pF±10% 10.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F561K 3150Vdc 560pF±10% 10.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F661K 3150Vdc 680pF±10% 11.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F681K 3150Vdc 680pF±10% 11.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F821K 3150Vdc 820pF±10% 12.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F102K 3150Vdc 1000pF±10% 13.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F122K 3150Vdc 1200pF±10% 14.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F152K 3150Vdc 1500pF±10% 15.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 1800pF±10% 16.0mm max	DEHR33F331K	3150Vdc	330pF±10%	8.0mm max.	7.5	6.0mm max.	A3B	B3B	ΝЗΑ
DEHR33F561K 3150Vdc 560pF±10% 10.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F681K 3150Vdc 680pF±10% 11.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F681K 3150Vdc 680pF±10% 11.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F821K 3150Vdc 820pF±10% 12.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F102K 3150Vdc 1000pF±10% 13.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F122K 3150Vdc 1200pF±10% 14.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F152K 3150Vdc 1500pF±10% 15.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 1800pF±10% 16.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F222K 3150Vdc 2200pF±10% 17.0mm ma	DEHR33F391K	3150Vdc	390pF±10%	9.0mm max.	7.5	6.0mm max.	A3B	B3B	ΝЗΑ
DEHR33F681K 3150Vdc 680pF±10% 11.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F821K 3150Vdc 820pF±10% 12.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F102K 3150Vdc 1000pF±10% 13.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F102K 3150Vdc 1000pF±10% 13.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F122K 3150Vdc 1200pF±10% 14.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F152K 3150Vdc 1500pF±10% 15.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 1800pF±10% 16.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 2200pF±10% 16.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F222K 3150Vdc 2200pF±10% 17.0mm	DEHR33F471K	3150Vdc	470pF±10%	10.0mm max.	7.5	6.0mm max.	A3B	B3B	ΝЗΑ
DEHR33F821K 3150Vdc 820pF±10% 12.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F102K 3150Vdc 1000pF±10% 13.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F102K 3150Vdc 1200pF±10% 13.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F122K 3150Vdc 1200pF±10% 14.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F152K 3150Vdc 1500pF±10% 15.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 1800pF±10% 16.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F222K 3150Vdc 2200pF±10% 17.0mm max. 7.5 6.0mm max. A3B B3B N7A	DEHR33F561K	3150Vdc	560pF±10%	10.0mm max.	7.5	6.0mm max.	A3B	B3B	ΝЗΑ
DEHR33F102K 3150Vdc 1000pF±10% 13.0mm max. 7.5 6.0mm max. A3B B3B N3A DEHR33F122K 3150Vdc 1200pF±10% 14.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F152K 3150Vdc 1500pF±10% 15.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 1800pF±10% 16.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 1800pF±10% 16.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 2200pF±10% 17.0mm max. 7.5 6.0mm max. A3B B3B N7A	DEHR33F681K	3150Vdc	680pF±10%	11.0mm max.	7.5	6.0mm max.	A3B	B3B	ΝЗΑ
DEHR33F122K 3150Vdc 1200pF±10% 14.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F152K 3150Vdc 1500pF±10% 15.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 1800pF±10% 16.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 1800pF±10% 16.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 2200pF±10% 17.0mm max. 7.5 6.0mm max. A3B B3B N7A	DEHR33F821K	3150Vdc	820pF±10%	12.0mm max.	7.5	6.0mm max.	A3B	B3B	ΝЗΑ
DEHR33F152K 3150Vdc 1500pF±10% 15.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 1800pF±10% 16.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F182K 3150Vdc 2200pF±10% 17.0mm max. 7.5 6.0mm max. A3B B3B N7A	DEHR33F102K	3150Vdc	1000pF±10%	13.0mm max.	7.5	6.0mm max.	A3B	B3B	ΝЗΑ
DEHR33F182K 3150Vdc 1800pF±10% 16.0mm max. 7.5 6.0mm max. A3B B3B N7A DEHR33F222K 3150Vdc 2200pF±10% 17.0mm max. 7.5 6.0mm max. A3B B3B N7A	DEHR33F122K	3150Vdc	1200pF±10%	14.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
DEHR33F222K 3150Vdc 2200pF±10% 17.0mm max. 7.5 6.0mm max. A3B B3B N7A	DEHR33F152K	3150Vdc	1500pF±10%	15.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
	DEHR33F182K	3150Vdc	1800pF±10%	16.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
	DEHR33F222K	3150Vdc	2200pF±10%	17.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
	DEHR33F272K	3150Vdc	2700pF±10%	19.0mm max.	10.0	6.0mm max.	A4B	B4B	-

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

DEH Series Specifications and Test Methods

No.		ltem	Specifications	Test Method
1	Operating Temper	ature Range	-25 to +125°C	
2	Appearance and Dimensions		No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.
3	Marking		To be easily legible	The capacitor should be visually inspected.
		Between Lead Wires	No failure	The capacitor should not be damaged when DC voltage of 200% of the rated voltage is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current≦50mA)
4	Dielectric Strength	Body Insulation	No failure	The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, short circuited, is kept about 2mm off the metal balls as shown in the figure at right, and AC1250V(r.m.s.) <50/60Hz> is applied for 1 to 5 sec. between capacitor lead wires and metal balls. (Charge/Discharge current≦50mA)
5	Insulation Resistance (I.R.)	Between Lead Wires	10000MΩ min.	The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging.
6	Capacitance		Within specified tolerance	The capacitance should be measured at 20°C with 1±0.2kHz and AC5V(r.m.s.) max.
7	Dissipation Factor	(D.F.)	Char. R: 0.2% max.	The dissipation factor should be measured at 20°C with 1±0.2kHz and AC5V(r.m.s.) max.
			T. C. Temp. Char. -25 to +85°C +85 to +125°C R Within ±15% Within +15/-30%	The capacitance measurement should be made at each step specified in the Table.
8	Temperature Char	racteristics	Pre-treatment: Capacitor should be stored room condition* for 24±2 h Step 1 Temp. (°C) 20±2	
9	Strength of Lead	Pull	Lead wire should not be cut off. - Capacitor should not be broken.	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N (5N for lead diameter 0.5mm), and keep it for 10±1
		Bending	Capacitor should not be broken.	Each lead wire should be subjected to 5N (2.5N for lead diameter 0.5mm) of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.
		Appearance	No marked defect	The capacitor should be firmly soldered to the supporting lead
10	Vibration	Capacitance	Within specified tolerance	wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1-minute rate of vibration change
	Resistance	D.F.	Char. R: 0.2% max.	from 10Hz to 55Hz and back to 10Hz. Apply for a total of 6 hrs., 2 hrs. each in 3 mutually perpendicular directions.
11	1 Solderability of Leads		Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C
		Appearance	No marked defect	The lead wire should be immersed into the melted solder of
	Soldering Effect	Capacitance Change	Within ±10%	350±10°C up to about 1.5 to 2mm from the main body for 3.5±0.5 sec. Pre-treatment:
12	(Non-Preheat)	Dielectric Strength (Between Lead Wires)	Per item 4.	Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 24±2 hrs. at room condition.*

¹¹ "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page. $ot\!\!\!/$

DEH Series Specifications and Test Methods

Continued from the preceding page. \searrow

No.		ltem	Specifications	Test Method
		Appearance Capacitance Change	No marked defect Within ±10%	First the capacitor should be stored at 120+0/-5°C for 60+0/-5 sec.
13	13 Soldering Effect (On-Preheat)	Dielectric Strength (Between Lead Wires)	Per item 4.	Then, as in the figure, the lead wires should be immersed in solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 sec. Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 24±2 hrs. at room condition.*
		Appearance	No marked defect	The capacitor should be subjected to 5 temperature cycles.
		Capacitance Change	Within ±10%	Step Temperature (°C) Time (min) 1 -25±3 30
		D.F.	0.4% max.	2 Room Temp. 3
14	Temperature	I.R.	1000MΩ min.	3 125±3 30 4 Room Temp. 3
	Cycle	Dielectric Strength (Between Lead Wires)	Per item 4.	Cycle time: 5 cycles Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 24±2 hrs. at room condition.*
		Appearance	No marked defect	Set the capacitor for 500 +24/-0 hrs. at 40±2°C in 90 to 95%
15	Humidity (Under	Capacitance Change	Within ±10%	relative humidity. Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed
	Steady State)	D.F.	0.4% max.	at room condition* for 24±2 hrs. before initial measurements.
		I.R.	1000MΩ min.	Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*
		Appearance	No marked defect	Apply the rated voltage for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity. (Charge/Discharge current≦50mA)
16	Humidity	Capacitance Change	Within ±10%	Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed
	Loading	D.F.	0.6% max.	at room condition* for 24±2 hrs. before initial measurements.
		I.R.	1000MΩ min.	Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*
		Appearance	No marked defect	Apply a DC voltage of 150% of the rated voltage for 1000
		Capacitance Change	Within ±10%	 +48/-0 hrs. at 125±2°C with a relative humidity of 50% max. (Charge/Discharge current≤50mA) Pre-treatment:
17	Life	D.F.	0.4% max.	Capacitor should be stored at 125±3°C for 1 hr., then placed
		I.R.	2000MΩ min.	at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition* for 24±2 hrs.

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

4

High Voltage Ceramic Capacitors

DEA Series (125°C Guaranteed/Class 1/DC2k-3.15kV)

Features

- 1. Temperature compensating type ceramics realize lower heat dissipation than DEH series.
- 2. Operating temperature range is guaranteed up to 125 degrees C.
- Coated with flame-retardant epoxy resin (equivalent to UL94V-0 standard).
 Please contact us when a halogen-free product* is necessary.
 - * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
- 4. Taping available for automatic insertion.

Applications

- 1. Ideal for use as the ballast in backlighting inverters for liquid crystal display.
- 2. Ideal for use on high-frequency pulse circuits such as a horizontal resonance circuit for CTV and snubber circuits for switching power supplies.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

Marking

[Bulk] Vertical Crimp Long (Fig. 1)

A2, A3

C1. CD

СЗ

<Fig. 1>

0.6±0.05

0.5+0.05

0.6±0.05 Fig. 2

Fig. 1

Fig. 2

<Fig. 2>

Straight Long (Fig. 2)

Up to the end of crimp

3.0 max

3.0 max.

 Lead Code
 Coating Extensione
 ød
 Style

 B2, B3
 Up to the end of crimp
 0.6±0.05
 Fig. 1

 D1, DD
 3.0 max.
 0.5±0.05
 Fig. 2

 D3
 3.0 max.
 0.6±0.05
 Fig. 2

5

[Duik]	
Vertical Crimp Short (Fig. 1)	
Straight Short (Fig. 2)	

[Bulk]

SL Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEA1X3D100J	2000Vdc	10pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D120J	2000Vdc	12pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D150J	2000Vdc	15pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D180J	2000Vdc	18pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D220J	2000Vdc	22pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D270J	2000Vdc	27pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D330J	2000Vdc	33pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D390J	2000Vdc	39pF±5%	5.0mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D470J	2000Vdc	47pF±5%	6.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D560J	2000Vdc	56pF±5%	6.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D680J	2000Vdc	68pF±5%	6.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D820J	2000Vdc	82pF±5%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D101J	2000Vdc	100pF±5%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D121J	2000Vdc	120pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D151J	2000Vdc	150pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D181J	2000Vdc	180pF±5%	9.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D221J	2000Vdc	220pF±5%	10.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D271J	2000Vdc	270pF±5%	11.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D331J	2000Vdc	330pF±5%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEA1X3D391J	2000Vdc	390pF±5%	13.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEA1X3D471J	2000Vdc	470pF±5%	14.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEA1X3D561J	2000Vdc	560pF±5%	15.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEA1X3F100J	3150Vdc	10pF±5%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	РЗА
DEA1X3F120J	3150Vdc	12pF±5%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEA1X3F150J	3150Vdc	15pF±5%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEA1X3F180J	3150Vdc	18pF±5%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	РЗА
DEA1X3F220J	3150Vdc	22pF±5%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	РЗА
DEA1X3F270J	3150Vdc	27pF±5%	6.0mm max.	7.5	6.0mm max.	C3B	D3B	РЗА
DEA1X3F330J	3150Vdc	33pF±5%	6.0mm max.	7.5	6.0mm max.	C3B	D3B	РЗА
DEA1X3F390J	3150Vdc	39pF±5%	6.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEA1X3F470J	3150Vdc	47pF±5%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEA1X3F560J	3150Vdc	56pF±5%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEA1X3F680J	3150Vdc	68pF±5%	8.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F820J	3150Vdc	82pF±5%	8.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F101J	3150Vdc	100pF±5%	9.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F121J	3150Vdc	120pF±5%	10.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F151J	3150Vdc	150pF±5%	11.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F181J	3150Vdc	180pF±5%	11.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F221J	3150Vdc	220pF±5%	12.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F271J	3150Vdc	270pF±5%	14.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
DEA1X3F331J	3150Vdc	330pF±5%	15.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
DEA1X3F391J	3150Vdc	390pF±5%	16.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

DEA Series Specifications and Test Methods

No.		ltem	Specifications	Test Method
1	Operating Temper	ature Range	-25 to +125°C	
2	Appearance and Dimensions		No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.
3	Marking		To be easily legible	The capacitor should be visually inspected.
		Between Lead Wires	No failure	The capacitor should not be damaged when DC voltage of 200% of the rated voltage is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current≦50mA)
4	Dielectric Strength	Body Insulation	No failure	The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, short circuited, is kept about 2mm off the metal balls as shown in the figure at right, and AC1250V(r.m.s.) <50/60Hz> is applied for 1 to 5 sec. between capacitor lead wires and metal balls. (Charge/Discharge current≦50mA)
5	Insulation Resistance (I.R.)	Between Lead Wires	10000MΩ min.	The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging.
6	Capacitance		Within specified tolerance	The capacitance should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max.
7	Q		400+20C* ² min. (30pF under) 1000 min. (30pF min.)	The Q should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max.
			+350 to -1000ppm/°C (Temp. range: +20 to +85°C)	The capacitance measurement should be made at each step specified in the Table.
8	Temperature Char	acteristics	Step 1 Temp. (°C) 20±2	2 3 4 5 -25±3 20±2 85±2 20±2
9	Strength of Lead	Pull	Lead wire should not be cut off. - Capacitor should not be broken.	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N (5N for lead diameter 0.5mm), and keep it for 10±1 w sec.
		Bending	Capacitor should not be broken.	Each lead wire should be subjected to 5N (2.5N for lead diameter 0.5mm) of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.
		Appearance	No marked defect	The capacitor should be firmly soldered to the supporting lead
10	Vibration	Capacitance	Within specified tolerance	wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1-minute rate of vibration change
	Resistance	Q	400+20C* ² min. (30pF under) 1000 min. (30pF min.)	from 10Hz to 55Hz and back to 10Hz. Apply for a total of 6 hrs., 2 hrs. each in 3 mutually perpendicular directions.
11	1 Solderability of Leads		Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C
		Appearance	No marked defect	The lead wire should be immersed into the melted solder of
12	Soldering Effect	Capacitance Change	Within ±2.5%	350±10°C (Body of ø5mm and under: 270±5°C) up to about 1.5 to 2mm from the main body for 3.5±0.5 sec.
	(Non-Preheat)	Dielectric Strength (Between Lead Wires)	Per item 4.	(Body of ø5mm and under: 5±0.5 sec.) Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*1

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

Continued on the following page. earrow

DEA Series Specifications and Test Methods

Continued from the preceding page. \searrow

No.		ltem	Specifications	Test Method
		Appearance	No marked defect	First the capacitor should be
		Capacitance Change	Within ±2.5%	60+0/-5 sec. Then as in the figure the lead
13	Soldering Effect (On-Preheat)	Dielectric Strength (Between Lead Wires)	Per item 4.	wires should be immersed in solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 sec. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*1
		Appearance	No marked defect	The capacitor should be subjected to 5 temperature cycles.
		Capacitance Change	Within ±5%	<temperature cycle=""> Step Temperature (°C) Time (min)</temperature>
	Temperature	Q	275+5/2C*2min. (30pF under)	1 -25±3 30
14	Cycle	Ч	350 min. (30pF min.)	2 Room Temp. 3 3 125±3 30
		I.R.	1000MΩ min.	4 Room Temp. 3
		Dielectric Strength (Between Lead Wires)	Per item 4.	Cycle time: 5 cycles Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*1
		Appearance	No marked defect	
15	Humidity (Under	Capacitance Change	Within ±5%	Set the capacitor for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity.
12	Steady State)	Q	275+5/2C* ² min. (30pF under) 350 min. (30pF min.)	Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*1
		I.R.	1000MΩ min.	
		Appearance	No marked defect	
10	Humidity	Capacitance Change	Within ±5%	Apply the rated voltage for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity.
16	Loading	Q	275+5/2C* ² min. (30pF under) 350 min. (30pF min.)	 (Charge/Discharge current≤50mA) Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*1
		I.R.	1000MΩ min.	
		Appearance	No marked defect	
	1:5-	Capacitance Change	Within ±3%	Apply a DC voltage of 150% of the rated voltage for 1000+48/-0 hrs. at 125±2°C with a relative humidity of 50%
17	Life	Q	275+5/2C*²min. (30pF under) 350 min. (30pF min.)	 max. (Charge/Discharge current≦50mA) Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*1
		I.R.	2000MΩ min.	

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

 $^{\star 2}$ "C" expresses nominal capacitance value (pF).
High Voltage Ceramic Capacitors

DEB Series (Class 2/DC2k-3.15kV)

Features

- 1. Small size and high capacitance
- Coated with flame-retardant epoxy resin (equivalent to UL94V-0 standard).
 Please contact us when a halogen-free product* is necessary.
 - * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
- 3. Taping available for automatic insertion.

Applications

Ideal for use on decoupling circuits for power supplies.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

<Fig. 1>

<Fig. 2>

[Bulk] Vertical Crimp Long (Fig. 1) Straight Long (Fig. 2)

			(
Lead Code	Coating Extension e	ød	Style
A2, A3	Up to the end of crimp	0.6±0.05	Fig. 1
C1, CD	3.0 max.	0.5±0.05	Fig. 2
C3	3.0 max.	0.6±0.05	Fig. 2

 Lead Code

 [Bulk]
 B2,B3

 Vertical Crimp Short (Fig. 1)
 D1,DD

 Straight Short (Fig. 2)
 D3

			(in mm)
ead Code	Coating Extension e	ød	Style
B2, B3	Up to the end of crimp	0.6±0.05	Fig. 1
D1, DD	3.0 max.	0.5±0.05	Fig. 2
D3	3.0 max.	0.6+0.05	Fig. 2

Marking

Temp. Char. Nominal Body Diameter	В	E	F			
ø4.5-5mm	221 3KV		102 2KV			
ø6mm	331 3KV 66	102 2KV 66				
ø7-9mm	102K 3KV 66	102Z 3KV 66	472Z 2KV 66			
ø10-16mm	B 332K 3KV (M66	E 472Z 3KV (M66	103Z 2KV (M66			
Temperature Characteristics	Marked with code for char. B a	nd E (omitted for nominal body di	ameter ø9mm and under)			
Nominal Capacitance	Marked with 3 figures					
Capacitance Tolerance	Marked with code (omitted for nominal body diameter ø6mm and under)					
Rated Voltage	Marked with code (for DC3.15kV, marked with 3KV)					
Manufacturer's Identification	Marked with (M (omitted for no	minal body diameter ø9mm and u	under)			
Manufactured Date Code	Abbreviation (omitted for nominal body diameter ø5mm and under)					

B Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEBB33D101K	2000Vdc	100pF±10%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEBB33D151K	2000Vdc	150pF±10%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEBB33D221K	2000Vdc	220pF±10%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEBB33D331K	2000Vdc	330pF±10%	5.0mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEBB33D471K	2000Vdc	470pF±10%	6.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBB33D681K	2000Vdc	680pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBB33D102K	2000Vdc	1000pF±10%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBB33D152K	2000Vdc	1500pF±10%	9.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBB33D222K	2000Vdc	2200pF±10%	10.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBB33D332K	2000Vdc	3300pF±10%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	ΝЗΑ
DEBB33D472K	2000Vdc	4700pF±10%	15.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEBB33F101K	3150Vdc	100pF±10%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEBB33F151K	3150Vdc	150pF±10%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEBB33F221K	3150Vdc	220pF±10%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEBB33F331K	3150Vdc	330pF±10%	6.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEBB33F471K	3150Vdc	470pF±10%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	РЗА
DEBB33F681K	3150Vdc	680pF±10%	8.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEBB33F102K	3150Vdc	1000pF±10%	9.0mm max.	7.5	6.0mm max.	A3B	B3B	ΝЗΑ
DEBB33F152K	3150Vdc	1500pF±10%	11.0mm max.	7.5	6.0mm max.	A3B	B3B	ΝЗΑ
DEBB33F222K	3150Vdc	2200pF±10%	13.0mm max.	7.5	6.0mm max.	A3B	B3B	ΝЗΑ
DEBB33F332K	3150Vdc	3300pF±10%	15.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

E Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEBE33D102Z	2000Vdc	1000pF+80/-20%	6.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBE33D222Z	2000Vdc	2200pF+80/-20%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBE33D472Z	2000Vdc	4700pF+80/-20%	11.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBE33D103Z	2000Vdc	10000pF+80/-20%	16.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEBE33F102Z	3150Vdc	1000pF+80/-20%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEBE33F222Z	3150Vdc	2200pF+80/-20%	10.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEBE33F472Z	3150Vdc	4700pF+80/-20%	13.0mm max.	7.5	6.0mm max.	A3B	B3B	NЗA

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

F Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEBF33D102Z	2000Vdc	1000pF+80/-20%	5.0mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEBF33D222Z	2000Vdc	2200pF+80/-20%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBF33D472Z	2000Vdc	4700pF+80/-20%	9.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBF33D103Z	2000Vdc	10000pF+80/-20%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

muRata

DEB Series Specifications and Test Methods

No.		ltem	Specifications	Test Method		
1	Operating Temper	ature Range	-25 to +85°C			
2	Appearance and D	imensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.		
3	Marking		To be easily legible	The capacitor should be visually inspected.		
	Between Lead Wires		No failure	The capacitor should not be damaged when DC voltage of 200% of the rated voltage is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current≦50mA)		
4	Dielectric Strength	Body Insulation	No failure	The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, short circuited, is kept about 2mm off the metal balls as shown in the figure at right, and DC voltage of 1.3kV is applied for 1 to 5 sec. between capacitor lead wires and metal balls. (Charge/Discharge current≤50mA)		
5	Insulation Resistance (I.R.)	Between Lead Wires	10000MΩ min.	The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging.		
6	Capacitance		Within specified tolerance	The capacitance should be measured at 20°C with 1±0.2kHz and AC5V(r.m.s.) max.		
7	Dissipation Factor	(D.F.)	Char. B, E: 2.5% max. Char. F: 5.0% max.	The dissipation factor should be measured at 20°C with 1±0.2kHz and AC5V(r.m.s.) max.		
			Char. B: Within ±10% Char. E: Within +20/-55% Char. F: Within +30/-80%	The capacitance measurement should be made at each step specified in the Table.		
8	Temperature Characteristics		S Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before measurements. Step 1 2 3 4 5 Temp. (°C) 20±2 -25±3 20±2 85±2 20±2			
9	Strength of Lead	Pull	Lead wire should not be cut off.	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N (5N for lead diameter 0.5mm), and keep it for 10±1		
		Bending	 Capacitor should not be broken. 	Each lead wire should be subjected to 5N (2.5N for lead diameter 0.5mm) of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.		
		Appearance	No marked defect	The capacitor should be firmly soldered to the supporting lead		
10	Vibration	Capacitance	Within specified tolerance	wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1-minute rate of vibration change		
10	Resistance	D.F.	Char. B, E: 2.5% max. Char. F: 5.0% max.	from 10Hz to 55Hz and back to 10Hz. Apply for a total of 6 hrs., 2 hrs. each in 3 mutually perpendicular directions.		
11	Solderability of Leads		Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C		
		Appearance	No marked defect	The lead wire should be immersed into the melted solder of		
	Soldering Effect	Capacitance Change	Char. B: Within ±5% Char. E: Within ±15% Char. F: Within ±20%	350±10°C (Body of ø5mm and under: 270±5°C) up to about 1.5 to 2mm from the main body for 3.5±0.5 sec. (Body of ø5mm and under: 5±0.5 sec.)		
12	(Non-Preheat)	Dielectric Strength (Between Lead Wires)	Per item 4.	Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.*		

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page. earrow
ea

DEB Series Specifications and Test Methods

Continued from the preceding page. \searrow

No.		ltem	Specifications	Test Method
		Appearance Capacitance Change	No marked defect Char. B: Within ±5% Char. E: Within ±15% Char. F: Within ±20%	First the capacitor should be stored at 120+0/-5°C for 60+0/-5 sec. Then, as in the figure, the lead
13	Soldering Effect (On-Preheat)	Dielectric Strength (Between Lead Wires)	Per item 4.	wires should be immersed in solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 sec. Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.*
		Appearance	No marked defect	The capacitor should be subjected to 5 temperature cycles,
		Capacitance Change	Char. B: Within ±10% Char. E: Within ±20% Char. F: Within ±30%	then consecutively to 2 immersion cycles. <temperature cycle=""> Step Temperature (°C) Time (min) 1 -25±3 30</temperature>
		D.F.	Char. B, E: 4.0% max. Char. F: 7.5% max.	2 Room Temp. 3 3 85±3 30
	Temperature	I.R.	2000MΩ min.	4 Room Temp. 3 Cycle time: 5 cycles
14	Cycle	Dielectric Strength (Between Lead Wires)	Per item 4.	Step Temperature (°C) Time (min) Immersion Water 1 65+5/-0 15 Clean water 2 0±3 15 Salt water Cycle time : 2 cycles Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.*
15	Humidity (Under Steady State)	Appearance Capacitance Change D.F.	No marked defect Char. B: Within ±10% Char. E: Within ±20% Char. F: Within ±30% Char. B, E: 5.0% max. Char. F: 7.5% max.	Set the capacitor for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*
		I.R.	1000MΩ min.	
16	Humidity	ity Capacitance Change Change Char. B: Within ±10% 95% relative humidity. (Char Change Change Char, E: Within ±20% Pre-treatment: Capacitor st Char. F: Within ±30% then placed		Apply the rated voltage for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity. (Charge/Discharge current≦50mA) Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs.
	Loading	D.F.	Char. B, E: 5.0% max. Char. F: 7.5% max.	before initial measurements. Post-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs.
		I.R.	500MΩ min.	
17	Life	Appearance Capacitance Change	No marked defect Char. B: Within ±10% Char. E: Within ±20% Char. F: Within ±30%	Apply a DC voltage of 150% of the rated voltage for 1000+48/-0 hrs. at 85±2°C with a relative humidity of 50% max. (Charge/Discharge current≦50mA) Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr.,
		D.F.	Char. B, E: 4.0% max. Char. F: 7.5% max.	then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored at 85±2°C for 1 hr.,
		I.R.	2000MΩ min.	then placed at room condition* for 24±2 hrs.

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

muRata

High Voltage Ceramic Capacitors

DEC Series (Class 1, 2/DC6.3kV)

Features

Coated with flame-retardant epoxy resin (equivalent to UL94V-0 standard).

- Please contact us when a halogen-free product* is necessary.
- * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.

Applications

Marking

- 1. Ideal for use as the ballast in backlighting inverters for liquid crystal displays (SL Char.).
- 2. Ideal for use on high voltage circuits such as Cockcroft circuits (B Char.).

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

[Bulk] Vertical Crimp Long (Fig. 1) Straight Long (Fig. 2)

Lead Code	Coating Extension e	ød	Style
A3	Up to the end of crimp	0.6±0.05	Fig. 1
C4	3.0 max.	0.6±0.05	Fig. 2

Temp. Char. Nominal Body Diameter	SL	В	E		
ø7mm	10J 6KV				
ø8-9mm	47J 6KV 66	331K 6KV 66			
ø10-15mm	151J 6KV (M66	B 102K 6KV (M66	222Z 6KV (M66		
Temperature Characteristics	Marked with code for char. B (c	omitted for nominal body diamete	er ø9mm and under)		
Nominal Capacitance	Under 100pF: Actual value, 10	0pF and over: Marked with 3 figu	res		
Capacitance Tolerance	Marked with code				
Rated Voltage	Marked with code (for DC6.3kV, marked with 6KV)				
Manufacturer's Identification	Marked with ${igodot}$ (omitted for nominal body diameter ø9mm and under)				
Manufactured Date Code	Abbreviation (omitted for nom	inal body diameter ø7mm)			

SL Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T
DEC1X3J100JA3BMS1	6300Vdc	10pF±5%	7.0mm max.	7.5	7.0mm max.
DEC1X3J100JC4BMS1	6300Vdc	10pF±5%	7.0mm max.	10.0	7.0mm max.
DEC1X3J120JA3B	6300Vdc	12pF±5%	8.0mm max.	7.5	7.0mm max.
DEC1X3J120JC4B	6300Vdc	12pF±5%	8.0mm max.	10.0	7.0mm max.
DEC1X3J150JA3B	6300Vdc	15pF±5%	8.0mm max.	7.5	7.0mm max.
DEC1X3J150JC4B	6300Vdc	15pF±5%	8.0mm max.	10.0	7.0mm max.
DEC1X3J180JA3B	6300Vdc	18pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J180JC4B	6300Vdc	18pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J220JA3B	6300Vdc	22pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J220JC4B	6300Vdc	22pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J270JA3B	6300Vdc	27pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J270JC4B	6300Vdc	27pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J330JA3B	6300Vdc	33pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J330JC4B	6300Vdc	33pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J390JA3B	6300Vdc	39pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J390JC4B	6300Vdc	39pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J470JA3B	6300Vdc	47pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J470JC4B	6300Vdc	47pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J560JC4B	6300Vdc	56pF±5%	10.0mm max.	10.0	7.0mm max.
DEC1X3J680JC4B	6300Vdc	68pF±5%	12.0mm max.	10.0	7.0mm max.
DEC1X3J820JC4B	6300Vdc	82pF±5%	12.0mm max.	10.0	7.0mm max.
DEC1X3J101JC4B	6300Vdc	100pF±5%	13.0mm max.	10.0	7.0mm max.
DEC1X3J121JC4B	6300Vdc	120pF±5%	14.0mm max.	10.0	7.0mm max.
DEC1X3J151JC4B	6300Vdc	150pF±5%	15.0mm max.	10.0	7.0mm max.

B Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T
DECB33J101KC4B	6300Vdc	100pF±10%	9.0mm max.	10.0	7.0mm max.
DECB33J151KC4B	6300Vdc	150pF±10%	9.0mm max.	10.0	7.0mm max.
DECB33J221KC4B	6300Vdc	220pF±10%	9.0mm max.	10.0	7.0mm max.
DECB33J331KC4B	6300Vdc	330pF±10%	9.0mm max.	10.0	7.0mm max.
DECB33J471KC4B	6300Vdc	470pF±10%	10.0mm max.	10.0	7.0mm max.
DECB33J681KC4B	6300Vdc	680pF±10%	11.0mm max.	10.0	7.0mm max.
DECB33J102KC4B	6300Vdc	1000pF±10%	13.0mm max.	10.0	7.0mm max.

E Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T
DECE33J102ZC4B	6300Vdc	1000pF+80/-20%	11.0mm max.	10.0	7.0mm max.
DECE33J222ZC4B	6300Vdc	2200pF+80/-20%	15.0mm max.	10.0	7.0mm max.

DEC Series Specifications and Test Methods

No.	1	ltem	Specifications	Test Method
1	Operating Temper	ature Range	-25 to +85°C	
2	Appearance and D	imensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.
3	Marking		To be easily legible	The capacitor should be visually inspected.
		Between Lead Wires	No failure	The capacitor should not be damaged when DC voltage of 200% of the rated voltage is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current≦50mA)
4	Dielectric Strength	Body Insulation	No failure	The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, short circuited, is kept about 2mm off the metal balls as shown in the figure at right, and DC voltage of 1.3kV is applied for 1 to 5 sec. between capacitor lead wires and metal balls. (Charge/Discharge current≤50mA)
5	Insulation Resistance (I.R.)	Between Lead Wires	10000MΩ min.	The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging.
6	Capacitance		Within specified tolerance	The capacitance should be measured at 20°C with 1±0.2kHz (Char. SL: 1±0.2MHz) and AC5V(r.m.s.) max.
7	Q		Char. SL: 400+20C*²min. (30pF under) 1000 min. (30pF min.)	The dissipation factor and Q should be measured at 20°C with 1±0.2kHz (Char. SL: 1±0.2MHz) and AC5V(r.m.s.) max.
	Dissipation Factor	(D.F.)	Char. B, E: 2.5% max.	
			Char. SL: +350 to -1000ppm/°C (Temp. range: +20 to +85°C) Char. B: Within ±10% Char. E: Within +20/-55%	The capacitance measurement should be made at each step specified in the Table.
8	Temperature Characteristics		Step 1	at 85±2°C for 1 hr., then placed at ars. before measurements. (Char. B, E) 2 3 4 5 -25±3 20±2 85±2 20±2
9	Strength of Lead	Pull	Lead wire should not be cut off. Capacitor should not be broken.	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec.
		Bending		Each lead wire should be subjected to 5N of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.
		Appearance	No marked defect	The capacitor should be firmly coldored to the supporting last
	Vibration	Capacitance	Within specified tolerance	The capacitor should be firmly soldered to the supporting lead wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in
10	Resistance	Q	Char. SL: 400+20C*2min. (30pF under) 1000 min. (30pF min.)	total amplitude, with about a 1-minute rate of vibration change from 10Hz to 55Hz and back to 10Hz. Apply for a total of 6 hrs., 2 hrs. each in 3 mutually perpendicular directions.
		D.F.	Char. B, E: 2.5% max.	
11	L Solderability of Leads		Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C
		Appearance	No marked defect	The lead wire should be immersed into the melted solder of
	Soldering Effect	Capacitance Change	Char. SL: Within ±2.5% Char. B: Within ±5% Char. E: Within ±15%	350±10°C up to about 1.5 to 2mm from the main body for 3.5±0.5 sec. Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* ¹ for 24±2 hrs.
12	(Non-Preheat)	Dielectric Strength (Between Lead Wires)	Per item 4.	Post-treatment: Capacitor should be stored for 4 to 24 brs. at room condition.*1 (Char. SL) Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.*1 (Char. SL)

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

 $^{\star 2}$ "C" expresses nominal capacitance value (pF).

Continued on the following page. $ot\!\!\!/$

muRata

7

DEC Series Specifications and Test Methods

Continued from the preceding page. \searrow

No.		ltem	Specifications	Test Method			
		Appearance	No marked defect	First the capacitor should be			
		Capacitance Change	Char. SL: Within ±2.5% Char. B: Within ±5% Char. E: Within ±15%	stored at 120+0/-5°C for 60+0/-5 sec. Then, as in the figure, the lead wires should be immersed in			
13	Soldering Effect (On-Preheat)	Dielectric Strength (Between Lead Wires)	Per item 4.	solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 sec. Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* ¹ for 24±2 hrs. before initial measurements. (Char. B, E) Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.* ¹ (Char. SL) Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.* ¹ (Char. B, E)			
		Appearance	No marked defect	The capacitor should be subjected to 5 temperature cycles,			
		Capacitance Change	Char. SL: Within ±3% Char. B: Within ±10% Char. E: Within ±20%	<pre>then consecutively to 2 immersion cycles. </pre> Temperature Cycle> Step Temperature (°C) Time (min)			
		Q	Char. SL: 275+5/2C* ² min. (30pF under) 350 min. (30pF min.)	1 -25±3 30 2 Room Temp. 3			
		D.F.	Char. B, E: 4.0% max.	3 85±3 30 4 Room Temp. 3			
	Temperature	I.R.	2000MΩ min.	<pre> Cycle time: 5 cycles </pre>			
14	and Immersion Cycle	Dielectric Strength (Between Lead Wires)	Per item 4.	Step Temperature (°C) Time (min) Immersion Water 1 65+5/-0 15 Clean water 2 0±3 15 Salt water Cycle time: 2 cycles Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition*1 for 24±2 hrs. before initial measurements. (Char. B, E) Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.*1			
		Appearance	No marked defect				
	Humidity (Under	Capacitance Change	Char. SL: Within ±5% Char. B: Within ±10% Char. E: Within ±20%	Set the capacitor for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr.,			
15	Steady State)	Q	Char. SL: 275+5/2C* ² min. (30pF under) 350 min. (30pF min.)	then placed at room condition*1 for 24±2 hrs. before initial measurements. (Char. B, E) Post-treatment: Capacitor should be stored for 1 to 2 hrs. at			
		D.F.	Char. B, E: 5.0% max.	room condition.*1			
		I.R.	1000MΩ min.				
		Appearance	No marked defect	Apply the rated voltage for $500+24/-0$ hrs. at 40 ± 2 °C in 90 to			
		Capacitance Change	Char. SL: Within ±7.5% Char. B: Within ±10% Char. E: Within ±20%	95% relative humidity. (Charge/Discharge current≦50mA.) Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* ¹ for 24±2 hrs.			
16	Humidity Loading	Q	Char. SL: 100+10/3C* ² min. (30pF under) 200 min. (30pF min.)	 before initial measurements. (Char. B, E) Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.^{*1} (Char. SL) Post-treatment: Capacitor should be stored at 85±2°C for 1 			
		D.F.	Char. B, E: 5.0% max.	hr., then placed at room condition*1 for 24±2			
		I.R.	500MΩ min.	hrs. (Char. B, E)			
		Appearance	No marked defect	Apply a DC voltage of 150% of the rated voltage for			
		Capacitance Change	Char. SL: Within ±3% Char. B: Within ±10% Char. E: Within ±20%	1000+48/-0 hrs. at 85±2°C with a relative humidity of 50% max. (Charge/Discharge current≦50mA.) Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition*1 for 24±2 hrs.			
17	Life	Q	Char. SL: 275+5/2C* ² min. (30pF under) 350 min. (30pF min.)	Post-treatment: Capacitor should be stored for 1 to 2 hrs. at			
				Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*1 (Char. SL)			
		D.F.	Char. B, E: 4.0% max.	Post-treatment: Capacitor should be stored at 85±2°C for 1			

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

muRata

High Voltage Ceramic Capacitors

DEF Series (Only for LCD Backlight Inverter Circuit/6.3kVp-p)

Features

- 1. Compact size: Diameter is 20% less than DEC series.
- 2. Low self-heating at high frequency and high voltage due to low dielectric loss of the ceramic material.
- 3. Operating temperature range is guaranteed up to 105 degrees C.
- 4. Coated with flame-retardant epoxy resin (equivalent to UL94V-0 standard). Please contact us when a halogen-free product* is necessary.
 - * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
- 5. Taping available for automatic insertion.

Applications

Ideal for use in LCD backlight inverters.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

Marking

Temp. Char. Nominal Body Diameter	СН	SL		
ø7-9mm	10J 6K~ 66	33J 6K- 66		
Temperature Characteristics	Upper horizontal line	-		
Nominal Capacitance	Actual value			
Capacitance Tolerance	Marked with code			
Rated Voltage	Marked with code (Marked with 6K~)			
Manufactured Date Code	Abbreviation			

SL Characteristics

Part Number	Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEF1XLH100J	6300Vdc(p-p)	10pF±5%	7.0mm max.	7.5	6.0mm max.	A3B	J3B	ΝЗΑ
DEF1XLH120J	6300Vdc(p-p)	12pF±5%	7.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF1XLH150J	6300Vdc(p-p)	15pF±5%	7.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF1XLH180J	6300Vdc(p-p)	18pF±5%	7.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF1XLH220J	6300Vdc(p-p)	22pF±5%	7.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF1XLH270J	6300Vdc(p-p)	27pF±5%	8.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF1XLH330J	6300Vdc(p-p)	33pF±5%	9.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF1XLH390J	6300Vdc(p-p)	39pF±5%	9.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF1XLH470J	6300Vdc(p-p)	47pF±5%	9.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

[Bulk] Vertical Crimp Short (J3)

		(in mm)
Lead Code	Coating Extension e	ød
J3	Up to the end of crimp	0.6±0.05

CH Characteristics

Part Number	Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEF2CLH020C	6300Vdc(p-p)	2.0pF±0.25pF	7.0mm max.	7.5	6.0mm max.	A3B	J3B	ΝЗΑ
DEF2CLH030C	6300Vdc(p-p)	3.0pF±0.25pF	7.0mm max.	7.5	6.0mm max.	A3B	J3B	ΝЗΑ
DEF2CLH040C	6300Vdc(p-p)	4.0pF±0.25pF	7.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF2CLH050D	6300Vdc(p-p)	5.0pF±0.5pF	7.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF2CLH060D	6300Vdc(p-p)	6.0pF±0.5pF	7.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF2CLH070D	6300Vdc(p-p)	7.0pF±0.5pF	8.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF2CLH080D	6300Vdc(p-p)	8.0pF±0.5pF	8.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF2CLH090D	6300Vdc(p-p)	9.0pF±0.5pF	8.0mm max.	7.5	6.0mm max.	A3B	J3B	NЗA
DEF2CLH100J	6300Vdc(p-p)	10pF±5%	8.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

DEF Series Specifications and Test Methods

No.	p. Item		Specifications	Test Method
1	Operating Temperature Range		-25 to +105°C	
2	Appearance and Dimensions		No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.
3	Marking		To be easily legible	The capacitor should be visually inspected.
		Between Lead Wires	No failure	The capacitor should not be damaged when DC12.6kV is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current≦50mA)
4	Dielectric Strength	Body Insulation No failure Table 2.0mm In the figure 1.3kV is app capacitor lead		The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, short circuited, is kept about 2.0mm off the metal balls as shown in the figure at right, and DC voltage of 1.3kV is applied for 1 to 5 sec. between capacitor lead wires and metal balls. (Charge/Discharge current≦50mA)
5	Insulation Resistance (I.R.)	Between Lead Wires	10000MΩ min.	The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging.
6	Capacitance		Within specified tolerance	The capacitance should be measured at 20°C with 1 \pm 0.2MHz and AC5V(r.m.s.) max.
7	Q		400+20C* ² min. (30pF under) 1000 min. (30pF min.)	The Q should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max.
8	Temperature Chai	acteristics	Char. CH: 0±60ppm/°C Char. SL: +350 to -1000ppm/°C (Temp. range: +20 to +85°C)	The capacitance measurement should be made at each step specified in the Table.
			Step 1 Temp. (°C) 20±2	2 3 4 5 -25±3 20±2 85±2 20±2
9	Strength of Lead	Pull	Lead wire should not be cut off. Capacitor should not be broken.	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec.
		Bending		Each lead wire should be subjected to 5N of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.
		Appearance	No marked defect	The capacitor should be firmly soldered to the supporting lead
10	Vibration	Capacitance	Within specified tolerance	wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1-minute rate of vibration change
	Resistance	Q	400+20C* ² min. (30pF under) 1000 min. (30pF min.)	from 10Hz to 55Hz and back to 10Hz. Apply for a total of 6 hrs., 2 hrs. each in 3 mutually perpendicular directions.
11	L Solderability of Leads		Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C
		Appearance	No marked defect	
12	Soldering Effect	Capacitance Change	Within ±2.5%	The lead wire should be immersed into the melted solder of 350±10°C up to about 1.5 to 2.0mm from the main body for 3.5±0.5 sec.
12	(Non-Preheat)	Dielectric Strength (Between Lead Wires)	Per item 4.	Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.* ¹

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*² "C" expresses nominal capacitance value (pF).

Continued on the following page. $ot\!$

DEF Series Specifications and Test Methods

Continued from the preceding page. \checkmark

No.		ltem	Specifications	Test Method
		Appearance Capacitance Change	No marked defect Within ±2.5%	First the capacitor should be stored at 120+0/-5°C for 60+0/-5 sec.
13	Soldering Effect (On-Preheat)	Dielectric Strength (Between Lead Wires)	Per item 4.	Then, as in the figure, the lead wires should be immersed in solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 sec. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.* ¹
		Appearance	No marked defect	The capacitor should be subjected to 5 temperature cycles,
		Capacitance Change	Within ±3%	then consecutively to 2 immersion cycles. <temperature cycle=""></temperature>
		Q	200+10C* ² min. (10pF under) 275+5/2C ^{*2} min. (10pF min. and 30pF under) 350 min. (30pF min.)	Step Temperature (°C) Time (min)
	Temperature	I.R.	2000MΩ min.	3 105±3 30 4 Room Temp. 3
14	and Immersion Cycle	Dielectric Strength (Between Lead Per item 4. Wires)		Cycle time: 5 cycles <immersion cycle=""> Step Temperature (°C) Time (min) Immersion Water 1 65+5/-0 15 Clean water 2 0±3 15 Salt water Cycle time: 2 cycles Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.*1</immersion>
		Appearance	No marked defect	
	Humidity (Under	Capacitance Change	Within ±5%	Set the capacitor for 500 +24/-0 hrs. at 40±2°C in 90 to 95% relative humidity.
15	Steady State)	Q	200+10C* ² min. (10pF under) 275+5/2C* ² min. (10pF min. and 30pF under) 350 min. (30pF min.)	Post-treatment: Capacitor should be stored for 1 to 2 hrs. at
		I.R.	1000MΩ min.	
		Appearance	No marked defect	Apply 6.3kVp-p at the frequency in the Table for 1000+48/-0
		Capacitance Change	Within ±3%	hrs. at 105±2°C with a relative humidity of 50% max. (Charge/Discharge current≦50mA.) <frequency></frequency>
16	Life	Q	200+10C* ² min. (10pF under) 275+5/2C* ² min. (10pF min. and 30pF under) 350 min. (30pF min.)	Capacitance (pF) Frequency (kHz) to 10 100 12 to 22 45
		I.R.	2000MΩ min.	27 to 47 33 Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*1

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

 $\ast^{\scriptscriptstyle 2}$ "C" expresses nominal capacitance value (pF).

High Voltage Ceramic Capacitors Characteristics Data (Typical Example)

Capacitance - Temperature Characteristics

Capacitance - DC Bias Characteristics

High Voltage Ceramic Capacitors Packaging

Taping Specifications

(in : mm)

Continued on the following page. earrow

High Voltage Ceramic Capacitors Packaging

Continued from the preceding page. \searrow

Packaging Styles

Bulk	Taping
Polyethylene Bag	Ammo Pack
A State	Murata Products

Minimum Quantity (Order in Sets Only)

[Bulk]			(pcs./Bag)
	Body Dia. D (mm)	Lead Code A□, C□	Lead Code B□, D□, J□
		Long	Short
	4.5 to 6	500	500
	7	250 *1	500
DEH Series	8 to 11	250	500
DEA Series	12	200	250
DEB Series	13, 14	200	250
	15 to 18	100	200
	19 to 21	50	100
	7 to 9	250	500
DEC Series	10, 11	100	-
DEF Series	12 to 15	100	_

*1 Lead Spacing F=5.0mm (Code: A2): 500pcs.

[Taping]			(pcs./Ammo Pack)
Lead Code	N2, P2	N3, P3	N7
DEH Series	1,500	900	500
DEA Series	1,500	900	500
DEB Series	1,500	900	500
DEF Series	_	900	-

High Voltage Ceramic Capacitors 🖄 Caution

ACaution (Rating)

<DEH/DEA/DEB/DEC Series>

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p that contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

When using the low-dissipation DEA (SL Char.) /DEC (SL Char.) /DEH (R Char.) series in a high- frequency and high-voltage circuit, be sure to read the instructions in item 4.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Certified Capacitors because various regulations on withstand voltage or impulse withstand established for each type of equipment should be taken into consideration.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The frequency of the applied sine wave voltage should be less than 300kHz. The applied voltage load (*) should be such that the capacitor's self-generated heat is within 20°C in an <u>atmospheric temperature of 25°C</u>. When measuring, use a thermocouple of small thermal capacity-K of ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

*Before using the low-dissipation DEA/DEC (SL Char.) /DEH series, be sure to read the instructions in item 4.

3. Fail-Safe

When the capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure could follow an electric shock, fire or fume.

High Voltage Ceramic Capacitors ACaution

Continued from the preceding page. \searrow

4. Load Reduction and Self-generated Heat During Application of High-frequency and High-voltage Due to the low self-heating characteristics of lowdissipation capacitors, the allowable electric power of these capacitors is generally much higher than that of B characteristic capacitors. However, if the self-heating temperature is 20°C under a high-frequency voltage whose peak-to-peak value equals the capacitor's rated voltage, the capacitor's power consumption may exceed its allowable electric power.

Therefore, when using the DEA/DEC (SL Char.) /DEH series in a high-frequency and high-voltage circuit with a frequency of 1kHz or higher, make sure that the Vp-p values including the DC bias, do not exceed the applied voltage value specified in Table 1. Also make sure that the self-heating temperature (the difference between the capacitor's surface temperature and the capacitor's ambient temperature) at an ambient temperature of 25°C does not exceed the value specified in Table 1. As shown in Fig. 2, the self-heating temperature depends on the ambient temperature. Therefore, if you are not able to set the ambient temperature to approximately 25°C, please

<Fig. 1> Relationship Between Applied Voltage and Self-heating Temperature (Allowable Self-heating Temp. at 25°C Ambient Temp.)

<Fig. 2> Dependence of Self-heating Temperature on Ambient Temperature

contact our sales representatives or product engineers. We are offering free software, The Capacitor Selection Tool: by Voltage Form, which will assist you in selecting a suitable capacitor.

The software can be downloaded from Murata's Web site (http://www.murata.com/products/design_support/mmcsv/index.html).

By inputting capacitance values and applied voltage waveform of the specific capacitor series, this software will calculate the capacitor's power consumption and list suitable capacitors.

When the result of this software is different from the measurement result of the self-heating temperature on your side, please contact our sales representatives or product engineers.

FAILURE TO FOLLOW THE ABOVE CAUTIONS (ITEMS 1 TO 4) MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

. .	Temp.	DC		ole Conditions frequency *3	Capacitor's
Series	Char.	Rated Voltage		Self-heating Temp. (25°C Ambient Temp.) *1	Ambient Temp. *2
		2kV	1400Vp-p	20°C Max.	
DEH	R	260	2000Vp-p	5°C Max.	
DEH	ĸ	3.15kV	1600Vp-p	20°C Max.	
		3.15KV	3150Vp-p	5°C Max.	-25 to +85°C
DEA	SL	2kV	2000Vp-p	5°C Max.	
DEA	ЪL	3.15kV	3150Vp-p	5°C Max.	
DEC	SL	6.3kV	6300Vp-p	5°C Max.	

<Table 1> Allowable Conditions at High frequency

*1 Fig. 1 shows the relationship between the applied voltage and the allowable self- heating temperature regarding 2 to 3.15kV rated voltage of the DEH series R characteristic.

*2 When the ambient temperature is 85 to 125°C, the applied voltage needs to be further reduced. If the DEA/DEH series needs to be used at an ambient temperature of 85 to 125°C, please contact our sales representatives or product engineers.

*3 Fig. 3 shows reference data on the allowable voltage - frequency characteristics for a sine wave voltage.

High Voltage Ceramic Capacitors 🖄 Caution

Continued from the preceding page. \searrow

<Fig. 3> Allowable Voltage (Sine Wave Voltage) - Frequency Characteristics (At Ambient Temperature of 85°C or less)

Because of the influence of harmonics, when the applied voltage is a rectangular wave or pulse wave voltage (instead of a sine wave voltage), the heat generated by the capacitor is higher than the value obtained by application of the sine wave with the same fundamental frequency.

Roughly calculated for reference, the allowable voltage for a rectangular wave or pulse wave corresponds approximately

to the allowable voltage for a sine wave whose fundamental frequency is twice as large as that of the rectangular wave or pulse wave. This allowable voltage, however, varies depending on the voltage and current waveforms. Therefore, you are requested to make sure that the selfheating temperature is not higher than the value specified in Table 1.

High Voltage Ceramic Capacitors ACaution

Continued from the preceding page. \checkmark

<DEF Series>

1. Operating Voltage

The frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage should be less than the value shown in the figure below. For non-sine wave that includes a harmonic frequency, please contact our sales representatives or product engineers.

2. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. Fail-Safe

When the capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure could result in an electric shock, fire or fume. The temperature of the surface of the capacitor: below the upper limit of its rated operating temperature range (including self-heating).

The capacitor can be applied at a maximum of 6.3kVp-p at 100kHz when the lamp is turned on.

High Voltage Ceramic Capacitors 🖄 Caution

\triangle Caution (Storage and Operating Condition)

Operating and Storage Environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. Also, avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 degrees centigrade and 15 to 85%. Use capacitors within 6 months after delivery. Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

\triangle Caution (Soldering and Mounting)

1. Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use. Excessive shock or vibration may cause fatigue destruction of lead wires mounted on the circuit board.

Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

2. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Soldering the capacitor with a soldering iron should be performed in following conditions.

Temperature of iron-tip: 400 degrees C. max. Soldering iron wattage: 50W max. Soldering time: 3.5 sec. max. 3. Bonding, Resin Molding and Coating For bonding, molding or coating this product, verify that these processes do not affect the quality of the capacitor by testing the performance of the bonded, molded or coated product in the intended equipment. When the amount of applications, dryness/hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc). are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit. The variation in thickness of adhesive, molding resin or coating may cause outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

 Treatment after Bonding, Resin Molding and Coating When the outer coating is hot (over 100 degrees C.) after soldering, it becomes soft and fragile. Therefore, please be careful not to give it mechanical stress.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

ACaution (Handling)

Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use. Excessive shock or vibration may cause fatigue destruction of lead wires mounted on the circuit board.

Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

.....

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

muRata

Note • Please read rating and (LCAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

High Voltage Ceramic Capacitors Notice

Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning) To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity: Output of 20 watts per liter or less. Rinsing time: 5 min. maximum. Do not vibrate the PCB/PWB directly. Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

Notice (Rating)

Capacitance Change of Capacitors

 DEA/DEC/DEF Series (Temp. Char. CH, SL) Capacitance might change a little depending on the surrounding temperature or an applied voltage. Please contact us if you intend to use this product in a strict time constant circuit.

2. DEB/DEC Series (Temp. Char. B, E, F) Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. Therefore, it is not likely to be suitable for use in a time constant circuit. Please contact us if you need detailed information.

of Capacitors 3. DEH Series

Capacitance might change greatly depending on the surrounding temperature or an applied voltage. Therefore, it is not likely to be suitable for use in a time constant circuit. Please contact us if you need detailed information.

muRata

Safety Standard Certified Ceramic Capacitors for Automotive

Type KJ -Class X1, Y2- (For Automotive Use/AC Line Filter of PHEV/EV Charger)

Features

- 1. Capacitors designed for AC line filters for PHEV/EV.
- 2. Meet AEC-Q200
- 3. Heat cycle: 1000cycle (-55/+125 deg.)
- 4. Class X1/Y2 capacitors certified by UL/ENEC(VDE).
- 5. Rated Voltage: AC300V
- 6. Coated with flame-retardant epoxy resin (conforming to UL94V-0 standard).
- 7. Available product for RoHS Restriction (EU Directive 2002/95/EC).
- 8. Taping available for automatic insertion.

Applications

- 1. Ideal for use as Y capacitors for AC line filters and primary-secondary coupling on battery chargers for PHEV/EV.
- 2. Ideal for use as a filter capacitor for DC-DC converters for PHEV/EV and HEV.

[Bulk] Vertical Crimp Short (B3)

		(in mm)
Code	Coating Extension e	ød
3	Up to the end of crimp	0.6±0.05

Standard Certification

	Standard No.	Certified No.	Rated Voltage
UL	UL 60384-14	E37921	AC200)//* m c)
ENEC (VDE)	EN 60384-14	40031217	AC300V(r.m.s.)

Marking

Example	ltem
	1 Type Designation KJ
2-472M-3	② Nominal Capacitance (Marked with 3 figures)
(1 + KJ300~)	③ Capacitance Tolerance
X1 Y2	④ Company Name Code €15 : Made in Thailand
5 1D M15 4	(5) Manufactured Date Code
\smile	Class Code X1Y2
	Rated Voltage Mark 300~

2	-	_	

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE6B3KJ101K	300Vac(r.m.s.)	В	100pF±10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6B3KJ151K	300Vac(r.m.s.)	В	150pF±10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6B3KJ221K	300Vac(r.m.s.)	В	220pF±10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6B3KJ331K	300Vac(r.m.s.)	В	330pF±10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6B3KJ471K	300Vac(r.m.s.)	В	470pF±10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6B3KJ681K	300Vac(r.m.s.)	В	680pF±10%	9.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6E3KJ102M	300Vac(r.m.s.)	E	1000pF±20%	7.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6E3KJ152M	300Vac(r.m.s.)	E	1500pF±20%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6E3KJ222M	300Vac(r.m.s.)	E	2200pF±20%	9.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6E3KJ332M	300Vac(r.m.s.)	Е	3300pF±20%	10.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6E3KJ472M	300Vac(r.m.s.)	Е	4700pF±20%	12.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code. Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KJ) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Operating Temperature Range: -40 to +125°C

No.	lte	em	Specifications	Test Method
1	Appearance an	d Dimensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.
2	Marking		To be easily legible	The capacitor should be visually inspected.
3	Capacitance		Within specified tolerance	
4			Char.SpecificationsB, ED.F.≤2.5%	The dissipation factor should be measured at 20°C with 1±0.1kHz and AC5V(r.m.s.) max.
5	Insulation Resistance (I.R.)		10000MΩ min.	The insulation resistance should be measured with DC500 \pm 50V within 60 \pm 5 sec. of charging. The voltage should be applied to the capacitor through a resistor of 1M Ω .
		Between Lead Wires	No failure	The capacitor should not be damaged when the test voltages from Table 1 are applied between the lead wires for 60 sec. <table 1=""> Type Test Voltage KJ AC2600V(r.m.s.)</table>
6	Dielectric Strength	Body Insulation	No failure	First, the terminals of the capacitor should be connected together. Then, as shown in the figure at right, a metal foil should be closely wrapped around the body of the capacitor to the distance of about 3 to 4mm from each terminal. Then, the capacitor should be inserted into a container filled with metal balls of about 1mm diameter. Finally, AC voltage from Table 2 is applied for 60 sec. between the capacitor lead wires and metal balls. <table 2=""> Type KJ AC2600V(r.m.s.)</table>
7	Temperature C	haracteristics	Char.Capacitance ChangeBWithin ±10%EWithin ±2%(Temp. range: -25 to +85°C)	The capacitance measurement should be made at each step specified in Table 3. <pre></pre>
8	Solderability		Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	Should be placed into steam aging for 8 hrs.±15 min. After the steam aging, the lead wire of a capacitor should be dipped into an ethanol solution of 25% rosin and then into molten solder for 5+0/-0.5 sec. The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C
		Appearance	No marked defect	As shown in the figure, the lead
		Capacitance Change	Within ±10%	wires should be immersed in solder Thermal of 260±5°C up to 1.5 to 2.0mm
	Resistance to	I.R.	1000MΩ min.	Sec
9	Soldering Heat		Per Item 6	Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition. ³

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page. $ot\!\!\!\!/$

muRata

9

Continued from the preceding page. \checkmark

No.	lte	em	Specifications	Test Method
		Appearance	No marked defect	Solder the capacitor and gum
		Capacitance	Within the specified tolerance	up the body to the test jig (glass epoxy board) by resin (adhesive).
10	Vibration	D.F.	Char. Specifications B, E D.F.≦2.5%	The capacitor should be firmly soldered to the supporting lead wire, 1.5mm in total amplitude, with about a 20 minutes rate of vibration change from 10Hz to 2000Hz and back to 10Hz. This motion should be applied 12 times in each of 3 mutually perpendicular directions (total of 36 times). The acceleration is 5g max.
		Appearance	No marked defect	Solder the capacitor and gum
		Capacitance	Within the specified tolerance	up the body to the test jig (glass epoxy board) by resin
11	11 Mechanical Shock	D.F.	Char. Specifications B, E D.F.≦5.0%	(adhesive). Three shocks in each direction should be applied along 3 mutually perpendicular axes to and from of the test specimen (18 shocks).
		I.R.	10000MΩ min.	The specified test pulse should be half-sine and should have a duration: 0.5ms, peak value: 100g and velocity change: 4.7m/s.
		Appearance	No marked defect	_
	Humidity	Capacitance Change	Char.Capacitance ChangeBWithin ±10%EWithin ±15%	Set the capacitor for 1000±12 hrs. at 85±3°C in 80 to 85% relative humidity.
12	Steady State)	iteady D.F.	Char. Specifications B, E D.F.≦5.0%	Pre-treatment: Capacitor should be stored at 125±3°C for 1hr., then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment:
		I.R.	3000MΩ min.	Capacitor should be stored for 1 to 2 hrs. at room condition.*
		Dielectric Strength	Per Item 6	
		Appearance	No marked defect	_
13	Humidity	Capacitance Change	Char.Capacitance ChangeBWithin ±10%EWithin ±15%	Apply the rated voltage for 1000±12 hrs. at 85±3°C in 80 to 85% relative humidity. Pre-treatment:
	Loading	D.F.	Char. Specifications B, E D.F.≦5.0%	Capacitor should be stored at 125±3°C for 1hr., then placed at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*
		I.R.	3000MΩ min.	
		Appearance	No marked defect	Impulse Voltage
		Capacitance Change	Within ±20%	Each individual capacitor should be subjected to a 5kV impulses for three times. Then the capacitors are applied to life test.
		I.R.	3000MΩ min.	100 (%) 90
14	Life	Dielectric Strength	Per Item 6	Time to half-value (T2) =50 μ s Time to half-value (T2) =50 μ s Time to half-value (T2) =50 μ s To half-value
				at room condition* for 24±2 hrs. before initial measurements. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page. earrow

No.	tinued from the	em	Specifications	Test Method
15	Robustness	Tensile	Lead wire should not be cut off. Capacitor should	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep
	Terminations	Bending		Each lead wire should be subjected to 5N of weight and bent 90° at the point of egress, in one direction, then returend to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.
16	Active Flamma	bility	The cheesecloth should not catch on fire.	The capacitor should be individually wrapped in at least one, but not more than two, complete layers of cheesecloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 min. after the last discharge. $\underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
17	Passive Flamm	ability	The burning time should not exceed 30 sec. The tissue paper should not ignite.	time time time time The capacitor under test should be held in the flame in the position that best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec. Length of flame: 12±1mm Gas burner : Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas : Butane gas Purity 95% min. Test Specimen Tissue About 10mm Thick Board
		Appearance	No marked defect	The capacitor should be subjected to 1000 temperature cycles.
		Capacitance Change	Char. Capacitance Change B Within ±10% E Within ±20%	Step Temperature (°C) Time (min) 1 -55+0/-3 30 2 Room temp. 3
	Temperature			3 125+3/-0 30
18	Cycle	D.F.	Char. Specifications B, E D.F.≦5.0%	4 Room temp. 3 Cycle time: 1000 cycles
		I.R.	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> 3000MΩ min.	Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed
				Lanacitor should be stored at 175+390 for 1 br then blaced
		Dielectric		at room condition* for 24±2 hrs.

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page. earrow
ea

9

Continued from the preceding page. \searrow

No.		em	Specifications	Test Method
	High	Capacitance Change	Within ±20%	Set the capacitor for 1000±12 hrs. at 150±3°C.
19	High Temperature Exposure (Storage)	D.F.	Char. Specifications B, E D.F.≦5.0%	Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition* for 24±2 hrs. Post-treatment:
		I.R.	1000MΩ min.	Capacitor should be stored for 24±2 hrs. at room condition.*
		Appearance	No marked defect except color change of outer coating.	The capacitor should be subjected to 300 cycles.
20	Thermal Shock	Capacitance Change	Char.Capacitance ChangeBWithin ±10%EWithin ±20%	Step Temperature (°C) Time (min) 1 -55+0/-3 30 2 125+3/-0 30
		D.F.	Char. Specifications B, E D.F.≦5.0%	 Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition* for 24±2 hrs. Post-treatment:
		I.R.	3000MΩ min.	Capacitor should be stored for 24±2 hrs. at room condition.*
		Appearance	No marked defect	
21	Resistance to Solvents	Capacitance Change	Char.Capacitance ChangeBWithin ±10%EWithin ±20%	 Per MIL-STD-202 Method 215 Solvent 1: 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits Solvent 2: Terpene defluxer Solvent 3: 42 parts (by volume) of water
		D.F.	Char. Specifications B, E D.F.≦5.0%	1 part (by volume) of propylene glycol monomethyl ether 1 part (by volume) of monoethanolomine
		I.R.	3000MΩ min.	
		Appearance	No marked defect	
22	Biased Humidity	Capacitance Change	Char.Capacitance ChangeBWithin ±10%EWithin ±15%	Apply the rated voltage and DC1.3+0.2/-0V (add 6.8kΩ resistor) at 85±3°C and 80 to 85% humidity for 1000±12 hrs. Pre-treatment: Capacitor should be stored at 125±3°C for 1hr., then placed
	Humary	D.F.	Char.SpecificationsB, ED.F.≦5.0%	at room condition* for 24±2 hrs. Post-treatment: Capacitor should be stored for 24±2 hrs. at room condition.*
		I.R.	3000MΩ min.	
		Appearance	No marked defect	Apply 24 hrs. of heat (25 to 65°C) and humidity (80 to 98%)
		Capacitance Change	Char.Capacitance ChangeBWithin ±10%EWithin ±20%	 treatment shown below, 10 consecutive times. Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition* for 24±2 hrs.
		D.F.	Char. Specifications B, E D.F.≦5.0%	Post-treatment: Capacitor should be stored for 24±2 hrs. at room condition.*
23	Moisture Resistance	I.R.	3000MΩ min.	Humidity Humidity Humidity Humidity Humidity 90-98%

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

muRata

Safety Certified Ceramic Capacitors for Automotive Characteristics Data (Typical Example)

Capacitance - Temperature Characteristics

Insertion Loss - Frequency Characteristics

Leakage Current Characteristics

Safety Certified Ceramic Capacitors for Automotive Packaging

Taping Specifications

 15mm pitch / lead spacing 7.5mm taping Vertical crimp type (Lead Code: N3) 		
$P_{1} \rightarrow P_{1} \rightarrow P_{1$	- 04 - 140 - 140 140 140 140 140 140 140 140 140 140 140 140 	$Ah_1 O Ah_2$ T max. Marked side * $Ah_1 O Ah_2$ T max. H_0 3.0 max. H_0
ltem	Code	N3
Pitch of component	Р	15.0±2.0
Pitch of sprocket hole	Po	15.0±0.3
Lead spacing	F	7.5±1.0
Length from hole center to component center	P2	7.5±1.5
Length from hole center to lead	P1	3.75±1.0
Body diameter	D	See the individual product specifications.
Deviation along tape, left or right	ΔS	0±2.0
Carrier tape width	W	18.0±0.5
Position of sprocket hole	W1	9.0±0.5
Lead distance between reference and bottom planes	Ho	18.0_0
Protrusion length	l	+0.5 to -1.0
Diameter of sprocket hole	øDo	4.0±0.1
Lead diameter	ød	0.6±0.05
Total tape thickness	t1	0.6±0.3
Total thickness, tape and lead wire	t2	1.5 max.
Body thickness	Т	7.0 max.
Portion to cut in case of defect	L	11.0 ⁺⁰ _1.0
Hold down tape width	Wo	11.5 min.
Hold down tape position	W2	1.5±1.5
Coating extension on lead	е	Up to the end of crimp
	4	
Deviation across tape, front	Δh1	2.0 max.

Packaging Styles

Minimum Quantity (Order in Sets Only)

[Bulk]	(pcs./Bag)			
Body Dia. D (mm)	Lead Code A3	Lead Code B3		
	Long	Short		
7 to 10	250	500		
12	200	250		

[Taping]

Lead Code: N3

700pcs./Ammo Pack

Safety Certified Ceramic Capacitors for Automotive 🖄 Caution

Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p that contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature and Self-generated Heat Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may have self-generated heat due to dielectric loss. Applied voltage load should be such that self-generated heat is within 20°C under the condition where the capacitor is subjected to an atmospheric temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of ø0.1mm under conditions where the capacitor is not affected by radiant heat from other components or wind from surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. Test Condition for Withstanding Voltage

(1) Test Equipment

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

Continued on the following page. earrow

Safety Certified Ceramic Capacitors for Automotive ACaution

Continued from the preceding page. \searrow

(2) Voltage Applied Method

When the withstanding voltage is applied, the capacitor's lead or terminal should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the zero cross.* At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the output of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may rise, and therefore, a defect may be caused.

*ZERO CROSS is the point where voltage sine wave passes 0V. See the figure at right.

4. Fail-Safe

When the capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure could result in an electric shock, fire or fuming.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Safety Certified Ceramic Capacitors for Automotive 🖄 Caution

\triangle Caution (Storage and Operating Condition)

Operating and Storage Environment The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. Also, avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 degrees centigrade and 15 to 85%. Use capacitors within 6 months after delivery. Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Caution (Soldering and Mounting)

1. Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use. Excessive shock or vibration may cause fatigue destruction of lead wires mounted on the circuit board.

Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

2. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specifications of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Soldering the capacitor with a soldering iron should be performed in the following conditions.

Temperature of iron-tip: 400 degrees C. max. Soldering iron wattage: 50W max. Soldering time: 3.5 sec. max. 3. Bonding, Resin Molding and Coating For bonding, molding or coating this product, verify that these processes do not affect the quality of the capacitor by testing the performance of the bonded, molded or coated product in the intended equipment. When the amount of applications, dryness/hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc). are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit. The variation in thickness of adhesive, molding resin or coating may cause outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

 Treatment after Bonding, Resin Molding and Coating When the outer coating is hot (over 100 degrees C.) after soldering, it becomes soft and fragile. Therefore, please be careful not to give it mechanical stress.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

ACaution (Handling)

Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use. Excessive shock or vibration may cause fatigue

destruction of lead wires mounted on the circuit board.

Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

.....

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Note • Please read rating and (1)CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

C85E.pdf May 17,2016

Safety Certified Ceramic Capacitors for Automotive Notice

Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning) To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity: Output of 20 watts per liter or less. Rinsing time: 5 min. maximum. Do not vibrate the PCB/PWB directly. Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

Notice (Rating)

1. Capacitance Change of Capacitors Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. Therefore, it is not likely to be suitable for use in a constant time circuit.

Please contact us if you need detailed information. 2. Performance Check by Equipment

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications. Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. Therefore, the capacitance value may change depending on the operating condition in the equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in the capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

.....

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

Safety Certified Ceramic Capacitors/High Voltage Ceramic Capacitors ISO9000 Certifications

Manufacturing plants that produce the products in this catalog have obtained the ISO9000 quality system certificate.

Plant	Applied Standard
Izumo Murata Manufacturing Co., Ltd.	ISO9001
Murata Electronics (Thailand), Ltd.	ISO9001
Taiwan Murata Electronics Co., Ltd.	ISO9001

Global Locations

For details please visit www.murata.com

Note

1 Export Control

For customers outside Japan:

No Murata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

For customers in Japan:

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.

- (1) Aircraft equipment
- Aerospace equipment
- ③ Undersea equipment
- ④ Power plant equipment
- (5) Medical equipment
- Transportation equipment (vehicles, trains, ships, etc.)
- Traffic signal equipment
- B Disaster prevention / crime prevention equipment
- Data-processing equipment
- Application of similar complexity and/or reliability requirements to the applications listed above

Product specifications in this catalog are as of March 2016. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.

Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.

This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

- Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7 No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

Murata Manufacturing Co., Ltd.

www.murata.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

DEHC32H222KA2B DEBF33A103ZN2A DEBE33F102ZC3B DEHR33F222KN7A DE2E3KH102MNAA
DEC1X3J121JC4B DEA1X3D150JA1B DEA1X3A150JA1B DECB33J151KC4B DEC1X3J151JC4B
DEBE33D222ZA2B DEBE33A222ZA2B DEA1X3F391JA3B DEA1X3D391JA3B DECB33J101KC4B
DEA1X3A391JA2B DEA1X3A100JA1B DEA1X3D100JA1B DEHR33D152KEBB DEHR33D271KC3B
DEC1X3J270JC4B DEA1X3F180JCDB DEHR33F152KA3B DEHR33D152KA3B DE2E3KH332MA4B
DEHR33A152KA2B DE2F3KH103MA4B DEBB33D471KN2A DEA1X3F270JC3B DEA1X3F150JCDB
DEBE33D102ZA2B DEHC32H331KA2B DEBE33A102ZA1B DEA1X3A390JP2A DEHC32H681KA2B
DEHC32H332KA2B DEA1X3A101JN2A DE0705F472Z1K DEBB33F221KR5A DEA1X3D120J1AB
DECB33J221KC4B DEA1X3A120JA1B DEA1X3A220JA1B DEA1X3D220JA1B DEBB33A221KN2A
DEC1X3J220JC4B DEBE33F222ZA3B DEHC32H102KA2B DEBB33D471KA2B DEHR33D561KEBB
DEBB33A471KA1B DEBB33F471KA3B DEHR33D102KR1A DEA1X3F820JA3B DEBE33D103ZECB
DEA1X3A820JA2B DEA1X3D820JA2B DEHR33D102KB3B DEBB33A332KN2A DEA1X3F330JC3B
DEC1X3J101JC4B DEA1X3A470JP2A DEBE33A103ZA3B DEBE33D103ZA3B DEHR33D102KN3A
DEHR33F561KA3B DEHR33D561KA3B DE2E3KH102MEBB DEBB33F152KA3B DE-KIT-SAFETY-KXKH
DEBB33A152KA2B DEBB33D152KA2B DEHC32H152KA2B DEHR33A472KA4B DEHR33D472KA4B
DEHR33F272KA4B DEA1X3A221JN2A DEA1X3A121JN2A DEHR33A472KA3B DEHR33D272KA3B
DECE33J102ZC4B DEBB33F681KA3B DEBB33A102KQ1A DE2E3KH332MR5A DEHR33F222KA3B
DEHR33F122KA3B DEHR33D122KA3B DEHR33D222KA3B DEHR33A222KA3B DEBB33A681KA2B
DEHR33D821KEBB DEBB33D681KA2B DEHR33A222KA4B DEA1X3F390JC3B DEA1X3D390JC1B
DEA1X3A390JC1B DEBB33F102KA3B DEBB33D102KA2B DEBB33A102KA2B DESD33A222KN3A