₩₩ 華興變壓器制造廠有限公司 WAH HING TRANSFORMER MFY. LTD.

香港九龙官塘兴业街 15-17 号中美中心 A 座 12-13 楼 12&13/F, Blk. A, Chung Mei Centre, 15-17 Hing Yip St., Kwun Tong, Kowloon, Hong Kong Tel: 852-2341 2297 Fax: 852-2341 5941 E-mail: mkt@wahhing.com.hk

SPECIFICATION FOR APPROVAL				
Customer: Wah Hing				
Customer P/N:		Customer Rev.:		
Customer Model No.:		Customer ID: W050		
Wah Hing Model No.: T06568	BA	Wah Hing Rev.: 01		
Article: AC POWER TE	RANSFORMER (CLASS B)			
Standard: EN61558-2-6		Safety No.:		
Catalog No.: V30AJ-15A9P7	1	Date: 2006-06-27		
Remarks: Please note items listed	in page.2 that requires your	consent for deviation.		
Eng. Dept. 常强彦 Eng. Dept. 本文学生				
Designed/Maker	Checked by	Approved by		
Please evaluate the samples, sign this approval sheet and return to WAH HING Approved Rejected Conditional Approved				
Customer Approved by : Signature & Date				

₩ 華興變壓器制造廠有限公司

WAH HING TRANSFORMER MFY. LTD. PRODUCT SPECIFICATION

Deviation and History

Please note items listed below does not meet your specifications and requires your consent for deviation:

Item	Customer specification	Suggestion specification
1		
2		
3		
4		
	•	·

Remai	ks:				
<u> </u>					
<u>^</u> ^\\ <u>^</u> \\ <u>^</u> \\ <u>^</u> \\ <u>^</u> \\ <u>^</u> \\ <u>^</u> \\					
<u>\(\) \</u>					
<u> </u>					
$\sqrt{3}$					
2					
\triangle	01				
	00	Initial Issue		Cao	2003-06-10
Item	Rev	Description		Sign	Date
		Histor	у		
Custon	mer P/N	J:	Wah Hing Model No.:	T06568A	

TH/華興變壓器制造廠有限公司

WAH HING TRANSFORMER MFY. LTD. PRODUCT SPECIFICATION

Dimensions and Diagram ---18.0 ---21.0 27.5 0.8±0.2 4.5 5 7 -32.5- $4x5.0\pm0.4$. 4 5 ŝ 20.0 ± 0.4 27.5 10 $4x5.0\pm0.4$ Notes: 1. Unit: mm 2. Marking: pad-print on top of case, letter in white, background in black 3. Pins exist at position: 1, 5, 7, 9.

 ± 1.0 ± 1.0

Wah Hing Model No.:

 $.xx \pm 0.50$

. X

4. The otherwise tolerance is follows: x.

Customer P/N:

T06568A

TH/華興變壓器制造廠有限公司

WAH HING TRANSFORMER MFY. LTD. PRODUCT SPECIFICATION

E Electrical Characteristics Circuit diagram: Sec. Pri. AC 15.2V **Tabel-1: Secondary loaded voltage:** Primary input **S**1 S2 **S**3 **S**4 **S5** Load $222\,\mathrm{mA}$ ac 230Vac Rated 50 Hz load Standard 9.0V ac No Load 0mA 230Vac 50Hz Standard 15.2V ac Load 253Vac 2 50 Hz Standard Load 207Vac 3 50 Hz Standard Load 4 Standard Tabel-1 notes: 1. If not specified, the secondary voltage tolerance is $\pm 10\%$.

Customer P/N:

T06568A

Wah Hing Model No.:

VH/華嶼變壓器制造廠有限公司

WAH HING TRANSFORMER MFY. LTD. PRODUCT SPECIFICATION

Electrical Characteristics

Standard atmospheric conditions:

Unless otherwise specified, the standard range of atmospheric conditions for marking measurements and tests are as follows:

Ambient temperature : $15\,^{\circ}$ C to $35\,^{\circ}$ C Relative humidity : 25% to 85%

If there is doubt about the results, measurement shall be made within the following limits:

Ambient temperature : $20^{\circ}\text{C} \pm 1^{\circ}\text{C}$ Relative humidity : 63% to 67%

Operating temperature range:

-10°C to +70°C

1	Output voltage and current	✓ Measured in a.c. circuit□ D.C. circuit including rectifying circuit		Refer to Page 3
2	Rated primary voltage	 ✓ 50Hz ☐ 60HZ ☐ Both 50Hz and 60Hz 		<u>230</u> V
3	No load current	Input <u>230</u> Vac, <u>50</u> Hz		28mA or less
4	Stand-by consumption	Input <u>230</u> Vac, <u>50</u> Hz		W or less
5	Secondary voltage			Refer to Page 4
6	Insulation resistance	Apply a voltage of 500V d.c. for 1min.: Between the primary and core Between the primary and secondary		100M $Ω$ or more
7	Dielectric strength			No damage such as Breakdown, etc.
8	Layer dielectric strength	Apply (A) V, 400Hz for 15s to the primary terminal of (B) V. (A) 460V, (B) 230V		No damage such as Breakdown, etc.
9	Primary direct	Between terminals of and		Ω
9	Current resistance	Between terminals of and		Ω
10	Secondary direct	Between terminals of and		Ω
10	Current resistance	Between terminals of and		Ω
11	Temperature rise	The voltage of _(A) V shall be applied to the primary terminal of (B) V. Measurement shall be made after constant temperature are reached. (A) 243.8V, (B) 230V Secondary load conditions: All at the rated current The input voltage is increased by 6% after the rated current is set. The rated current is set, with the input voltage 10% high. Other (Ta=70°C)		Windings up to:50_K. (by the resistance method) Iron core up to:K. (by the thermometer method)
Customer P/N: Wah Hing Model No.: T06568A			Г06568A	
Ü				

THP華嶼變壓器制造廠有限公司

WAH HING TRANSFORMER MFY. LTD. PRODUCT SPECIFICATION

Electrical Characteristics				
	The power transformer shall be stored at an ambient temperature of 40°C±2°C with relative humidity	Insulation resistance	$5M \Omega$ or more	
12	Damp heat	of 90% to 95% for 48h.Then condensation shall be removed.	Dielectric strength	Clause 7 shall be satisfied. Trip current 5mA
13 Dry heat	The power transformer shall be stored at an ambient temperature of 100°C±3°C for 6h.	Insulation resistance	$5M\Omega$ or more	
13	Dry heat 100°C±3°C for 6h. After which measurement shall be made within 10 min.	Dielectric strength	Clause 7 shall be satisfied. Trip current 5mA	
14	Abnormal temperature test	☐ 15-day test ☐ Short-circuit and overload test with		Windings up to: 175 $^{\circ}$ C
15	Beat noise (Hum)	28 dB or less		28 dB or less
16	Thermo-protector	Primary windings built in / thermal fuse.		
17	Mass	100g (reference)		

CONSTRUCTION DIAGRAM AND MATERIAL LIST

1. Internal construction

- (1) Lead wire and winding shall be connected by twisting together.
- (2) Thickness and materials of insulation and also creepage, clearance and thickness of insulation, shall conform to applicable safety standard.

2. Tensile strength of terminals (pins)

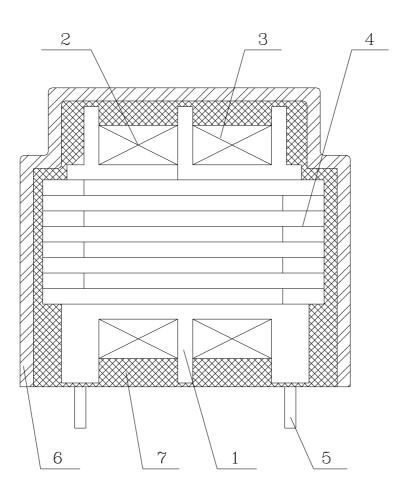
A load of 20 N shall be applied in the axial direction. When it is retained for 10±1 seconds, there shall be no loosening or breakdown.

For one not exceeding 2 Kg, the static load same with the self weight shall be applied.

3. Appearance

There shall be no scratches, dents, or distinct blemishes on the body, pin.

4. Fitting strength


There shall be no damage such as deformation when a static load of 20 N is applied in all directions for 30 s.

Customer P/N:	Wah Hing Model No.:	T06568A

THP 華嶼變壓器制造廠有限公司

WAH HING TRANSFORMER MFY. LTD. PRODUCT SPECIFICATION

Construction Diagram

- 1. BOBBIN
- 2. PRIMARY WINDING
- 3. SECONDARY WINDING
- 4. LAMINATION CORE

- 5. PIN
- 6. POTTING BOX
- 7. POTTING MATERIAL

Customer P/N: Wah Hing Model No.: T06568A

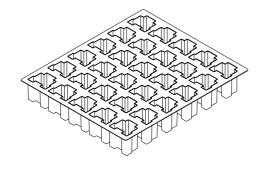
₩ 華興變壓器制造廠有限公司

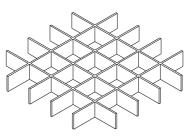
WAH HING TRANSFORMER MFY. LTD. PRODUCT SPECIFICATION

	Materials List		
Description	Material ,Thickness/Turns	Manufacture	Safety No.
1 Bobbin	PETP, FR530 UL94V-0	E.I. Dupont	E41938
BOUDIII	PET-T102G30, 0.71mm min. UL94V0	Shinkong	E107536
Daimour, Winding	Deliverethone anomalist comparation MW29C or MW75C	Ta win	E152187(S)
Primary winding	Polyuretnane enameled copper wire M w 28C or M w /3C	Pacific-thai	E142108(S)
Casandam: Winding	Deliverethone anomalist comparation MW29C or MW75C	Ta win	E152187(S
Secondary winding	Polyuretnane enameled copper wire M w 28C or M w /3C	Pacific-thai	E142108(S
Lamination Core	Silicon sheet steel, EI30, 0.5mm.thickness	Kawasaki	None
Pin	Copper alloy, 0.8mm diameter	WELL FORE	None
Potting Box	A216V30 , UL94HB	RHQDIA	E44716
Potting Material	Epoxy 9001A/9001B,UL94V-0	Wells chemical	E222812
	+		
	Bobbin Primary Winding Secondary Winding Lamination Core Pin Potting Box	Description Material ,Thickness/Turns PETP, FR530 UL94V-0 PET-T102G30, 0.71mm min. UL94V0 Primary Winding Polyurethane enameled copper wire MW28C or MW75C Secondary Winding Polyurethane enameled copper wire MW28C or MW75C Lamination Core Silicon sheet steel, EI30, 0.5mm.thickness Pin Copper alloy, 0.8mm diameter Potting Box A216V30 , UL94HB	DescriptionMaterial ,Thickness/TurnsManufactureBobbinPETP, FR530 UL94V-0 PET-T102G30, 0.71mm min. UL94V0E.I. DupontPrimary WindingPolyurethane enameled copper wire MW28C or MW75CTa winSecondary WindingPolyurethane enameled copper wire MW28C or MW75CTa winLamination CoreSilicon sheet steel, EI30, 0.5mm.thicknessKawasakiPinCopper alloy, 0.8mm diameterWELL FOREPotting BoxA216V30 , UL94HBRHQDIA

- 1. All materials meet ROHS requirement.
- 2. Please advise if customer have any special requirements.

 Otherwise, all materials may be substituted by other equivalent manufacturer.

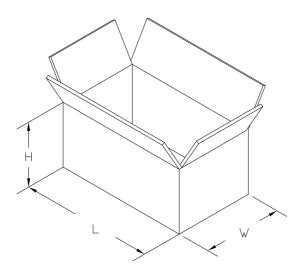

Customer P/N: Wah Hing Model No.: T06568A


TH/華興變壓器制造廠有限公司

WAH HING TRANSFORMER MFY. LTD. PRODUCT SPECIFICATION

Packing Diagram

Internal:



Plastic Package ($\sqrt{\ }$)

Chamber (

Other ()

Carton box:

Packing description:

	L	W	Н
Size (cm)	28	26	15
Tolerance	+2/-0	+2/-0	+2/-0
QTY (pcs)		144	
G. W. (Kg)		15.5	

Remarks:

1. Storage condition:

Temperature: $-20 \sim +60^{\circ}$ C

Relative humidity: 30% ~ 80%

2. Storage time: 6 months3. Antistatic: no requirement

4. Please advise if any comment on packing information, Otherwise, this information will apply in production.

Wahhing Electrical Appliance Co., Ltd. Wah Hing Transformer Mfy. Ltd.

ELECTRICAL TESTING DATA SHEET

[MSF No:0606049]

Table No:ER004-03

of

Page

10 Date :2 \$ / 7 un / 0 6 8 6 Room Temperature: Chg No.: 6 NG ∞ ZOK OK 9 15.27 Judgement: Approved By: 1,030 9.76 248 248 14V 1507 1485 Rev No.: 00/ 86.0 86.0 16.5 15-30 15-89 15-39 NS. 18 9.1¢ 4 906 1MWV66 1.00 90'6 8.4) Tested By: 大小高祭 9.78 (4) 3 1MWV58 Pin No. Cust. P/N: Hz≥100MΩ 3.154V/1m20 PM-106 28.0 ml SPEC Vac; So > ? Wahhing Model No.: 76 bs 68A Primary - Secondary & Core Hi-Pot Test Equipment: Pri Exec Io(mA) (MAX) (Vo local lang (W) Customer: Walk Hing Secondary - Core DESCRIPTION Insulation Resistance See Vo VIDE Condition: Input: Us ALLDYS MA Hi-Pot Test: Pri DCR(Ω)